Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 318 - 333

 

 

 

 

THE PREPARATION AND APPLICATION OF ZINC SULFIDE AS PHOTOCATALYST FOR WATER REMEDIATION: A MINI REVIEW

 

(Penyediaan dan Aplikasi Zink Sulfida sebagai Pemangkin Cahaya untuk Rawatan Air: Ulasan Ringkas)

 

Kavirajaa Pandian Sambasevam, Jamilin Rashida Adnan, Izyan Najwa Mohd Norsham, Siti Nor Atika Baharin*

 

Advanced Material for Environmental Remediation (AMER) Research Group,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author:  atikabaharin@uitm.edu.my 

 

 

Received: 2 September 2021; Accepted: 7 March 2022; Published:  28 April 2022

 

 

Abstract

ZnS has gained attention as an effective photocatalyst for the photocatalytic degradation method in wastewater treatment. Photocatalysis is believed to be a promising solution to solve the problem of water pollution and remove organic pollutants. Apart from other photocatalysts such as ZnO, TiO2 and MoS2, ZnS is a developing photocatalyst in this degradation method due to its large bandgap energy. This review paper comprehensively considered the preparation (hydrothermal, solvothermal, low temperature, green synthesis, solid-state reaction, and microwave-assisted synthesis) of ZnS, application, and some challenges that have been faced by photocatalytic degradation methods. The adsorption and photocatalytic properties of ZnS depend on the different morphology and size formed by different methods. ZnS modification presents higher decomposition efficiency in removing organic pollutants.

 

Keywords:  metal disulfide, organic pollutants, photocatalytic degradation, sustainable water management

 

Abstrak

ZnS mendapat perhatian sebagai pemangkin cahaya yang terbaik untuk melakukan rawatan terhadap air yang tercemar. Fotokatalisis dipercayai sebagai penyelesaian dalam menyelesaikan masalah air yang tercemar dan menyingkirkan pencemaran semulajadi yang terdapat di dalam air. Selain daripada pemangkin cahaya seperti ZnO, TiO2 dan MoS2, ZnS dijadikan sebagai pemangkin cahaya dalam kaedah pemulihan air kerana ZnS mempunyai tenaga jurang pita yang tinggi. Kertas kajian ini merangkumi cara penyediaan (hidroterma, solvoterma, teknik suhu rendah, sintesis hijau, tindak balas keadaan pepejal, dan sintesis berteraskan gelombang mikro) ZnS, aplikasi dan beberapa cabaran yang perlu di hadapi dalam proses rawatan air. Ciri-ciri penyerapan dan fotokatalitik ZnS bergantung kepada perbezaan struktur permukaan dan saiz yang terbentuk dari perbezaan penyediaan. Pengubahsuaian ZnS menunjukkan kecekapan penguraian yang tinggi kepada pencemaran semulajadi.

 

Kata kunci: logam disulfida, pencemar organik, penyingkiran fotokatalitik, pengurusan lestari air

 

 


Graphical Abstract



 

 

References

1.   Dehghanifard, E., Jafari, A. J., Kalantary, R. R., Mahvi, A. H., Faramarzi, M. A. and Esrafili, A. (2013). Biodegradation of 2, 4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian Journal of Environmental Health Science and Engineering, 10(1): 25.

2.   Anjum, M., Oves, M., Kumar, R. and Barakat, M. A. (2017). Fabrication of ZnO-ZnS@ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater. International Biodeterioration and Biodegradation, 119: 66-77.

3.     Ayodhya, D. and Veerabhadram, G. (2018). A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Materials Today Energy, 9: 83-113.

4.   Salah, N., Hameed, A., Aslam, M., Babkair, S. S., and Bahabri, F. S. (2016). Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2-chlorophenol from the aquatic environment under natural sunlight exposure. Journal of Environmental Management, 177: 53-64.

5.      Das, M. and Sarkar, D. (2017). One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceramics International, 43(14): 11123-11131.

6.      Allahyeran and Mehrizad (2017). Comparison between different d-dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology 38(1): 42-49.

7.      Lai, K., Wei, W., Yingtao, Z., Meng, G., Ying, D. and Baibiao, H. (2012). Effects of oxygen vacancy and n-doping on the electronic and photocatalytic properties of Bi2MO6 (M=Mo, W). Journal of Solid State Chemistry 187:103-108.

8.      Goswami, M., Sahoo, S., Meikap, A. K. and Ghosh, R. (2011). Characterization, optical and dc electrical properties of polyaniline-zinc sulphide nanocomposite. In International Conference on Nanoscience, Engineering and Technology, 2011: 314-318.

9.      Bora, L. V. and Mewada, R. K. (2017). Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renewable and Sustainable Energy Reviews, 76: 1393-1421.

10.   Byrne, C., Subramanian, G. and Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3): 3531-3555.

11.   Al-Hamdi, Abdullah, M., Uwe, R. and Mika, S. (2017). Tin dioxide as a photocatalyst for water treatment: A review. Process Safety and Environmental Protection 107:190-205.

12.   Mahvelati-Shamsabadi, T. and E. K. Goharshadi. (2017). Photostability and visible-light-driven photoactivity enhancement of hierarchical ZnS nanoparticles: The role of embedment of stable defect sites on the catalyst surface with the assistant of ultrasonic waves. Ultrasonics Sonochemistry, 34: 78-89.

13.   Umar, M. and Aziz, H. A. (2013). Photocatalytic degradation of organic pollutants in water. Organic Pollutants-Monitoring, Risk and Treatment, 8: 196-197.

14.   Munawaroh, H., Sari, P. L., Wahyuningsih, S. and Ramelan, A. H. (2018) The photocatalytic degradation of methylene blue using graphene oxide (GO)/ZnO nanodrums. In AIP Conference Proceedings, 2014: p. 020119.

15.   Majhi, M., Choudhary, R. B., and Maji, P. (2017). HCl protonated polymeric PANI-ZnS nanocomposites and measurement of their robust dielectric, optical and thermal performance. Optik, 136: 181-191.

16.   Varanda, L. C., de Souza, C. G. S., Perecin, C. J., de Moraes, D. A., de Queir z, D. F., Neves, H. R. and da Silva, T. L. (2019). Inorganic and organic inorganic composite nanoparticles with potential biomedical applications: Synthesis challenges for enhanced performance. In Materials for Biomedical Engineering: pp. 47-99.

17.   Salavati-Niasari, M., Fatemeh, D. and Mehdi, M. (2009). Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [Bis(Salicylidene)Zinc(II)]. Journal of Alloys and Compounds 470(1 2): 502-506.

18.   Hu, L., Feiyan, C., Pengfei, H., Lianpei, Z. and Xing, H. (2016). Hydrothermal synthesis of SnO2/ZnS nanocomposite as a photocatalyst for degradation of rhodamine b under simulated and natural sunlight. Journal of Molecular Catalysis A: Chemical, 411: 203-213.

19.   Lee, G. J. and Wu, J. J. (2017). Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications -A review. Powder Technology, 318: 8-22.

20.   Shakouri-Arani, M. and Salavati-Niasari, M. (2014). Synthesis and characterization of wurtzite ZnS nanoplates through simple solvothermal method with a novel approach. Journal of Industrial and Engineering Chemistry, 20(5): 3179-3185.

21.   Song, L., Zhang, S., Chen, B., Ge, J. and Jia, X. (2010). Fabrication of ternary zinc cadmium sulfide photocatalysts with highly visible-light photocatalytic activity. Catalysis Communications, 11(5): 387-390.

22.   Shahid, R., Toprak, M., Soliman, H. and Muhammed, M. (2012). Low temperature synthesis of cubic phase zinc sulfide quantum dots. Open Chemistry, 10(1): 54-58.

23.   Guo, J., Khan, S., Cho, S. H., and Kim, J. (2019). Preparation and immobilization of zinc sulfide (ZnS) nanoparticles on polyvinylidene fluoride pellets for photocatalytic degradation of methylene blue in wastewater. Applied Surface Science, 473: 425-432.

24.   Senapati, U. S., Jha, D. K. and Sarkar D. (2013). Green synthesis and characterization of ZnS nanoparticles. Research Journal of Physical Sciences,1(7): 2320-4796.

25.   Hudlikar, M., Shreeram, J., Mayur, D. and Kisan, K. (2012). Latex-mediated synthesis of ZnS nanoparticles: Green synthesis approach. Journal of Nanoparticle Research, 14(5): 865.

26.   Kannan, S., Subiramaniyam, N. P. and Sathishkumar, M. (2020). A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens. Journal of Materials Science: Materials in Electronics, 31(12): 9846-9859.

27.   Lan, C., Kunquan, H., Wenzhong, W. and Guanghou, W. (2003). Synthesis of ZnS nanorods by annealing precursor ZnS nanoparticles in NaCl flux. Solid State Communications, 125(9): 455-58.

28.   Jothibas, M., Manoharan, C., Jeyakumar, S. J., Praveen, P., Punithavathy, I. K. and Richard, J. P. (2018). Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Solar Energy, 159: 434-443.

29.   Hu, H., Wang, X., Liu, F., Wang, J. and Xu, C. (2011). Rapid microwave-assisted synthesis of graphene nanosheets zinc sulfide nanocomposites: Optical and photocatalytic properties. Synthetic Metals, 161(5-6): 404-410.

30.   Boulkroune, R., Sebais, M., Messai, Y., Bourzami, R., Schmutz, M., Blanck, C., ... and Boudine, B. (2019). Hydrothermal synthesis of strontium-doped ZnS nanoparticles: structural, electronic and photocatalytic investigations. Bulletin of Materials Science, 42(5): 1-8.

31.   Chen, Y., Yin, R. H. and Wu, Q. S. (2012). Solvothermal synthesis of well-disperse ZnS nanorods with efficient photocatalytic properties. Journal of Nanomaterials, 2012: 560310.

32.   Suganya, S., Jothibas, M. and Jeyakumar, S. J. (2019). Solid state synthesis of cadmium doped ZnS with excellent photocatalytic activity and enhanced visible light emission. Journal of Materials Science: Materials in Electronics, 30(8): 7916-7927.

33.   Abbasi, M., Rafique, U., Murtaza, G. and Ashraf, M. A. (2018). Synthesis, characterisation and photocatalytic performance of ZnS coupled Ag2S nanoparticles: A remediation model for environmental pollutants. Arabian Journal of Chemistry, 11(6): 827-837.

34.   Wang, W., Lee, G. J., Wang, P., Qiao, Z., Liu, N. and Wu, J. J. (2020). Microwave synthesis of metal-doped ZnS photocatalysts and applications on degrading 4-chlorophenol using heterogeneous photocatalytic ozonation process. Separation and Purification Technology, 237: 116469.

35.   Ibrahim, S. K., Chakrabarty, S., Ghosh, S. and Pal, T. (2017). Reduced graphene oxide zinc sulfide composite for solar light responsive photo current generation and photocatalytic 4‐nitrophenol reduction. ChemistrySelect, 2(1): 537-545.

36.   Kale, D. P., Deshmukh, S. P., Shirsath, S. R. and Bhanvase, B. A. (2020). Sonochemical preparation of multifunctional rGO-ZnS-TiO2 ternary nanocomposite and its application for CV dye removal. Optik, 208: 164532.

37.   Hern ndez-Gordillo, A., Garc a-Mendoza, C., Alvarez-Lemus, M. A. and G mez, R. (2015). Photocatalytic reduction of Cr(VI) by using stacked ZnS layers of ZnS (en) x complex. Journal of Environmental Chemical Engineering, 3(4): 3048-3054.

38.   Qin, Y. L., Zhao, W. W., Sun, Z., Liu, X. Y., Shi, G. L., Liu, Z. Y., ... and Ma, Z. Y. (2019). Photocatalytic and adsorption property of ZnS TiO2/RGO ternary composites for methylene blue degradation. Adsorption Science & Technology, 37(9-10): 764-776.

39.   Wu, H., Lin, S., Chen, C., Liang, W., Liu, X. and Yang, H. (2016). A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Materials Research Bulletin, 83: 434-441.

40.   Anjum, M., Oves, M., Kumar, R. and Barakat, M. A. (2017). Fabrication of ZnO-ZnS@ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater. International Biodeterioration & Biodegradation, 119: 66-77.

41.   Kumar, T. K. M. and Kumar, S. K. (2019). Visible-light-induced degradation of rhodamine B by nanosized Ag2S-ZnS loaded on cellulose. Photochemical & Photobiological Sciences, 18(1): 148-154.