Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 303 - 317

 

 

 

 

DIRECT CATALYTIC CONVERSION OF CELLULOSE INTO FORMIC ACID BY SUPPORTED PHOSPHOTUNGSTIC ACID CATALYST

 

(Penukaran Terus Selulosa Kepada Asid Formik Menggunakan Pemangkin Asid Fosfotungstik yang Disokong)

 

Nor Liyana Zakira Zabidi Adil @ Zaibidai Adil, Farah Wahida Harun, Syaza Azhari, Lailatun Nazirah Ozair, Shikh Mohd Shahrul Nizan Shikh Zahari, Tengku Shafazila Tengku Saharuddin*

 

Faculty of Science and Technology,

Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan

 

*Corresponding author:  shafazila@usim.edu.my

 

 

Received: 15 August 2021; Accepted:  11 January 2022; Published:  28 April 2022

 

 

Abstract

This study aims to prepare phosphotungstic acid supported on hydrotalcite (PTA-HT) for one-pot hydrothermal cellulose conversion into formic acid (FA). In this study, different percentages of PTA on HT (1, 5, 10, 15, 20, 25, and 33%) were prepared and the catalytic activity was observed for two different parameters such as time (1 to 5 hours) and reaction temperature (160 to 240 °C). The prepared catalysts were characterized using Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), Brunauer-Emmet-Teller (BET) and field emission scanning electron microscopy-energy dispersive X-ray spectrometry (FESEM-EDX), while the production of FA was determined using ultra high-performance liquid chromatography (UHPLC). To avoid bias, raw PTA and calcined HT were compared with varying percentages of supported PTA. PTA-HT was successfully prepared through the impregnation method as confirmed by XRD, FTIR, BET and FESEM-EDX. According to the results, the optimum condition for cellulose conversion into formic acid was when 25% PTA-HT was applied at 220 °C for 4 hours, with a 30% cellulose conversion and 18 % FA yield. Due to the acidity and redox properties of PTA, it has been demonstrated that PTA-HT increased the catalytic activity by two-fold when compared to calcined HT alone (8%). The significance of this finding opens new suggestion of bifunctional catalyst in cellulose conversion into FA.

 

Keywords:  catalyst, cellulose, formic acid, hydrothermal, phosphotungstic acid

 

Abstrak

Tujuan kajian ini adalah untuk menyediakan asid fosfotungstik yang disokong dengan oleh hidrotalsit (PTA-HT) bagi proses hidroterma penukaran selulosa kepada asid formik. Di dalam kajian ini, perbezaan peratus PTA ke atas HT (1, 5, 10, 15, 20, 25 dan 33%) telah disediakan dan aktiviti pemangkinan telah dijalankan terhadap dua parameter iaitu masa (1 jam hingga 5 jam) dan suhu (160 hingga 240 ℃). Pemangkin yang telah disediakan diperincikan menggunakan inframerah transformasi Fourier (FTIR), pembelauan sinar-X (XRD), Brunauer-Emmet-Teller (BET) and mikroskopi imbasan pancaran medan-spektrometri tenaga serakan sinar-X (FESEM-EDX) manakala asid formik yang terhasil ditentukan menggunakan kromatografi cecair berprestasi ultra tinggi (UHPLC). Bagi mengelakkan keputusan yang berat sebelah dalam kajian, PTA tulen dan HT yang dikalsin telah dibandingkan dengan perbezaan peratus PTA yang disokong. PTA-HT yang telah disediakan melalui kaedah impregnasi dicirikan oleh XRD, FTIR, BET dan FESEM-EDX. Berdasarkan keputusan, keadaan yang paling optimum bagi penukaran selulosa kepada asid formik adalah apabila 25% PTA-HT digunakan pada 220 ℃ selama 4 jam dengan menghasilkan 30% penukaran selulosa dan 18% penghasilan asid formik. Oleh kerana ciri-ciri asid dan redoks yang dimiliki oleh PTA, keputusan kajian telah menunjukkan bahawa PTA yang disokong oleh HT meningkatkan aktiviti pemangkin sebanyak dua kali ganda berbanding HT yang telah dikalsin yang hanya menghasilkan 8% asid formik. Kepentingan kajian ini akan membuka cadangan baru terhadap penggunaan pemangkin dwifungsi dalam penukaran selulosa kepada asid formik.  

 

Kata kunci:  pemangkin, selulosa, asid formik, hidroterma, asid fosfotungstik

 

 

 

 


Graphical Abstract

 

References

1.     Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y., Mahari, W. A. W., ... and Lam, S. S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chemical Engineering Journal, 389: 124401.

2.      Mamleeva, N. A., Autlov, S. A., Bazarnova, N. G. and Lunin, V. V. (2016). Degradation of polysaccharides and lignin in wood ozonation. Russian Journal of Bioorganic Chemistry, 42(7): 694-699.

3.      Ribeiro, L. S., de Melo Órfão, J. J. and  Pereira, M. F. R. (2017). Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production. Bioresource Technology, 244: 1173-1177.

4.      Scapin, E., Rambo, M. K. D., Viana, G. C. C., Marasca, N., Lacerda, G. E., Rambo, M. C. D. and Fernandes, R. D. M. N. (2019). Sustainable production of furfural and 5-hidroximetilfurfural from rice husks and soybean peel by using ionic liquid. Food Science and Technology, 40: 83-87.

5.      Dalena, F., Basile, A. and Rossi, C. (Eds.). (2017). Bioenergy systems for the future: Prospects for biofuels and biohydrogen. Woodhead Publishing.

6.      Tursi, A. (2019). A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2): 962-979.

7.      Nur, N. D., Nur, W. M. Z., Ahmad, H. M., Nor, M. A. and Sheikh, A. I. S. M. G. (2020). Study on the oxidation and properties of dihydroxyl cellulose using different amounts of sodium periodate. Malaysian Journal of Analytical Sciences, 24(6): 830-837.

8.      Prasad, S. and Ingle, A. P. (2019). Impacts of sustainable biofuels production from biomass. In Sustainable Bioenergy, Elsevier. pp. 327-346.

9.      Wattanapaphawong, P., Sato, O., Sato, K., Mimura, N., Reubroycharoen, P. and Yamaguchi, A. (2017). Conversion of cellulose to lactic acid by using ZrO2–Al2O3 catalysts. Catalysts7(7): 221.

10.   Hou, Y., Lin, Z., Niu, M., Ren, S. and Wu, W. (2018). Conversion of cellulose into formic acid by Iron(III)-catalyzed oxidation with O2 in acidic aqueous solutions. ACS Omega, 3(11): 14910-14917.

11.   Zhang, M. H., Dong, H., Zhao, L., Wang, D. X. and Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670: 110-121.

12.   Morone, A., Mulay, P. and Kamble, S. P. (2019). Removal of pharmaceutical and personal care products from wastewater using advanced materials. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, 2019: 173-212.

13.   Ma, J., Zhang, K., Huang, M., Hector, S. B., Liu, B., Tong, C., ... and Zhu, Y. (2016). Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology for Biofuels, 9(1): 1-13.

14.   Awudu, F. (2018). Hydrolysis of Cellulose and Biomass using Blue Molybdenum (Doctoral dissertation, East Tennessee State University).

15.   Gromov, N. V., Medvedeva, T. B., Rodikova, Y. A., Babushkin, D. E., Panchenko, V. N., Timofeeva, M. N., ... and Parmon, V. N. (2020). One-pot synthesis of formic acid via hydrolysis–oxidation of potato starch in the presence of cesium salts of heteropoly acid catalysts. RSC Advances, 10(48): 28856-28864.

16.   Cheng, C., Wang, J., Shen, D., Xue, J., Guan, S., Gu, S. and Luo, K. H. (2017). Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: A review. Polymers, 9(6): 240.

17.   Albert, J. (2017). Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts. Faraday Discussions, 202: 99-109.

18.   Chen, X., Liu, Y. and Wu, J. (2020). Sustainable production of formic acid from biomass and carbon dioxide. Molecular Catalysis, 483: 110716.

19.   Voß, D., Dietrich, R., Stuckart, M. and Albert, J. (2020). Switchable catalytic polyoxometalate-based systems for biomass conversion to carboxylic acids. ACS Omega5(30), 19082-19091.

20.   Doungsri, S., Rattanaphanee, P. and Wongkoblap, A. (2019). Production of lactic acid from cellulose using solid catalyst. In MATEC Web of Conferences, 268: 07006).

21.   Sun, Y., Shi, L., Wang, H., Miao, G., Kong, L., Li, S. and Sun, Y. (2019). Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: catalytic performance and mechanistic insights. Sustainable Energy & Fuels, 3(5): 1163-1171.

22.   Ramli, N. A. S. and Amin, N. A. S. (2015). Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Applied Catalysis B: Environmental, 163: 487-498.

23.   Bhorodwaj, S. K. and Dutta, D. K. (2011). Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol. Applied Clay Science, 53(2): 347-352.

24.   Hietala, J., Vuori, A., Johnsson, P., Pollari, I., Reutemann, W. and Kieczka, H. (2016). Formic acid. Ullmann’s Encyclopedia of Industrial Chemistry, 1: 1-22.

25.   Ricke, S. C., Dittoe, D. K. and Richardson, K. E. (2020). Formic acid as an antimicrobial for poultry production: A review. Frontiers in Veterinary Science, 2020: 563.

26.   Johnson Jr, W., Heldreth, B., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., ... and Andersen, F. A. (2016). Safety assessment of formic acid and sodium formate as used in cosmetics. International Journal of Toxicology, 35(2): 41S-54S.

27.   Kos, L., Michalska, K., Żyłła, R. and Perkowski, J. (2014). Effect of formic acid on pollutant decomposition in textile wastewater subjected to treatment by the Fenton method. Fibres & Textiles in Eastern Europe, 22, 135-139.

28.   del Barrio, M. A., Hu, J., Zhou, P. and Cauchon, N. (2006). Simultaneous determination of formic acid and formaldehyde in pharmaceutical excipients using headspace GC/MS. Journal of Pharmaceutical and Biomedical Analysis, 41(3): 738-743.

29.   Higgins, F. J. and Ho, G. E. (1982). Hydrolysis of cellulose using HCl: a comparison between liquid phase and gaseous phase processes. Agricultural Wastes, 4(2): 97-116.

30.   Goldstein, I. S., Pereira, H., Pittman, J. L., Strouse, B. A. and Scaringelli, F. P. (1983, January). Hydrolysis of cellulose with superconcentrated hydrochloric acid. In Biotechnol. Bioeng. Symp.;(United States), 13: No. CONF-830567. North Carolina State Univ., Raleigh.

31.   Dussán, K. J., Silva, D. D., Moraes, E. J., Arruda, P. V. and Felipe, M. G. (2014). Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chemical Engineering Transaction, 38: 433-438.

32.   Alcañiz-Monge, J., El Bakkali, B., Trautwein, G. and Reinoso, S. (2018). Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Applied Catalysis B: Environmental, 224: 194-203.

33.   Anggorowati, H., Jamilatun, S., Cahyono, R. B. and Budiman, A. (2018). Effect of hydrochloric acid concentration on the conversion of sugarcane bagasse to levulinic acid. In IOP Conference Series: Materials Science and Engineering, 299(1): p. 012092.

34.   Huang, P. and Yan, L. F. (2017). Efficient degradation of cellulose in its homogeneously aqueous solution over 3D metal-organic framework/graphene hydrogel catalyst. Chinese Journal of Chemical Physics, 29(6): 742.

35.   Sivasubramaniam, D., Amin, N. A. S., Ahmad, K. and Ramli, N. A. S. (2019). Production of ethyl levulinate via esterification reaction of levulinic acid in the presence of ZrO2 based catalyst. Malaysian Journal of Analytical Sciences, 23(1): 45-51.

36.   Demesa, A. G., Laari, A., Sillanpää, M. and  Koiranen, T. (2017). Valorization of lignin by partial wet oxidation using sustainable heteropoly acid catalysts. Molecules, 22(10): 1625.

37.   Zhang, Z., Wang, B., Zhang, Y., Zhang, G. and Wang, Y. (2019). Study on the synthesize, characterization, and conductive performance of nickelzircomolybdnum heteropoly acid salt with Keggin structure. Advances in Polymer Technology, 2019: 501593.

38.   Guarin, C., Gavila, L., Constanti, M. and Medina, F. (2018). Impact of cellulose treatment with hydrotalcites in hydrothermal catalytic conversion. Chemical Engineering Science, 179: 83-91.

39.   Ziyat, H., Naciri Bennani, M., Hajjaj, H., Mekdad, S. and Qabaqous, O. (2018). Synthesis and characterization of crude hydrotalcite Mg–Al–CO3: study of thymol adsorption. Research on Chemical Intermediates, 44(7): 4163-4177.

40.   Li, T., Miras, H. N. and Song, Y. F. (2017). Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts, 7(9): 260.

41.   Omwoma, S., Chen, W., Tsunashima, R. and Song, Y. F. (2014). Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coordination Chemistry Reviews, 258: 58-71.

42.   Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T. and Arai, K. (2000). Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research, 39(8): 2883-2890.

43.   Paksung, N., Pfersich, J., Arauzo, P. J., Jung, D. and Kruse, A. (2020). Structural effects of cellulose on hydrolysis and carbonization behavior during hydrothermal treatment. ACS Omega, 5(21): 12210-12223.

44.   De Guzman, D. and De Leon, R. (2021). Preliminary optimization and kinetics of SnCl2-HCl catalyzed hydrothermal conversion of microcrystalline cellulose to Levulinic acid. Journal of Renewable Materials, 9(1): 145.

45.   Wang, K., Liu, Y., Wu, W., Chen, Y., Fang, L., Li, W. and Ji, H. (2020). Production of levulinic acid via cellulose conversion over metal oxide-loaded MOF catalysts in aqueous medium. Catalysis Letters, 150(2): 322-331.

46.   Li, X., Lu, X., Nie, S., Liang, M., Yu, Z., Duan, B., ... and Si, C. (2020). Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Industrial Crops and Products, 145: 112154.

47.   Lauermannová, A. M., Paterová, I., Patera, J., Skrbek, K., Jankovský, O. and Bartůněk, V. (2020). Hydrotalcites in construction materials. Applied Sciences, 10(22): 7989.

48.   Gromov, N. V., Taran, O. P., Delidovich, I. V., Pestunov, A. V., Rodikova, Y. A., Yatsenko, D. A., ... and Parmon, V. N. (2016). Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-VP heteropoly acid catalysts. Catalysis Today, 278: 74-81.

49.   Guarin, C., Gavila, L., Constanti, M. and Medina, F. (2018). Impact of cellulose treatment with hydrotalcites in hydrothermal catalytic conversion. Chemical Engineering Science, 179: 83-91.

50.   Delidovich, I. and Palkovits, R. (2015). Structure–performance correlations of Mg–Al hydrotalcite catalysts for the isomerization of glucose into fructose. Journal of Catalysis, 327: 1-9.

51.   Tulaphol, S., Hossain, M. A., Rahaman, M. S., Liu, L. Y., Phung, T. K., Renneckar, S., ... and Sathitsuksanoh, N. (2019). Direct production of levulinic acid in one pot from hemp hurd by dilute acid in ionic liquids. Energy & Fuels, 34(2): 1764-1772.

52.   Dandach, A., Vu, T. T. H., Fongarland, P. and Essayem, N. (2019). ZrW catalyzed cellulose conversion in hydrothermal conditions: Influence of the calcination temperature and insights on the nature of the active phase. Molecular Catalysis, 476: 110518.

53.   Tian, J., Wang, J., Zhao, S., Jiang, C., Zhang, X. and Wang, X. (2010). Hydrolysis of cellulose by the heteropoly acid H3PW12O40Cellulose, 17(3): 587-594.

54.   Xiaohua, C., Jie, R., Changlong, X., Zhang, K., Changchao, Z. H. A. N., and Jian, L. A. N. (2013). Preparation, characterization of Dawson-type heteropoly acid cerium (III) salt and its catalytic performance on the synthesis of n-butyl acetate. Chinese Journal of Chemical Engineering, 21(5): 500-506.

55.   Julianti, N. K., Wardani, T. K., Gunardi, I. and Roesyadi, A. (2017). Effect of calcination at synthesis of Mg-Al hydrotalcite using co-precipitation method. The Journal of Pure and Applied Chemistry Research, 6(1): 7.

56.   Jia, Y., Fang, Y., Zhang, Y., Miras, H. N. and Song, Y. F. (2015). Classical Keggin intercalated into layered double hydroxides: facile preparation and catalytic efficiency in Knoevenagel condensation reactions. Chemistry–A European Journal, 21(42): 14862-14870.

57.   Liu, G., Yang, J. and Xu, X. (2020). Synthesis of hydrotalcite-type mixed oxide catalysts from waste steel slag for transesterification of glycerol and dimethyl carbonate. Scientific Reports, 10(1): 1-14.

58.   Roohollahi, G. and Ehsani, M. (2019). An investigation into the effect of hydrotalcite calcination temperature on the catalytic performance of mesoporous Ni-MgO-Al2O3 catalyst in the combined steam and dry reforming of methane. Iranian Journal of Oil and Gas Science and Technology, 8(4): 64-84.

59.   Bardin, B. B., Bordavekar, S. V., Neurock, M. and Davis, R. I. (1998). Analysis of kegging-type heteropoly compounds evaluated by catalytic probe reaction sorption microcalorimetry and density functional quantum chemical calculations. Journal Physical Chemistry, 102: 10817-10825.