Malaysian
Journal of Analytical Sciences Vol 26 No 2
(2022): 303 - 317
DIRECT CATALYTIC
CONVERSION OF CELLULOSE INTO FORMIC ACID BY SUPPORTED PHOSPHOTUNGSTIC ACID
CATALYST
(Penukaran
Terus Selulosa Kepada Asid Formik Menggunakan Pemangkin Asid Fosfotungstik yang
Disokong)
Nor
Liyana Zakira Zabidi Adil @ Zaibidai Adil, Farah Wahida Harun, Syaza Azhari,
Lailatun Nazirah Ozair, Shikh
Mohd Shahrul Nizan Shikh Zahari, Tengku Shafazila Tengku Saharuddin*
Faculty
of Science and Technology,
Universiti
Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan
*Corresponding
author: shafazila@usim.edu.my
Received: 15 August 2021; Accepted: 11 January 2022; Published: 28 April 2022
Abstract
This
study aims to prepare phosphotungstic acid supported on hydrotalcite (PTA-HT)
for one-pot hydrothermal cellulose conversion into formic acid (FA). In this
study, different percentages of PTA on HT (1, 5, 10, 15, 20, 25, and 33%) were
prepared and the catalytic activity was observed for two different parameters
such as time (1 to 5 hours) and reaction temperature (160 to 240 °C).
The prepared catalysts were characterized using Fourier transform infrared
(FTIR), X-ray powder diffraction (XRD), Brunauer-Emmet-Teller (BET) and field
emission scanning electron microscopy-energy dispersive X-ray spectrometry
(FESEM-EDX), while the production of FA was determined using ultra
high-performance liquid chromatography (UHPLC). To avoid bias, raw PTA and
calcined HT were compared with varying percentages of supported PTA. PTA-HT was
successfully prepared through the impregnation method as confirmed by XRD,
FTIR, BET and FESEM-EDX. According to the results, the optimum condition for
cellulose conversion into formic acid was when 25% PTA-HT was applied at 220 °C
for 4 hours, with a 30% cellulose conversion and 18 % FA yield. Due to the
acidity and redox properties of PTA, it has been demonstrated that PTA-HT
increased the catalytic activity by two-fold when compared to calcined HT alone
(8%). The significance of this finding opens new suggestion of bifunctional
catalyst in cellulose conversion into FA.
Keywords: catalyst, cellulose, formic acid,
hydrothermal, phosphotungstic acid
Abstrak
Tujuan kajian ini adalah untuk
menyediakan asid fosfotungstik yang disokong dengan oleh hidrotalsit (PTA-HT)
bagi proses hidroterma penukaran selulosa kepada asid formik. Di dalam kajian
ini, perbezaan peratus PTA ke atas HT (1, 5, 10, 15, 20, 25 dan 33%) telah
disediakan dan aktiviti pemangkinan telah dijalankan terhadap dua parameter
iaitu masa (1 jam hingga 5 jam) dan suhu (160 hingga 240 ℃). Pemangkin
yang telah disediakan diperincikan menggunakan inframerah transformasi Fourier
(FTIR), pembelauan sinar-X (XRD), Brunauer-Emmet-Teller (BET) and mikroskopi
imbasan pancaran medan-spektrometri tenaga serakan sinar-X (FESEM-EDX)
manakala asid formik yang terhasil ditentukan menggunakan kromatografi cecair
berprestasi ultra tinggi (UHPLC). Bagi mengelakkan keputusan yang berat sebelah
dalam kajian, PTA tulen dan HT yang dikalsin telah dibandingkan dengan
perbezaan peratus PTA yang disokong. PTA-HT yang telah disediakan melalui
kaedah impregnasi dicirikan oleh XRD, FTIR, BET dan FESEM-EDX. Berdasarkan
keputusan, keadaan yang paling optimum bagi penukaran selulosa kepada asid formik
adalah apabila 25% PTA-HT digunakan pada 220 ℃ selama 4 jam dengan
menghasilkan 30% penukaran selulosa dan 18% penghasilan asid formik. Oleh
kerana ciri-ciri asid dan redoks yang dimiliki oleh PTA, keputusan kajian telah
menunjukkan bahawa PTA yang disokong oleh HT meningkatkan aktiviti pemangkin
sebanyak dua kali ganda berbanding HT yang telah dikalsin yang hanya
menghasilkan 8% asid formik. Kepentingan kajian ini akan membuka cadangan baru
terhadap penggunaan pemangkin dwifungsi dalam penukaran selulosa kepada asid
formik.
Kata kunci: pemangkin, selulosa, asid
formik, hidroterma, asid fosfotungstik
Graphical Abstract
References
1.
Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y.,
Mahari, W. A. W., ... and Lam, S. S. (2020). Valorization of biomass waste to
engineered activated biochar by microwave pyrolysis: progress, challenges, and
future directions. Chemical Engineering Journal, 389: 124401.
2.
Mamleeva, N. A., Autlov, S. A., Bazarnova, N. G. and Lunin, V. V.
(2016). Degradation of polysaccharides and lignin in wood ozonation. Russian
Journal of Bioorganic Chemistry, 42(7): 694-699.
3.
Ribeiro, L. S., de Melo Órfão, J. J. and
Pereira, M. F. R. (2017). Simultaneous catalytic conversion of cellulose
and corncob xylan under temperature programming for enhanced sorbitol and
xylitol production. Bioresource Technology, 244: 1173-1177.
4.
Scapin, E., Rambo, M. K. D., Viana, G. C. C., Marasca, N., Lacerda, G.
E., Rambo, M. C. D. and Fernandes, R. D. M. N. (2019). Sustainable production
of furfural and 5-hidroximetilfurfural from rice husks and soybean peel by
using ionic liquid. Food Science and Technology, 40: 83-87.
5.
Dalena, F., Basile, A. and Rossi, C. (Eds.). (2017). Bioenergy
systems for the future: Prospects for biofuels and biohydrogen. Woodhead
Publishing.
6.
Tursi, A. (2019). A review on biomass: importance, chemistry,
classification, and conversion. Biofuel Research Journal, 6(2):
962-979.
7.
Nur, N. D., Nur, W. M. Z., Ahmad, H. M., Nor, M. A. and Sheikh, A. I. S.
M. G. (2020). Study on the oxidation and properties of dihydroxyl cellulose
using different amounts of sodium periodate. Malaysian Journal of
Analytical Sciences, 24(6): 830-837.
8.
Prasad, S. and Ingle, A. P. (2019). Impacts of sustainable biofuels
production from biomass. In Sustainable Bioenergy, Elsevier. pp.
327-346.
9.
Wattanapaphawong, P., Sato, O., Sato, K., Mimura, N., Reubroycharoen, P.
and Yamaguchi, A. (2017). Conversion of cellulose to lactic acid by using ZrO2–Al2O3
catalysts. Catalysts, 7(7): 221.
10.
Hou, Y., Lin, Z., Niu, M., Ren, S. and Wu, W. (2018). Conversion of
cellulose into formic acid by Iron(III)-catalyzed oxidation with O2 in
acidic aqueous solutions. ACS Omega, 3(11): 14910-14917.
11.
Zhang, M. H., Dong, H., Zhao, L., Wang, D. X. and Meng, D. (2019). A
review on Fenton process for organic wastewater treatment based on optimization
perspective. Science of the Total Environment, 670: 110-121.
12.
Morone, A., Mulay, P. and Kamble, S. P. (2019). Removal of
pharmaceutical and personal care products from wastewater using advanced
materials. Pharmaceuticals and Personal Care Products: Waste Management
and Treatment Technology, 2019: 173-212.
13.
Ma, J., Zhang, K., Huang, M., Hector, S. B., Liu, B., Tong, C., ... and
Zhu, Y. (2016). Involvement of Fenton chemistry in rice straw degradation by
the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology
for Biofuels, 9(1): 1-13.
14.
Awudu, F. (2018). Hydrolysis of Cellulose and Biomass using Blue
Molybdenum (Doctoral dissertation, East Tennessee State University).
15.
Gromov, N. V., Medvedeva, T. B., Rodikova, Y. A., Babushkin, D. E.,
Panchenko, V. N., Timofeeva, M. N., ... and Parmon, V. N. (2020). One-pot
synthesis of formic acid via hydrolysis–oxidation of potato starch in the
presence of cesium salts of heteropoly acid catalysts. RSC Advances, 10(48):
28856-28864.
16.
Cheng, C., Wang, J., Shen, D., Xue, J., Guan, S., Gu, S. and Luo, K. H.
(2017). Catalytic oxidation of lignin in solvent systems for production of
renewable chemicals: A review. Polymers, 9(6): 240.
17.
Albert, J. (2017). Selective oxidation of lignocellulosic biomass to
formic acid and high-grade cellulose using tailor-made polyoxometalate
catalysts. Faraday Discussions, 202: 99-109.
18.
Chen, X., Liu, Y. and Wu, J. (2020). Sustainable production of formic
acid from biomass and carbon dioxide. Molecular Catalysis, 483:
110716.
19.
Voß, D., Dietrich, R., Stuckart, M. and Albert, J. (2020). Switchable
catalytic polyoxometalate-based systems for biomass conversion to carboxylic
acids. ACS Omega, 5(30), 19082-19091.
20.
Doungsri, S., Rattanaphanee, P. and Wongkoblap, A. (2019). Production of
lactic acid from cellulose using solid catalyst. In MATEC Web of
Conferences, 268: 07006).
21.
Sun, Y., Shi, L., Wang,
H., Miao, G., Kong, L., Li, S. and Sun, Y. (2019). Efficient production of
lactic acid from sugars over Sn-Beta zeolite in water: catalytic performance
and mechanistic insights. Sustainable Energy & Fuels, 3(5):
1163-1171.
22.
Ramli, N. A. S. and Amin, N. A. S. (2015). Fe/HY zeolite as an effective
catalyst for levulinic acid production from glucose: characterization and
catalytic performance. Applied Catalysis B: Environmental, 163:
487-498.
23.
Bhorodwaj, S. K. and Dutta, D. K. (2011). Activated clay supported
heteropoly acid catalysts for esterification of acetic acid with butanol. Applied
Clay Science, 53(2): 347-352.
24.
Hietala, J., Vuori, A., Johnsson, P., Pollari, I., Reutemann, W. and
Kieczka, H. (2016). Formic acid. Ullmann’s Encyclopedia of Industrial
Chemistry, 1: 1-22.
25.
Ricke, S. C., Dittoe, D. K. and Richardson, K. E. (2020). Formic acid as
an antimicrobial for poultry production: A review. Frontiers in
Veterinary Science, 2020: 563.
26. Johnson Jr, W., Heldreth, B., Bergfeld, W. F.,
Belsito, D. V., Hill, R. A., Klaassen, C. D., ... and Andersen, F. A. (2016).
Safety assessment of formic acid and sodium formate as used in cosmetics. International
Journal of Toxicology, 35(2): 41S-54S.
27.
Kos, L., Michalska, K., Żyłła, R. and Perkowski, J. (2014).
Effect of formic acid on pollutant decomposition in textile wastewater
subjected to treatment by the Fenton method. Fibres & Textiles in
Eastern Europe, 22, 135-139.
28.
del Barrio, M. A., Hu, J., Zhou, P. and Cauchon, N. (2006). Simultaneous
determination of formic acid and formaldehyde in pharmaceutical excipients
using headspace GC/MS. Journal of Pharmaceutical and Biomedical
Analysis, 41(3): 738-743.
29.
Higgins, F. J. and Ho, G. E. (1982). Hydrolysis of cellulose using HCl:
a comparison between liquid phase and gaseous phase processes. Agricultural
Wastes, 4(2): 97-116.
30.
Goldstein, I. S., Pereira, H., Pittman, J. L., Strouse, B. A. and
Scaringelli, F. P. (1983, January). Hydrolysis of cellulose with
superconcentrated hydrochloric acid. In Biotechnol. Bioeng.
Symp.;(United States), 13: No. CONF-830567. North Carolina State Univ.,
Raleigh.
31.
Dussán, K. J., Silva, D. D., Moraes, E. J., Arruda, P. V. and Felipe, M.
G. (2014). Dilute-acid hydrolysis of cellulose to glucose from sugarcane
bagasse. Chemical Engineering Transaction, 38: 433-438.
32.
Alcañiz-Monge, J., El Bakkali, B., Trautwein, G. and Reinoso, S. (2018).
Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid
catalyst for biodiesel production. Applied Catalysis B: Environmental, 224:
194-203.
33.
Anggorowati, H., Jamilatun, S., Cahyono, R. B. and Budiman, A. (2018).
Effect of hydrochloric acid concentration on the conversion of sugarcane
bagasse to levulinic acid. In IOP Conference Series: Materials Science
and Engineering, 299(1): p. 012092.
34.
Huang, P. and Yan, L. F. (2017). Efficient degradation of cellulose in
its homogeneously aqueous solution over 3D metal-organic framework/graphene
hydrogel catalyst. Chinese Journal of Chemical Physics, 29(6):
742.
35.
Sivasubramaniam, D., Amin, N. A. S., Ahmad, K. and Ramli, N. A. S.
(2019). Production of ethyl levulinate via esterification reaction of levulinic
acid in the presence of ZrO2 based catalyst. Malaysian
Journal of Analytical Sciences, 23(1): 45-51.
36.
Demesa, A. G., Laari, A., Sillanpää, M. and Koiranen, T. (2017). Valorization of lignin
by partial wet oxidation using sustainable heteropoly acid catalysts. Molecules, 22(10):
1625.
37.
Zhang, Z., Wang, B., Zhang, Y., Zhang, G. and Wang, Y. (2019). Study on
the synthesize, characterization, and conductive performance of
nickelzircomolybdnum heteropoly acid salt with Keggin structure. Advances
in Polymer Technology, 2019: 501593.
38.
Guarin, C., Gavila, L., Constanti, M. and Medina, F. (2018). Impact of
cellulose treatment with hydrotalcites in hydrothermal catalytic
conversion. Chemical Engineering Science, 179: 83-91.
39.
Ziyat, H., Naciri Bennani, M., Hajjaj, H., Mekdad, S. and Qabaqous, O.
(2018). Synthesis and characterization of crude hydrotalcite Mg–Al–CO3:
study of thymol adsorption. Research on Chemical Intermediates, 44(7):
4163-4177.
40.
Li, T., Miras, H. N. and Song, Y. F. (2017). Polyoxometalate
(POM)-layered double hydroxides (LDH) composite materials: design and catalytic
applications. Catalysts, 7(9): 260.
41.
Omwoma, S., Chen, W., Tsunashima, R. and Song, Y. F. (2014). Recent
advances on polyoxometalates intercalated layered double hydroxides: From
synthetic approaches to functional material applications. Coordination
Chemistry Reviews, 258: 58-71.
42.
Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T. and Arai, K. (2000).
Dissolution and hydrolysis of cellulose in subcritical and supercritical
water. Industrial & Engineering Chemistry Research, 39(8):
2883-2890.
43.
Paksung, N., Pfersich, J., Arauzo, P. J., Jung, D. and Kruse, A. (2020).
Structural effects of cellulose on hydrolysis and carbonization behavior during
hydrothermal treatment. ACS Omega, 5(21): 12210-12223.
44.
De Guzman, D. and De Leon, R. (2021). Preliminary optimization and
kinetics of SnCl2-HCl catalyzed hydrothermal conversion of
microcrystalline cellulose to Levulinic acid. Journal of Renewable
Materials, 9(1): 145.
45.
Wang, K., Liu, Y., Wu, W., Chen, Y., Fang, L., Li, W. and Ji, H. (2020).
Production of levulinic acid via cellulose conversion over metal oxide-loaded
MOF catalysts in aqueous medium. Catalysis Letters, 150(2):
322-331.
46.
Li, X., Lu, X., Nie, S., Liang, M., Yu, Z., Duan, B., ... and Si, C.
(2020). Efficient catalytic production of biomass-derived levulinic acid over
phosphotungstic acid in deep eutectic solvent. Industrial Crops and
Products, 145: 112154.
47.
Lauermannová, A. M., Paterová, I., Patera, J., Skrbek, K., Jankovský, O.
and Bartůněk, V. (2020). Hydrotalcites in construction
materials. Applied Sciences, 10(22): 7989.
48.
Gromov, N. V., Taran, O. P., Delidovich, I. V., Pestunov, A. V.,
Rodikova, Y. A., Yatsenko, D. A., ... and Parmon, V. N. (2016). Hydrolytic
oxidation of cellulose to formic acid in the presence of Mo-VP heteropoly acid
catalysts. Catalysis Today, 278: 74-81.
49.
Guarin, C., Gavila, L., Constanti, M. and Medina, F. (2018). Impact of
cellulose treatment with hydrotalcites in hydrothermal catalytic
conversion. Chemical Engineering Science, 179: 83-91.
50.
Delidovich, I. and Palkovits, R. (2015). Structure–performance
correlations of Mg–Al hydrotalcite catalysts for the isomerization of glucose
into fructose. Journal of Catalysis, 327: 1-9.
51.
Tulaphol, S., Hossain, M. A., Rahaman, M. S., Liu, L. Y., Phung, T. K.,
Renneckar, S., ... and Sathitsuksanoh, N. (2019). Direct production of levulinic
acid in one pot from hemp hurd by dilute acid in ionic liquids. Energy
& Fuels, 34(2): 1764-1772.
52.
Dandach, A., Vu, T. T. H., Fongarland, P. and Essayem, N. (2019). ZrW
catalyzed cellulose conversion in hydrothermal conditions: Influence of the
calcination temperature and insights on the nature of the active phase. Molecular
Catalysis, 476: 110518.
53.
Tian, J., Wang, J., Zhao, S., Jiang, C., Zhang, X. and Wang, X. (2010).
Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose, 17(3):
587-594.
54.
Xiaohua, C., Jie, R., Changlong, X., Zhang, K., Changchao, Z. H. A. N.,
and Jian, L. A. N. (2013). Preparation, characterization of Dawson-type
heteropoly acid cerium (III) salt and its catalytic performance on the
synthesis of n-butyl acetate. Chinese Journal of Chemical Engineering, 21(5):
500-506.
55.
Julianti, N. K., Wardani, T. K., Gunardi, I. and Roesyadi, A. (2017).
Effect of calcination at synthesis of Mg-Al hydrotalcite using co-precipitation
method. The Journal of Pure and Applied Chemistry Research, 6(1):
7.
56.
Jia, Y., Fang, Y., Zhang, Y., Miras, H. N. and Song, Y. F. (2015).
Classical Keggin intercalated into layered double hydroxides: facile
preparation and catalytic efficiency in Knoevenagel condensation
reactions. Chemistry–A European Journal, 21(42): 14862-14870.
57.
Liu, G., Yang, J. and Xu, X. (2020). Synthesis of hydrotalcite-type
mixed oxide catalysts from waste steel slag for transesterification of glycerol
and dimethyl carbonate. Scientific Reports, 10(1): 1-14.
58.
Roohollahi, G. and Ehsani, M. (2019). An investigation into the effect
of hydrotalcite calcination temperature on the catalytic performance of
mesoporous Ni-MgO-Al2O3 catalyst in the combined steam
and dry reforming of methane. Iranian Journal of Oil and Gas Science
and Technology, 8(4): 64-84.
59.
Bardin, B. B.,
Bordavekar, S. V., Neurock, M. and Davis, R. I. (1998). Analysis of
kegging-type heteropoly compounds evaluated by catalytic probe reaction
sorption microcalorimetry and density functional quantum chemical calculations.
Journal Physical Chemistry, 102: 10817-10825.