Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 334 - 346

 

 

 

 

Preparation of extracted magnetite from AN industrial waste mill MODIFIed by CETYL TRIMETHYL ammonium bromide for Cadmium ion removal from aqueous solution

 

(Penyediaan Magnetit daripada Sisa Buangan Sisik Besi yang Dimodifikasikan oleh Setil Trimetil Ammonium Bromida untuk Menyerap Kadmium Ion daripada Larutan Akues)

 

Nur Asyikin Ahmad Nazri1,2* , Raba’ah Syahidah Azis2,3 , Hasfalina Che Man4, Ismayadi Ismail2

 

1Centre of Foundation Studies, Cawangan Selangor,

Universiti Teknologi MARA, 43800 Dengkil, Selangor, Malaysia

2Material Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA)

3Department of Physics, Faculty of Science

4Department of Biological and Agricultural Engineering, Faculty of Engineering

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author:  asyikin2750@uitm.edu.my

 

 

Received: 9 September 2021; Accepted: 18 December 2021; Published:  28 April 2022

 

 

Abstract

This work, using a batch study, revealed the performance of modified magnetite millscales with a cationic surfactant [cetyl trimethyl ammonium bromide (CTAB)] (Fe3O4/CTAB MNS) in cadmium ion removal from aqueous solution. The self-assembly method was employed to modify Fe3O4 with CTAB. As prepared Fe3O4 limited the modification method to ex situ. Therefore, a heterocoagulation method was used to self-assemble CTAB on Fe3O4. The prepared magnetic nanosorbents (MNSs) were used in batch adsorption to optimize cadmium adsorption. In addition, characterization with Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) revealed new characteristics of that modified Fe3O4 that contributed to the enhancement of the adsorption efficiency (Q) to reach 21.6 mg/g. The higher removal percentage shown by Fe3O4/CTAB MNS was 89%, which confirmed the successful modification. Therefore, Fe3O4 modified with CTAB has higher potential to be used as magnetic nanosorbent owing to lower cost of production with compatible adsorption capacity.

 

Keywords:     stabilized magnetite, magnetic nanosorbents, cadmium solution, cation polymer, cetyl trimethyl ammonium   bromide

 

Abstrak

Kajian ini mendedahkan prestasi skala magnetit yang diubah suai dengan surfaktan kationik (setil trimetil ammonium bromida (CTAB)) (Fe3O4 / CTAB), digunakan sebagai penyingkiran ion kadmium dari larutan akues melalui kajian kumpulan. Kaedah pemasangan diri digunakan untuk mengubah Fe3O4 dengan CTAB. Fe3O4 yang telah disiapkan telah membatasi kaedah modifikasi menjadi ex situ. Oleh itu, kaedah heterokoagulasi digunakan untuk memasang CTAB pada Fe3O4. Penjerap nano magnetik yang disiapkan (MNS) digunakan dalam penjerapan kumpulan untuk mengoptimumkan penjerapan kadmium. Selain itu, pencirian dengan spektroskopi infra merah transformasi Fourier (FTIR), dan mikroskopi elektron transmisi (TEM) telah mengungkapkan ciri-ciri baru Fe3O4 yang dimodifikasi yang menyumbang kepada peningkatan kecekapan penjerapan (Q) menjadi 21.6 mg/g. Peratusan penyingkiran yang lebih tinggi yang ditunjukkan oleh Fe3O4 / CTAB MNS adalah 89% yang membuktikan pengubahsuaian berjaya. Oleh itu, dapat disimpulkan bahawa modifikasi dengan CTAB berpotensi lebih tinggi untuk digunakan sebagai penjerap nano magnetik kerana melibatkan kos pengeluaran yang lebih rendah dengan kapasiti penjerapan yang serasi.

 

Kata kunci:     magnetit stabil, penjerap nano magnetik, larutan kadmium, polimer kation, setil trimetil ammonium bromida

 

 

 


Graphical Abstract



 

References

1.      Mahmood, Q., Asif, M., Shaheen, S., Hayat, M. T. and Ali, S. (2019). Cadmium contamination in water and soil. In Cadmium toxicity and tolerance in plants. Academic Press: pp. 141-161.

2.      Pyrzynska, K. (2019). Removal of cadmium from wastewaters with low-cost adsorbents. Journal of Environmental Chemical Engineering, 7(1): 102795.

3.      Ciesielczyk, F., Bartczak, P. and Jesionowski, T. (2016). Removal of cadmium (II) and lead (II) ions from model aqueous solutions using sol–gel-derived inorganic oxide adsorbent. Adsorption, 22(4): 445-458.

4.      Ali, A. H. (2013). Comparative study on removal of cadmium (II) from simulated wastewater by adsorption onto GAC, DB, and PR. Desalination and Water Treatment, 51(28-30): 5547-5558.

5.      Farhan, A. S. and Jasim, S. T. (2020). Cadmium toxicity and some target organs: A review. Al-Anbar Journal of Veterinary Sciences, 13(2): 17-26.

6.   Riaz, U., Aslam, A., uz Zaman, Q., Javeid, S., Gul, R., Iqbal, S., ... and Jamil, M. (2021). Cadmium contamination, bioavailability, uptake mechanism and remediation strategies in soil-plant-environment system: a critical review. Current Analytical Chemistry, 17(1): 49-60.

7.      Järup, L. and Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3): 201-208.

8.      Cui, L., Chen, T., Yin, C., Yan, J., Ippolito, J. A. and Hussain, Q. (2019). Mechanism of adsorption of cadmium and lead ions by iron-activated biochar. BioResources, 14(1): 842-857.

9.      Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J. and Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering5(3): 2782-2799.

10.   Dubey, S., Banerjee, S., Upadhyay, S. N. and Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240: 656-677.

11.   Gaballah, N. M., Zikry, A. F., Khalifa, M. G., Farag, A. B., El-Hussiny, N. A. and Shalabi, M. E. H. (2013). Production of iron from mill scale industrial waste via hydrogen. Open Journal of Inorganic Non-metallic Materials, 3(3): 6.

12.   Hashim, M., Saiden, N. M., Daud, N. and Shahrani, N. M. M. (2015). Study the iron environments of the steel waste product and its possible potential applications in ferrites. In Advanced Materials Research, 1109: 295-299.

13.   Shahid, M. K., Phearom, S. and Choi, Y. G. (2018). Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water. Chemosphere, 203: 90-95.

14.   Shahid, M. K., Phearom, S. and Choi, Y. G. (2019). Adsorption of arsenic (V) on magnetite-enriched particles separated from the mill scale. Environmental Earth Sciences, 78(3): 1-11.

15.   Hosseinzadeh, M., Seyyed Ebrahimi, S. A., Raygan, S. and Masoudpanah, S. M. (2016). Removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite through mechanochemical activation. Journal of Ultrafine Grained and Nanostructured Materials, 49(2): 72-79.

16.   Elfeky, S. A., Mahmoud, S. E. and Youssef, A. F. (2017). Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. Journal of Advanced Research8(4): 435-443.

17.   Saksornchai, E., Kavinchan, J., Thongtem, S. and Thongtem, T. (2018). Simple wet-chemical synthesis of superparamagnetic CTAB-modified magnetite nanoparticles using as adsorbents for anionic dye Congo red removal. Materials Letters, 213: 138-142.

18.   Faraji, M., Yamini, Y., Tahmasebi, E., Saleh, A. and Nourmohammadian, F. (2010). Cetyltrimethylammonium bromide-coated magnetite nanoparticles as highly efficient adsorbent for rapid removal of reactive dyes from the textile companies’ wastewaters. Journal of the Iranian Chemical Society, 7(2): S130-S144.

19.   Elfeky, S. A., Mahmoud, S. E. and Youssef, A. F. (2017). Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. Journal of Advanced Research, 8(4): 435-443.

20.   Chaki, S. H., Malek, T. J., Chaudhary, M. D., Tailor, J. P. and Deshpande, M. P. (2015). Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(3): 035009.

21.   Xu, W., Liu, Z., Fang, J., Zhou, G., Hong, X., Wu, S., ... and Cen, C. (2013). CTAB-assisted hydrothermal synthesis of Bi2Sn2O7 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. International Journal of Photoenergy, 2013: 234806.

22.   Nikoobakht, B., & El-Sayed, M. A. (2001). Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir, 17(20): 6368-6374.

23.   Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering, 13(1): 1-7.

24.   Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V and Marinković, A. (2019). Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian Journal of Chemistry, 12(8): 4675-4693.

25.   Aydın, H., Yerlikaya, Ç. and Uzan, S. (2012). Equilibrium and kinetic studies of copper (II) ion uptake by modified wheat shells. Desalination and Water Treatment, 44(1-3): 296-305.

26.   Hao, Y. M., Man, C. and Hu, Z. B. (2010). Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of Hazardous Materials, 184(1-3): 392-399.

27.   Cantu, Y. (2017). Remediation of trivalent and hexavalent chromium ions from aqueous solutions using titanium dioxide polymorphs. The University of Texas Rio Grande Valley: pp. 1576-1580.