Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 164 - 175

 

 

 

 

TEMPERATURE EFFECT ON THE ENCAPSULATION OF THE DRUG TETRACAINE HYDROCHLORIDE IN DIFFERENT CYCLODEXTRINS

 

(Kesan Suhu Terhadap Pengkapsulan Dadah Tetrakain Hidroklorida dalam Siklodekstrin yang Berbeza)

 

Houria Boudjoras, Teffaha Fergoug, Mansour Azayez*, Youcef Bouhadda, Noureddine Meddah-araibi, Cherifa Zelmat

 

Laboratory of Physical Chemistry of Macromolecular and Biological Interfaces,

Faculty of Exact Sciences,

University of Mustapha Stambouli, Mascara, Algeria

 

*Corresponding author:  m.azayez@univ-mascara.dz

 

 

Received: 25 September 2021; Accepted: 30 December 2021; Published: 25 February 2022

 

 

Abstract

The encapsulation of tetrakain hydrochloride (TC-HCl) in α-cyclodextrin (α-CD), β -cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HPβ-CD) has been studied by UV-Visible at different temsperatures. The appearance of isosbestic points as well as hyperchromic and bathochromic shifts on the different UV-Visible spectra confirm the complexes formation. From the complexation constants values the stability of the 1:1 type complexes is in the order of α-CD < HPβ-CD < β-CD and decreases with increasing temperature for each complex. All complexation processes are spontaneous, with a favorable enthalpic contribution and an unfavorable entropic term as deduced from Van't Hoff plot analysis. The negative values obtained for ∆Cpo indicate that the apolar part of TC-HCl is encapsulated in the cavities of the CDs.

 

Keywords:  UV-Vis spectrophotometry, cyclodextrins, tetracaine drug, temperature effect, Van't Hoff analysis

 

Abstrak

Pengkapsulan tetrakain hidroklorida (TC, HCl) dalam α-siklodekstrin (α-CD), β-sikloododekstrin (β-CD) dan hidroksipropil-β-siklodekstrin (HPβ-CD) telah dikaji mengunakan spektrofotometri UV-cahaya nampak pada suhu yang berbeza. Kemunculan titik isosbestik serta pergeseran hipokromik dan bathokromik pada spektrum UV-cahaya nampak yang berbeza mengesahkan pembentukan kompleks. Daripada nilai pemalar kompleks, kestabilan kompleks jenis 1: 1 berada dalam urutan α-CD <HPβ-CD <β-CD dan menurun dengan kenaikan suhu bagi setiap kompleks. Semua proses pengkompleksan adalah spontan, dengan sumbangan entalpik yang menggalakkan dan istilah entropik yang tidak menguntungkan seperti hasil analisis plot Van't Hoff. Nilai negatif yang diperoleh untuk ∆Cpo menunjukkan bahawa bahagian tidak berkutub TC-HCl dikemas dalam rongga CD.

 

Kata kunci:  spektrofotometri UV-cahaya nampak, siklodekstrin, dadah tetrakain, kesan suhu, analisis Van't Hoff

 

 

 


Graphical Abstract



References

1.      Mary Ann Vann, M. D., Babatunde O. Ogunnaike, M. D. and Girish P. Joshi, M.B. (2007). Sedation and anesthesia care for ophthalmologic surgery during local/regional anesthesia. Anesthesiology, 107(3): 502-508.

2.      Glantz, L. Drenger, B. and  Gozal, Y. (2007). Perioperative myocardial ischemia in cataract surgery patients: general versus local anesthesia. Anesthesia & Analgesia, 91(6): 1415-1419.

3.      Cherobin, A. C. F. P. and Tavares, G. T. (2020). Safety of local anesthetics. Anais Brasileiros de Dermatologia, 95 (1):82-90.

4.      Ariga, K. and Kunitake, T. (2006). Supramolecular chemistry-fundamentals and applications. Springer-Verlag Berlin, Heidelberg: pp. 207-238.

5.      Torchilin, V. P. (2006). Multifunctional nanocarriers. Advanced Drug Delivery Reviews, 58(14): 1532-1555.

6.      Loftsson, T. and Masson, M. (2001). Cyclodextrin in topical drug formulation: Theory and practice. International Journal of Pharmaceutics, 225(1-2): 15-30.

7.      Fromming, K. H. and Szejtli, J. (1994). Cyclodextrin in pharmacy. Klumer Academies Publishers, Dordrecht: pp. 1-18.

8.      Martin Del Valle, E. M. (2004). Cyclodextrins and their uses: A review. Process Biochemistry, 39: 1033-1046.

9.      Maheriya, P. M. (2017). Cyclodextrin: A promising candidate in enhancing oral bioavailability of poorly water soluble drugs. Bioequivalence &Bioavailability, 3(3): 60-63.

10.   Junquera, E. and Aicart, E. (1997). Potentiometric study of the encapsulation of ketoprophen by hydroxypropyl-β-cyclodextrin. Temperature, solvent, and salt effects. Journal Physical Chemistry. B, 101(36), 7163-7171.

11.   Astray, G., Mejuto, J. C., Morales, J., Rial-Otero, R. and Simal-Gandara, J. (2010). Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Research International, 43 (4): 1212-1218.

12.   Rekharsky, M. V. and Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98(5): 1875-1918.

13.   Santos, C. I. A. V. Ribeiro, A. C. F. and Esteso, M. A. (2019). Drug delivery systems: Study of inclusion complex formation between methylxanthines and cyclodextrins and their thermodynamic and transport properties. Biomolecules, 9(5): 196-216.

14.   Hugh, C., Hemmings, Jr. and Talmage D. E. (2019). Pharmacology and physiology for anesthesia: Foundations and clinical application, Elsevier, Philadelphia. pp: 20-43.

15.   Shibata, A., Ikawa, K. and Terada, H. (1995). Site of action of the local anesthetic tetracaine in a phosphatidylcholine bilayer with incorporated cardiolipin. Biophysical Journal, 69(2): 470-477.

16.   Schalley, C. (2007). Analytical methods in supramolecular chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. pp: 419-471.

17.   Nouiri, M. A., Fergoug, T., Azayez, M., Boujores, H., Zelmat, C. and Bouhadda, Y. (2017). Experimental and theoretical study of tetracaine-hydrochloride β-cyclodextrin complexation. Journal of Materials Environmental Sciences, 8(5): 1589-1598.

18.   Merino, C.,  Junquera, E., Jimenez-Barbero, J. and Aicart, E. (2000). Effect of the presence of β-cyclodextrin on the solution behavior of procaine hydrochloride. spectroscopic and thermodynamic studies. Langmuir, 16(4): 1557-1565.

19.   Mura, P. (2014). Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: A review. Journal of Pharmaceutical and Biomedical Analysis, 101: 238-250.

20.   Garcia, I., Brandariz, I. and Iglesias, E. (2010). Fluorescence study of tetracaine-cyclodextrin inclusion complexes. Journal of Supramolecular Chemistry, 22(4): 228-236.

21.   Takisawa, N., Shirahama, K. and Tanaka, I. (1993). Interactions of amphiphilic drugs with α-, β-, and γ- cyclodextrins. Colloid and Polymer Science, 271: 499-506.

22.   Cano, J. Rodriguez, A.  Aicart, E. and  Junquera, E. (2007). Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-β-cyclodextrin in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59: 279-285.

23.   Bernardi, R. C., Gomes, D. E. B., Pascutti, P., Ito, A. S. and Ota, A. T. (2006). Theoretical studies on water-tetracaine interaction. International Journal Quantum Chemistry, 106: 1277-1282.

24.   Bernardi, R. C. Gomes, D. E. B. Ito, A. S. Ota, A. T. Pascutti, P. G. and Taft, C. (2007). Density functional and molecular dynamics simulations of local anesthetics in 0.9% NaCl solution. Molecular Simulation, 33(14): 1135-1141.