Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 84 - 95

 

 

 

 

SPECTROSCOPIC FINGERPRINTING COMBINED WITH CHEMOMETRICS FOR PESTICIDE RESIDUE SCREENING ON ORGANIC PRODUCE: A CASE STUDY OF CHILI

 

(Gabungan Cap Jari Spektroskopi dengan Kemometrik untuk Saringan Sisa Racun Perosak pada Hasil Organik: Kajian Kes ke atas Cili)

 

Intan Amirah Restu1, Nur Fatin Zahra Mohamad Zhahir1, Shum Mun-Hoe1, Yong Chin Hong1, Ng Jing Sheng1, Syahidah Akmal Muhammad1,2*

 

1Environmental Technology Division, School of Industrial Technology,

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

2Analytical Biochemistry Research Centre (ABrC), Inkubator Inovasi Universiti (I�U), Kampus SAINS@USM,

Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang

 

*Corresponding author:  syahidah.muhammad@usm.my

 

 

Received: 15 September 2021; Accepted: 30 December 2021; Published: 25 February 2022

 

 

Abstract

Pesticide detection for organic produce authentication requires laboratory work involving sample testing, which is generally arduous and time-consuming. In this study, a simple and reliable technique to produce an instant result for the pesticide screening of organic chili was developed, using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The resultant spectra observed in the region between 600-1800 cm-1 were further analyzed using principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). Accordingly, the outcomes underline the potential for distinguishing chili samples sprayed with pesticides, such as cypermethrin, fenobucarb, and malathion, versus their organic counterparts. Furthermore, the models constructed by OPLS-DA were capable of classifying chili samples, yielding high-classification rates ranging between 91.67-100%. Thus, ATR-FTIR combined with chemometrics may be utilized as a potentially reliable screening tool for 'front-line' organic produce screening, where only flagged samples need to undergo further confirmation testing.

 

Keywords: chili, organic produce, pesticide screening, ATR-FTIR spectroscopy, principal component analysis

 

Abstrak

Pengesanan racun perosak untuk tujuan pengesahan hasil organik memerlukan kerja makmal yang melibatkan ujian sampel, yang biasanya sukar dan memakan banyak masa. Dalam kajian ini, satu teknik yang mudah dan berkesan dijalankan dengan menggunakan kaedah spektroskopi inframerah transformasi Fourier-pantulan keseluruhan dikecilkan (ATR-FTIR) bagi tujuan saringan racun perosak untuk sayuran cili organik. Spektrum yang dihasilkan dalam lingkungan antara 600-1800 cm-1 dianalisis dengan lebih lanjut dengan analisis komponen prinsipal (PCA) dan analisis ortagonal kuasa dua terkecil separa-diskriminan (OPLS-DA). Hasil kajian menunjukkan potensi yang baik dalam membezakan sampel cili yang disembur dengan racun perosak seperti cypermethrin, fenobucarb, dan malathion daripada sampel organik. Model yang dibina oleh OPLS-DA dapat mengklasifikasikan sampel cili dengan kadar klasifikasi yang tinggi dalam lingkungan antara 91.67-100%. Oleh itu, penggabungan spektroskopi ATR-FTIR bersama aplikasi kimometrik dapat digunakan sebagai alat saringan yang berpotensi tinggi untuk pengesahan hasil organik, di mana hanya sampel yang dikenal pasti sahaja perlu menjalani ujian pengesahan dengan lebih lanjut.

 

Kata kunci:  cili, hasil organik, saringan racun perosak, spektroskopi ATR-FTIR, analisis komponen prinsipal

 

 

 


Graphical Abstract

References

1.      Winter, C. K. (2012). Pesticide residues in imported, organic, and "suspect" fruits and vegetables. Journal of Agricultural and Food Chemistry, 60(18): 4425-4429.

2.      Akashe, M. M., Pawade, U. V. and Nikam, A. V. (2018). Classification of pesticides: A review. International Journal of Research in Ayurveda and Pharmacy, 9(4): 144-150.

3.      Chatterjee, S., Das, S. K., Chakravarty, R., Chakrabarti, A., Ghosh, S. and Guha, A. K. (2010). Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1-3): 47-53.

4.      Munawar, A. and Hameed, S. W. (2013). Quantification of pesticide residues in vegetables by different chromatographic techniques. Journal of Chromatography and Separation Techniques, 4(8): 8-11.

5.    Sadi, B. B., Vonderheide, A. P. and Caruso, J. A. (2004). Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell. Journal of Chromatography A, 1050(1): 95-101.

6.      Ellis, D. I., Brewster, V. L., Dunn, W. B., Allwood, J. W., Golovanov, A. P. and Goodacre, R. (2012). Fingerprinting food: Current technologies for the detection of food adulteration and contamination. Chemical Society Reviews, 41(17): 5706-5727.

7.      Xiao, G., Dong, D., Liao, T., Li, Y., Zheng, L., Zhang, D. and Zhao, C. (2015). Detection of pesticide (chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR. Food Analytical Methods, 8(5): 1341-1346.

8.      Cheajesadagul, P., Arnaudguilhem, C., Shiowatana, J., Siripinyanond, A. and Szpunar, J. (2013). Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Food Chemistry, 141(4): 3504-3509.

9.      Liu, Z., Yuan, Y., Zhang, Y., Shi, Y., Hu, G., Zhu, J. and Rogers, K. M. (2019). Geographical traceability of Chinese green tea using stable isotope and multi-element chemometrics. Rapid Communications in Mass Spectrometry, 33(8): 778-788.

10.   Sarbu, C., Nacu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A. and Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chemistry, 130(4): 994-1002.

11.   Cubero-Leon, E., De Rudder, O. and Maquet, A. (2018). Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chemistry, 239(555): 760-770.

12.   Lob, S., Aris, M. N. M., Sidique, S. N. M., Ibrahim, N. F. and Jin, X. (2017). Growth development and natural infection incidence of tobacco mosaic virus (TMV) on silicon-treated chilli (Capsicum annuum L.) cultivated in commercial soil. Malaysian Applied Biology, 46(3): 221-226.

13.   Zaidon, S. Z., Hamsan, H. and Bin, H. Y. (2016). A review on pesticides occurrence in fruits and vegetables in Malaysia and their potential health risk among adults. Indian Journal of Environmental Protection, 36(10): 826-832.

14.   Skolik, P., McAinsh, M. R. and Martin, F. L. (2019). ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. Planta, 249(3): 925-939.

15.   Devos, O., Downey, G. and Duponchel, L. (2014). Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils. Food Chemistry, 148: 124-130.

16.   Ciulu-Costinescu, F., Neamţu, J., Popescu, M., Chirigiu, L., Simionescu, A., Bubulică, M. V. and Belu, I. (2015). Preliminary analysis of Capsicum annuum L. extracts. Current Health Sciences Journal, 41(4): 311-316.

17.   Dominguez-Martinez, I., Meza-Marquez, O. G., Osorio-Revilla, G., Proal-Najera, J. and Gallardo-Velazquez, T. (2014). Determination of capsaicin, ascorbic acid, total phenolic compounds and antioxidant activity of Capsicum annuum L. var. serrano by mid infrared spectroscopy (Mid-FTIR) and chemometric analysis. Journal of the Korean Society for Applied Biological Chemistry, 57(1): 133-142.

18.  Ismail, D., Rahimi, A., Wan Ishak, W. R., Mahat, N. A. and Mat Desa, W. N. S. (2021). Classification model for detection and discrimination of inedible plastic adulterated palm cooking oil using ATR-FTIR spectroscopy combined with principal component analysis. Malaysian Journal of Analytical Sciences, 25(3): 388-398.