Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 84 - 95
SPECTROSCOPIC
FINGERPRINTING COMBINED WITH CHEMOMETRICS FOR PESTICIDE RESIDUE SCREENING ON
ORGANIC PRODUCE: A CASE STUDY OF CHILI
(Gabungan Cap Jari Spektroskopi dengan
Kemometrik untuk Saringan Sisa Racun Perosak pada Hasil Organik: Kajian Kes ke
atas Cili)
Intan Amirah Restu1, Nur Fatin Zahra Mohamad
Zhahir1, Shum Mun-Hoe1, Yong Chin Hong1, Ng
Jing Sheng1, Syahidah Akmal Muhammad1,2*
1Environmental
Technology Division, School of Industrial Technology,
Universiti
Sains Malaysia, 11800 USM, Penang, Malaysia
2Analytical
Biochemistry Research Centre (ABrC), Inkubator Inovasi Universiti (I�U), Kampus
SAINS@USM,
Universiti
Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang
*Corresponding author: syahidah.muhammad@usm.my
Received: 15 September 2021; Accepted: 30 December 2021;
Published: 25 February 2022
Abstract
Pesticide detection for organic produce authentication requires
laboratory work involving sample testing, which is generally arduous and
time-consuming. In this study, a simple and reliable technique to produce an
instant result for the pesticide screening of organic chili was developed,
using attenuated total reflection-Fourier transform infrared (ATR-FTIR)
spectroscopy. The resultant spectra observed in the region between 600-1800 cm-1
were further analyzed using principal component analysis (PCA) and orthogonal
partial least square-discriminant analysis (OPLS-DA). Accordingly, the outcomes underline
the potential for distinguishing chili samples sprayed with pesticides, such as
cypermethrin, fenobucarb, and malathion, versus their organic counterparts.
Furthermore, the models constructed by OPLS-DA were capable of classifying
chili samples, yielding high-classification rates ranging between 91.67-100%.
Thus,
ATR-FTIR combined with chemometrics may be utilized as a potentially reliable
screening tool for 'front-line' organic produce screening, where only flagged
samples need to undergo further confirmation testing.
Keywords: �chili,
organic produce, pesticide screening, ATR-FTIR spectroscopy, principal
component analysis
Abstrak
Pengesanan
racun perosak untuk tujuan pengesahan hasil organik memerlukan kerja makmal
yang melibatkan ujian sampel, yang biasanya sukar dan memakan banyak masa.
Dalam kajian ini, satu teknik yang mudah dan berkesan dijalankan dengan
menggunakan kaedah spektroskopi inframerah transformasi Fourier-pantulan
keseluruhan dikecilkan (ATR-FTIR) bagi tujuan saringan racun perosak untuk
sayuran cili organik. Spektrum yang dihasilkan dalam lingkungan antara 600-1800 cm-1
dianalisis dengan lebih lanjut dengan analisis komponen prinsipal (PCA) dan
analisis ortagonal kuasa dua terkecil separa-diskriminan (OPLS-DA). Hasil
kajian menunjukkan potensi yang baik dalam membezakan sampel cili yang disembur
dengan racun perosak seperti cypermethrin, fenobucarb, dan malathion daripada
sampel organik. Model yang dibina oleh OPLS-DA dapat mengklasifikasikan sampel
cili dengan kadar klasifikasi yang tinggi dalam lingkungan antara 91.67-100%.
Oleh itu, penggabungan spektroskopi ATR-FTIR bersama aplikasi kimometrik dapat
digunakan sebagai alat saringan yang berpotensi tinggi untuk pengesahan hasil
organik, di mana hanya sampel yang dikenal pasti sahaja perlu menjalani ujian
pengesahan dengan lebih lanjut.
Kata kunci: cili, hasil organik, saringan racun perosak,
spektroskopi ATR-FTIR, analisis komponen prinsipal
Graphical Abstract
References
1.
Winter,
C. K. (2012). Pesticide residues in imported, organic, and "suspect" fruits and
vegetables. Journal of Agricultural and Food Chemistry, 60(18):
4425-4429.
2.
Akashe,
M. M., Pawade, U. V. and Nikam, A. V. (2018). Classification of pesticides: A
review. International Journal of Research in Ayurveda and Pharmacy,
9(4): 144-150.
3.
Chatterjee,
S., Das, S. K., Chakravarty, R., Chakrabarti, A., Ghosh, S. and Guha, A. K.
(2010). Interaction of malathion, an organophosphorus pesticide with Rhizopus
oryzae biomass. Journal of Hazardous Materials, 174(1-3): 47-53.
4.
Munawar,
A. and Hameed, S. W. (2013). Quantification of pesticide residues in vegetables
by different chromatographic techniques. Journal of Chromatography and
Separation Techniques, 4(8): 8-11.
5.
Sadi, B.
B., Vonderheide, A. P. and Caruso, J. A. (2004). Analysis of phosphorus
herbicides by ion-pairing reversed-phase liquid chromatography coupled to
inductively coupled plasma mass spectrometry with octapole reaction cell. Journal
of Chromatography A, 1050(1): 95-101.
6.
Ellis,
D. I., Brewster, V. L., Dunn, W. B., Allwood, J. W., Golovanov, A. P. and
Goodacre, R. (2012). Fingerprinting food: Current technologies for the
detection of food adulteration and contamination. Chemical Society Reviews,
41(17): 5706-5727.
7.
Xiao,
G., Dong, D., Liao, T., Li, Y., Zheng, L., Zhang, D. and Zhao, C. (2015).
Detection of pesticide (chlorpyrifos) residues on fruit peels through spectra
of volatiles by FTIR. Food Analytical Methods, 8(5): 1341-1346.
8.
Cheajesadagul,
P., Arnaudguilhem, C., Shiowatana, J., Siripinyanond, A. and Szpunar, J.
(2013). Discrimination of geographical origin of rice based on multi-element
fingerprinting by high resolution inductively coupled plasma mass spectrometry.
Food Chemistry, 141(4): 3504-3509.
9.
Liu, Z.,
Yuan, Y., Zhang, Y., Shi, Y., Hu, G., Zhu, J. and Rogers, K. M. (2019).
Geographical traceability of Chinese green tea using stable isotope and
multi-element chemometrics. Rapid Communications in Mass Spectrometry, 33(8):
778-788.
10.
Sarbu,
C., Nacu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A. and
Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo
fruits by multivariate analysis of chromatographic and spectroscopic data. Food
Chemistry, 130(4): 994-1002.
11.
Cubero-Leon,
E., De Rudder, O. and Maquet, A. (2018). Metabolomics for organic food
authentication: Results from a long-term field study in carrots. Food
Chemistry, 239(555): 760-770.
12.
Lob, S.,
Aris, M. N. M., Sidique, S. N. M., Ibrahim, N. F. and Jin, X. (2017). Growth
development and natural infection incidence of tobacco mosaic virus (TMV) on
silicon-treated chilli (Capsicum annuum L.) cultivated in commercial
soil. Malaysian Applied Biology, 46(3): 221-226.
13.
Zaidon,
S. Z., Hamsan, H. and Bin, H. Y. (2016). A review on pesticides occurrence in
fruits and vegetables in Malaysia and their potential health risk among adults.
Indian Journal of Environmental Protection, 36(10): 826-832.
14.
Skolik,
P., McAinsh, M. R. and Martin, F. L. (2019). ATR-FTIR spectroscopy
non-destructively detects damage-induced sour rot infection in whole tomato
fruit. Planta, 249(3): 925-939.
15.
Devos,
O., Downey, G. and Duponchel, L. (2014). Simultaneous data pre-processing and
SVM classification model selection based on a parallel genetic algorithm
applied to spectroscopic data of olive oils. Food Chemistry, 148:
124-130.
16.
Ciulu-Costinescu,
F., Neamţu, J., Popescu, M., Chirigiu, L., Simionescu, A., Bubulică,
M. V. and Belu, I. (2015). Preliminary analysis of Capsicum annuum L.
extracts. Current Health Sciences Journal, 41(4): 311-316.
17.
Dominguez-Martinez,
I., Meza-Marquez, O. G., Osorio-Revilla, G., Proal-Najera, J. and
Gallardo-Velazquez, T. (2014). Determination of capsaicin, ascorbic acid, total
phenolic compounds and antioxidant activity of Capsicum annuum L. var.
serrano by mid infrared spectroscopy (Mid-FTIR) and chemometric analysis. Journal
of the Korean Society for Applied Biological Chemistry, 57(1): 133-142.
18.
Ismail,
D., Rahimi, A., Wan Ishak, W. R., Mahat, N. A. and Mat Desa, W. N. S. (2021).
Classification model for detection and discrimination of inedible plastic
adulterated palm cooking oil using ATR-FTIR spectroscopy combined with
principal component analysis. Malaysian Journal of Analytical Sciences,
25(3): 388-398.