Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 96 - 108

 

 

 

 

ELICITATION OF INDUCED POLYKETIDE COMPOUNDS FROM A CO-CULTURE BETWEEN Streptomyces sp. STRAIN SUK10 AND Fusarium sp. AND THEIR ANTIBACTERIAL ACTIVITIES

 

(Elisitasi Sebatian Poliketida Teraruh daripada Satu Kultur-bersama di antara Streptomyces sp. Strain SUK10 dan Fusarium sp. dan Aktiviti Antibakteria)

 

Muhammad Asyraf Zawawi1, Nurul Izzati Rosdi1, Noor Wini Mazlan1,2*, Mariam Taib1, Kamariah Bakar2, Noraziah Mohamad Zin3, Siti Nordahliawate M. Sidique4, Saif Aldeen Mohammad Fayiz Jaber5, RuAngelie Edrada-Ebel5

 

1Faculty of Science and Marine Environment

2Institute of Marine Biotechnology

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences,

Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia

4Faculty of Fisheries and Food Science,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

5Strathclyde Institute of Pharmacy and Biomedical Sciences,

University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland

 

*Corresponding author:  noorwini@umt.edu.my

 

 

Received:  3 November 2021; Accepted: 30 December 2021; Published:  25 February 2022

 

 

Abstract

Endophytes including bacteria and fungi produce an array of biologically active secondary metabolitesDifferent approaches have been applied in order to increase the probability production of new metabolites including mimicking the environment, media and the microbes. However, the use of single culture usually re-produces known compounds with known bioactivities. Therefore, co-culturing between Streptomyces sp. strain SUK10 and Fusarium sp. in the same media at different growth stages leads to direct interaction which may trigger the expression of "silent" biosynthetic pathway to produce novel secondary metabolites. In this study, we elicited the production of the unknown secondary metabolites from co-culture extracts by using high resolution liquid chromatography-mass spectrometry, while data was processed by utilizing the quantitative expression analysis software MZmine 2.40.1 and SIMCA P+ 15.0 coupled with macro analysis and supported with DNP database for dereplication studies. The results showed that only the extract from co-culture of F7S15 showed enhances antibacterial activity on the Gram-positive bacteria with minimum inhibition concentration (MIC) values of 5 mg/mL and 10 mg/mL against Micrococcus sp. and Staphylococcus aureus, respectively, compared with their independent and other co-culture extracts were non-active. However, all extracts were non-active on the Gram-negative bacteria. Our preliminary results showed that the potential of co-culture method leading the production of novel metabolites which could be explored for future antibacterial agents.

 

Keywords:  co-culture, metabolomics, liquid chromatography-mass spectrometry, multivariate analysis, dereplication

 

Abstrak

Endofit termasuk bakteria dan fungus menghasilkan satu tatasusunan metabolit sekunder yang mempunyai keaktifan biologi. Pelbagai pendekatan telah digunakan bagi tujuan meningkatkan kebarangkalian penghasilan metabolit baru termasuk mengajuk persekitaran, media dan mikrob. Walaubagaimanapun, penggunaan kultur tunggal selalumya menghasilkan semula sebatian dengan bioaktiviti yang telah diketahui. Oleh itu, satu pengkulturan bersama di antara Streptomyces sp. strain SUK10 dan Fusarium sp. di dalam media yang sama di peringkat pertumbuhan yang berbeza, memacu kepada interaksi yang mungkin pencetus kepada ungkapan laluan biosintetik senyap untuk menghasilkan metabolit sekunder baru. Dalam kajian ini, kami telah memperolehi penghasilan metabolit sekunder yang belum diketahui daripada ekstrak kultur bersama dengan menggunakan kromatografi cecair-spektrometri jisim resolusi tinggi, sementara itu data telah dianalisis menggunakan perisian analisis ungkapan kuantitatif MZmine 2.40.1 dan SIMCA P+ 15.0 beserta analisis makro dan disokong oleh pengkalan data DNP bagi kajian dereplikasi. Keputusan telah menunjukkan bahawa hanya ekstrak daripada kultur bersama F7S15 telah menunjukkan peningkatan aktiviti antibakteria ke atas bakteria Gram-positif dengan nilai minimum kepekatan perencatan (MIC) 5 mg/mL dan 10 mg/mL melawan Micrococcus sp. dan Staphylococcus aureus, masing-masing, berbanding ekstrak kutur bebas dan kultur bersama yang lain adalah tidak aktif. Walaubagaimanapun, semua ekstrak tidak aktif ke atas bakteria Gram-negatif. Keputusan awal kajian kami telah menunjukkan potensi kaedah kultur bersama memacu penghasilan metabolit baru yang boleh diterokai bagi agen antibakteria masa hadapan.

 

Kata kunci:  kultur bersama, metabolomik, kromatografi cecair-spektrometri jisim, analisis multivariat, dereplikasi

 

 


Graphical Abstract



References

1.      Christina, A., Christapher, V. and Bhore, S. J. (2013). Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacognosy Reviews, 7(13): 11.

2.      Sarasan, M., Puthumana, J., Job, N., Han, J., Lee, J. S. and Philip, R. (2017). Marine algicolous endophytic fungi-a promising drug resource of the era. Journal of Microbiology and Biotechnology, 27(6): 1039-1052.

3.      Berdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1): 1-26.

4.      Chater K. F., Losick, R. and Shapiro, L. (1984). Microbial development. Cold Spring Habor Laboratory, Cold Spring Habor, New York: pp. 89-116.

5.      Zin, N. M., Baba, M. S., Zainal-Abidin, A. H., Latip, J., Mazlan, N. W. and Edrada-Ebel, R. (2017). Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK10. Drug Design, Development and Therapy11: 351.

6.      Gao, H., Li, G. and Lou, H. X. (2018). Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules23(3): 646.

7.      Liang, Y., Xie, X., Chen, L., Yan, S., Ye, X., Anjum, K., Huang, H. Lian, X. and Zhang, Z. (2016). Bioactive polycyclic quinones from marine Streptomyces sp. 182SMLY. Marine Drugs, 14(1): 10.

8.      Cheng, C., Othman, E. M., Stopper, H., Edrada-Ebel, R., Hentschel, U. and Abdelmohsen, U. R. (2017). Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium Streptomyces sp. SBT348. Marine Drugs, 15(12): 383.

9.    Gondry, M., Lautru, S., Fusai, G., Meunier, G., Menez, A. and Genet, R. (2001). Cyclic dipeptide oxidase from Streptomyces noursei: Isolation, purification and partial characterization of a novel, amino acyl α, β‐dehydrogenase. European Journal of Biochemistry268(6): 1712-1721.

10.   Saadouli, I., Zendah El Euch, I., Trabelsi, E., Mosbah, A., Redissi, A., Ferjani, R. and Ouzari, H. I. (2020). Isolation, characterization and chemical synthesis of large spectrum antimicrobial cyclic dipeptide (l-leu-l-pro) from Streptomyces misionensis V16R3Y1 bacteria extracts. A novel 1H NMR metabolomic approach. Antibiotics9(5): 270.

11.   Ding, L., Munch, J., Goerls, H., Maier, A., Fiebig, H. H., Lin, W. H. and Hertweck, C. (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic & Medicinal Chemistry Letters20(22): 6685-6687.

12.   Khan, N., Afroz, F., Begum, M. N., Rony, S. R., Sharmin, S., Moni, F. and Sohrab, M. H. (2018). Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivatives. Toxicology Reports5: 970-976.

13.   Mazlan, N. W., Tate, R., Yusoff, Y. M., Clements, C. and Edrada-Ebel, R. (2020). Metabolomics-guided isolation of anti-trypanosomal compounds from endophytic fungi of the mangrove plant Avicennia lanataCurrent Medicinal Chemistry27(11): 1815-1835.

14.   Zhen, X., Mao, M. J., Wang, R. Z., Chang, S. S., Xiao, T. M., Wu, Y. X., Yu, Y., Song, Y. L., Chen, M. H. and Si, S. Y. (2021). Fusapyrone A, a γ-pyrone derived from a desert Fusarium sp. Journal of Asian Natural Products Research23(5): 504-511.

15.   Choi, H. G., Song, J. H., Park, M., Kim, S., Kim, C. E., Kang, K. S. and Shim, S. H. (2020). Neuroprotective γ-pyrones from Fusarium Solani JS-0169: Cell-based identification of active compounds and an informatics approach to predict the mechanism of action. Biomolecules10(1): 91.

16.   Gao, H., Li, G., Peng, X. P. and Lou, H. X. (2020). Fupyrones A and B, two new α-pyrones from an endophytic fungus, Fusarium sp. F20. Natural Product Research34(3): 335-340.

17.   Luo, K., Rocheleau, H., Qi, P. F., Zheng, Y. L., Zhao, H. Y. and Ouellet, T. (2016). Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Fungal Biology120(9): 1135-1145.

18.   Xiao, W. J., Chen, H. Q., Wang, H., Cai, C. H., Mei, W. L. and Dai, H. F. (2018). New secondary metabolites from the endophytic fungus Fusarium sp. HP-2 isolated from "Qi-Nan" agarwood. Fitoterapia130: 180-183.

19.   Ibrahim, S. R., Mohamed, G. A., Al Haidari, R. A., Zayed, M. F., El-Kholy, A. A., Elkhayat, E. S. and Ross, S. A. (2018). Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorganic & Medicinal Chemistry26(3): 786-790.

20.   Rodrigues Reis, C. E., Ogero D'Otaviano, L., Rajendran, A. and Hu, B. (2018). Co-culture of filamentous feed-grade fungi and microalgae as an alternative to increase feeding value of ethanol coproducts. Fermentation4(4): 86.

21.   Kamdem, R. S., Wang, H., Wafo, P., Ebrahim, W., Ozkaya, F. C., Makhloufi, G. and Proksch, P. (2018). Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia124: 132-136.

22.   Harvey A. L., Edrada-Ebel, R. and Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2): 111-129.

23.   Macintyre, L., Zhang, T., Viegelmann, C., Martinez, I. J., Cheng, C., Dowdells, C. and Edrada-Ebel, R. (2014). Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Marine Drugs12(6): 3416-3448.

24.   Assaw, S., Mohd Amir, M. I. H., Khaw, T. T., Bakar, K., Mohd Radzi, S. A. and Mazlan, N. W. (2020). Antibacterial and antioxidant activity of naphthofuranquinones from the twigs of tropical mangrove Avicennia officinalis. Natural Product Research34(16): 2403-2406.

25.  Chan, W. Y., Hickey, E. E., Khazandi, M., Page, S. W., Trott, D. J. and Hill, P. B. (2020). In vitro antimicrobial activity of narasin and monensin in combination with adjuvants against pathogens associated with canine otitis externa. Veterinary Dermatology31(2): 138-e26.

26.   Boros, C., Smith, C. J., Vasina, Y., Che, Y., Dix, A. B., Darveaux, B. and Pearce, C. (2006). Isolation and identification of the icosalides--cyclic peptolides with selective antibiotic and cytotoxic activities. Journal of Antibiotics59(8): 486-494.

27.   Dose, B., Niehs, S. P., Scherlach, K., Florez, L. V., Kaltenpoth, M. and Hertweck, C. (2018). Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chemical Biology13(9): 2414-2420.

28.   Lysenkova, L. N., Saveljev, O. Y., Omelchuk, O. A., Zatonsky, G. V., Korolev, A. M., Grammatikova, N. E. and Shchekotikhin, A. E. (2020). Synthesis, antimicrobial and antiproliferative properties of epi-oligomycin A, the (33 S)-diastereomer of oligomycin A. Natural Product Research34(21): 3073-3081.

29.   Jenner, M., Jian, X., Dashti, Y., Masschelein, J., Hobson, C., Roberts, D. M. and Challis, G. L. (2019). An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. Chemical science10(21): 5489-5494.

30.   Khebizi, N., Boudjella, H., Bijani, C., Bouras, N., Klenk, H. P., Pont, F. and Sabaou, N. (2018). Oligomycins A and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil. Journal de Mycologie Medicale28(1): 150-160.

31.   Anadon, A. and Martinez-Larranaga, M. R. (2014). Veterinary drugs residues: coccidiostats: 63-75.

32.   Alvarez, J. G., Storey, B. T., Hemling, M. L., & Grob, R. L. (1990). High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa. Journal of Lipid Research31(6): 1073-1081.

33.   Bekiesch, P., Oberhofer, M., Sykora, C., Urban, E. and Zotchev, S. B. (2019). Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonnaNatural Product Research35(7): 1090-1096.

34.   Cho, E., Kwon, O. S., Chung, B., Lee, J., Sun, J., Shin, J. and Oh, K. B. (2020). Antibacterial activity of chromomycins from a marine-derived Streptomyces microflavus. Marine Drugs18(10): 522.

35.  Qureshi, K. A., Bholay, A. D., Rai, P. K., Mohammed, H. A., Khan, R. A., Azam, F. and Prajapati, D. K. (2021). Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Scientific Reports11(1): 1-21.