Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 58 - 69
EFFECT OF DEEP EUTECTIC SOLVENT ON TENSILE
PROPERTIES AND BIODEGRADATION OF PECTIN WITH EGGSHELL BIOPLASTIC
(Kesan Pelarut Eutektik kepada Sifat Tensil dan
Biodegradasi Bioplastik Pektin dengan Cangkang Telur)
Non Daina Masdar, Rizana Yusof *, Nur Amni Ramzani
Faculty of Applied Sciences,
Universiti Teknologi MARA, Perlis Branch, Arau Campus,
02600 Arau, Perlis, Malaysia
*Corresponding author: rizana@uitm.edu.my
Received: 12 September
2021; Accepted: 21 December 2021; Published: 25 February 2022
Abstract
Pectin has excellent potential as a main source of bioplastic
due to its biodegradability. However, the neat pectin-based film has poor
chemo-physical properties and low mechanical performance. In this study, the
pectin-based film is successfully modified by adding eggshell and deep eutectic
solvent (DES), comprising choline chloride and malonic acid, as a filler and
plasticiser to enhance the performance of bioplastic. Five pectin-based
bioplastics were prepared: pectin/eggshell (without DES) and pectin/eggshell
with each 1%, 2%, 3%, and 4% of DES. The bioplastics were characterised by the
Fourier-transform infrared (FTIR) spectroscopy and inverted camera analysis.
The presence of filler and the effect of different DES concentrations were
studied based on mechanical properties, biodegradability, and water uptake. The
results showed that the addition of different percentages of DES had decreased
the tensile strength and increased the flexibility of the bioplastic.
Biodegradability testing using compost soil demonstrated an increased
degradation rate when a high concentration of DES (4%) was added. The DES of
choline chloride and malonic acid shows high potential as a plasticiser in
pectin/eggshell bioplastic.
Keywords: pectin, plasticiser,
deep eutectic solvent, eggshell filler, bioplastic
Abstrak
Pektin berpotensi sebagai sumber utama bioplastik kerana
sifat biodegradasinya. Walau bagaimanapun, bioplastik yang hanya berasaskan
pektin sahaja mempunyai sifat kimia-fizikal yang lemah dan prestasi mekanikal
yang rendah. Dalam kajian ini, filem bioplastik berdasarkan pektin telah
berjaya diubah suai dengan menambahkan cangkang telur dan pelarut eutektik
(DES), yang mengandungi kolin klorida dan asid malonik, sebagai pengisi dan
pemplastik yang bertujuan untuk meningkatkan prestasi bioplastik. Lima
bioplastik berasaskan pektin disediakan: pektin/cangkang telur (tanpa DES) dan
pektin/cangkang telur dengan masing-masing 1%, 2%, 3%, dan 4% DES. Bioplastik
yand dihasilkan dicirikan secara fizik menggunakan spektroskopi Fourier-penukaran
inframerah (FTIR) dan analisis kamera terbalik. Kehadiran pengisi dan kesan
kepekatan DES yang berbeza dikaji berdasarkan sifat mekanik,
kebolehbiodegradasian, dan pengambilan air. Hasilnya menunjukkan bahawa
penambahan peratus DES yang berbeza telah menurunkan kekuatan dan meningkatkan
fleksibiliti bioplastik. Ujian biodegradasi menggunakan tanah kompos
menunjukkan peningkatan kadar degradasi apabila peratus DES yang tinggi (4%)
digunakan. DES bagi kolin klorida dan asid malonik menunjukkan potensi yang
tinggi sebagai pemplastik di dalam bioplastik pektin/cangkang telur.
Kata
kunci: pektin, pemplastik, pelarut eutektik, pengisi cangkang telur,
bioplastik
Graphical Abstract
References
1. Seslija,
S., Nesic, A., Ruzic, J., Krusic, M. K., Velickovic, S., Avolio, R., Santagata,
G. and Malinconico, M. (2018). Edible blend films of pectin and poly (ethylene
glycol): Preparation and physico-chemical evaluation. Food Hydrocolloids, 77:
494-501.
2. Anastas,
P. T. and Kirchhoff, M.M (2002). Origins, current status, and future challenges
of green chemistry. Accounts of Chemical Research, 35(9): 686-694.
3. Fabra,
M. J., Lopez-Rubio, A. and Lagaron, J. M. (2014). Biopolymers for food
packaging application. Smart Polymers and Their Application, 15:
476-509.
4. Cavallaro,
G., Lazzara, G. and Milioto, S. (2011). Dispersions of nanoclays of different
shapes into aqueous and solid biopolymeric matrices. Langmuir, 27(3):
1158-1167.
5. Biddeci,
G., Cavallaro, G., Blasi, F. D, Lazzara, G. Massaro, M. Milioto, S., Parisi,
F., Riela, S. and Spinelli, G. (2016). Halloysite nanotubes loaded with
peppermint essential oil as filler for functional biopolymer film. Carbohydrate
Polymers, 152: 548-557.
6. Munarin,
F., Tanzi, M.C. and Petrini, P. (2012). Advances in biomedical applications of
pectin gels. International Journal of Biological Macromolecules, 51(4):
681-689.
7. Obara,
S. and McGinity, W. (1995). Influence of processing variables on the properties
of free films prepared from aqueous polymeric dispersions by a spray technique.
International Journal of Pharmaceutics, 126 (1-2): 1-10.
8. Gennadios,
A., Hanna, M. A. and Kurth, L. B. (1997). Application of edible coatings on
meats, poultry and seafoods: a review. LWT-Food Science and Technology, 30(4):
337-350.
9. Pilla,
S. (2011). Handbook of Bioplastic and Biocomposites Engineering
Applications. ISBN 978 0-470-62607-8, Publisher John Wiley & Sons.
10. Abolibda,
T. Z. (2015). Physical and chemical
investigations of starch based bio-plastics. PhD Diss., University
of Leicester.
11. Kang,
D. J., Pal, K., Park, S. J., Bang, D. S., & Kim, J. K. (2010). Effect of
eggshell and silk fibroin on styrene-ethylene/butylene-styrene as bio-filler. Materials
& Design, 31(4): 2216-2219.
12. Toro,
P. Quijada, R., Arias, J. L. and Yazdani-Pedram, M. (2007). Mechanical and
morphological studies of poly (propylene)-filled eggshell composites. Macromolecular
Materials and Engineering, 292(9): 1027-1034.
13. Vieira,
M. G. (2011). Natural-based plasticizers and biopolymer films: A review. European
Polymer Journal, 47(3): 254-263.
14. Kasmuri,
N. and Abu Zait, M. S. (2018). Enhancement of bio-plastic using eggshells and
chitosan on potato starch based. International Journal of Engineering &
Technology, 7:110-115.
15. Abbott, A. P., Ballantyne, A. D., Conde, J. P., Ryder, K. S.
and Wise, W. R. (2012). Salt modified starch: sustainable, recyclable plastics.
Green Chemistry, 14(5): 1302-1307.
16. Galvis-Sanchez,
A. C., Sousa, A. M. M, Goncalves, M. P. and Souza, H. K. S. (2016).
Thermo-compression molding of chitosan with a deep eutectic mixture for
biofilms development. Green Chemistry 18(6): 1571-1580.
17. Leroy,
E., Decaen, P., Coativy, G., Pontoire, B., Reguerre, A. and Lourdin, D. (2012).
Deep eutectic solvents as functional additives for starch based plastics. Green
Chemistry, 14(11): 3063-3066.
18. Zdanowicz,
M. and Johansson, C. (2016). Mechanical and barrier properties of starch-based
films plasticized with two-or three component deep eutectic solvents. Carbohydrate
Polymers 151: 103-112.
19. Shafie,
M. H., Samsudin, D., Yusof, R. and Gan, C.Y. (2018). Characterization of
bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide
and choline chloride/glycerol based deep eutectic solvent. International
Journal of Biological Macromolecules, 118: 1183-1192.
20. Malarvannan
G, Onghena, M., Verstraete, S., Puffelen, E.V., Jacobs, A., Vanhorebeek, I.,
Verbruggen, C. A. T., Joosten, K. F. M., Berghe, G. V. D., Jorens, P. G. and
Covaci, A. (2018). Phthalate and alternative plasticisers in indwelling medical
devices in pediatric intensive care units. Journal of Hazardous Materials, 363:
64-72.
21. Mekonnen,
T., Mussone, P., Khalil, H. and Bressler, D. (2013). Progress in bio-based
plastics and plasticizing modifications. Journal of Materials Chemistry A,
1(43): 13379-13398.
22. Tome,
L. I., Baiao, V., Silva, W. D. and Brett, M. A. (2018). Deep eutectic solvents
for the production and application of new materials. Applied Materials
Today, 10: 30-50.
23. Zhang,
Q., Vigier, K. D. O., Royer, S. and Jerome, F. (2012). Deep eutectic solvents:
Syntheses, properties and applications. Chemical Society Reviews, 41(21):
7108-7146.
24. Shamsuri,
A. A. and Daik, R. (2012). Plasticizing
eutectic-based ionic liquid on physicochemical. BioResources, 7(4):
4760-4775.
25.
Cataldo,
V. A., Cavallaro, G., Lazzara, G., Milioto, S. and Parisi, F. (2017). Coffee
grounds as filler for pectin: Green composites with competitive performances
dependent on the UV irradiation. Carbohydrate Polymers, 170: 198-205.
26.
Almeida,
C. M.R., Magalhaes, J.M.C.S., Souza, H.K.S. and Concalves, M.P. (2018). The
role of choline chloride-based deep eutectic solvent and curcumin on chitosan
films properties. Food Hydrocolloids, 81: 456-466.
27.
Zarate-Ramirez,
L. S., Bengoechea, C., Partal, P. and Guerrero, A. (2014). Thermo-mechanical
and hydrophilic properties of polysaccharide/gluten-based bioplastics. Carbohydrate
polymers, 112: 24-31.
28.
Bichara,
L. C, Alvarez, P. E., Bimbi, M. V. F, Vaca, H., Gervasi, C. and Brandan, S. A.
(2016). Structural and spectroscopic study of a pectin isolated from citrus
peel by using FTIR and FT-Raman spectra and DFT calculations. Infrared
Physics & Technology, 76: 315-327.
29.
Li, Y.,
Xin, S., Bian, Y., Xu, K., Han, C. and Dong, L. (2016). The physical properties
of poly (l-lactide) and functionalized eggshell powder composites. International
Journal of Biological Macromolecules, 85: 63-73.
30.
Siriprom,
W., Sangwaranatee, N., Hidayat, R., Kongsriprapan, S., Teanchai K. and
Chamchoi, N. (2018). The physicochemical characteristic of biodegradable
methylcellulose film reinforced with chicken eggshells. Materials Today:
Proceedings, 5(7): 14836-14839.
31.
Pradhan,
A. K. and Sahoo, P. K. (2017). Synthesis and study of thermal, mechanical and
biodegradation properties of chitosan-g-PMMA with chicken egg shell (nano-CaO)
as a novel bio-filler. Materials Science and Engineering: C, 80:
149-155.
32.
Gouveia,
T. I. A. Biernacki, K., Castro, M. C. R., Goncalves, M. P. and Souza, H. K. S.
(2019). A new approach to develop biodegradable films based on thermoplastic
pectin. Food Hydrocolloids, 97:105175.
33.
Kong,
J., Li, Y., Bai, Y., Li, Z., Cao, Z., Yu, Y., Han, C. and Dong, L. (2018).
High-performance biodegradable polylactide composites fabricated using a novel
plasticiser and functionalized eggshell powder. International Journal of
Biological Macromolecules, 112: 46-53.
34.
Esposito,
M., Pierro, P. D, Gonzales, C.R., Mariniello, L., Giosafatto, C. V. L and
Porta, R. (2016). Polyamines as new cationic plasticisers for pectin-based
edible films. Carbohydrate polymers, 153: 222-228.
35.
Muscat,
D. Adhikari, B., Adhikari, R. and Chaudhary, D. S. (2012). Comparative study of
film forming behaviour of low and high amylose starches using glycerol and
xylitol as plasticisers. Journal of Food Engineering, 109(2): 189-201.
36.
Sanyang,
M. L., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Sahari, J. (2016). Effect of
plasticiser type and concentration on physical properties of biodegradable
films based on sugar palm (arenga pinnata) starch for food packaging. Journal
of Food Science and Technology, 53: 326-336.
37.
Trindade, J. R., Visak, Z. P., Blesic, M., Marrucho, I. M.,
Coutinho. J. A. P., Lopes, J. N. C. and Rebelo, L. P. N. (2007). Salting-out effects in aqueous ionic liquid solutions: Cloud-point
temperature shifts. The Journal of Physical Chemistry B, 111(18): 4737-4741.
38.
Suppakul,
P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S. and Munchukangwan, N.
(2013). Empirical modeling of moisture sorption characteristics and mechanical
and barrier properties of cassava flour film and their relation to
plasticizing-antiplasticizing effects. LWT-Food Science and Technology, 50(1):
290-297.