Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 58 - 69

 

 

 

 

EFFECT OF DEEP EUTECTIC SOLVENT ON TENSILE PROPERTIES AND BIODEGRADATION OF PECTIN WITH EGGSHELL BIOPLASTIC

 

(Kesan Pelarut Eutektik kepada Sifat Tensil dan Biodegradasi Bioplastik Pektin dengan Cangkang Telur)

 

Non Daina Masdar, Rizana Yusof *, Nur Amni Ramzani

 

Faculty of Applied Sciences,

Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: rizana@uitm.edu.my

 

 

Received: 12 September 2021; Accepted: 21 December 2021; Published: 25 February 2022

 

 

Abstract

Pectin has excellent potential as a main source of bioplastic due to its biodegradability. However, the neat pectin-based film has poor chemo-physical properties and low mechanical performance. In this study, the pectin-based film is successfully modified by adding eggshell and deep eutectic solvent (DES), comprising choline chloride and malonic acid, as a filler and plasticiser to enhance the performance of bioplastic. Five pectin-based bioplastics were prepared: pectin/eggshell (without DES) and pectin/eggshell with each 1%, 2%, 3%, and 4% of DES. The bioplastics were characterised by the Fourier-transform infrared (FTIR) spectroscopy and inverted camera analysis. The presence of filler and the effect of different DES concentrations were studied based on mechanical properties, biodegradability, and water uptake. The results showed that the addition of different percentages of DES had decreased the tensile strength and increased the flexibility of the bioplastic. Biodegradability testing using compost soil demonstrated an increased degradation rate when a high concentration of DES (4%) was added. The DES of choline chloride and malonic acid shows high potential as a plasticiser in pectin/eggshell bioplastic.

 

Keywords pectin, plasticiser, deep eutectic solvent, eggshell filler, bioplastic

 

Abstrak

Pektin berpotensi sebagai sumber utama bioplastik kerana sifat biodegradasinya. Walau bagaimanapun, bioplastik yang hanya berasaskan pektin sahaja mempunyai sifat kimia-fizikal yang lemah dan prestasi mekanikal yang rendah. Dalam kajian ini, filem bioplastik berdasarkan pektin telah berjaya diubah suai dengan menambahkan cangkang telur dan pelarut eutektik (DES), yang mengandungi kolin klorida dan asid malonik, sebagai pengisi dan pemplastik yang bertujuan untuk meningkatkan prestasi bioplastik. Lima bioplastik berasaskan pektin disediakan: pektin/cangkang telur (tanpa DES) dan pektin/cangkang telur dengan masing-masing 1%, 2%, 3%, dan 4% DES. Bioplastik yand dihasilkan dicirikan secara fizik menggunakan spektroskopi Fourier-penukaran inframerah (FTIR) dan analisis kamera terbalik. Kehadiran pengisi dan kesan kepekatan DES yang berbeza dikaji berdasarkan sifat mekanik, kebolehbiodegradasian, dan pengambilan air. Hasilnya menunjukkan bahawa penambahan peratus DES yang berbeza telah menurunkan kekuatan dan meningkatkan fleksibiliti bioplastik. Ujian biodegradasi menggunakan tanah kompos menunjukkan peningkatan kadar degradasi apabila peratus DES yang tinggi (4%) digunakan. DES bagi kolin klorida dan asid malonik menunjukkan potensi yang tinggi sebagai pemplastik di dalam bioplastik pektin/cangkang telur.

 

Kata kunci:  pektin, pemplastik, pelarut eutektik, pengisi cangkang telur, bioplastik

 

 


Graphical Abstract

References

1.      Seslija, S., Nesic, A., Ruzic, J., Krusic, M. K., Velickovic, S., Avolio, R., Santagata, G. and Malinconico, M. (2018). Edible blend films of pectin and poly (ethylene glycol): Preparation and physico-chemical evaluation. Food Hydrocolloids, 77: 494-501.

2.      Anastas, P. T. and Kirchhoff, M.M (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9): 686-694.

3.      Fabra, M. J., Lopez-Rubio, A. and Lagaron, J. M. (2014). Biopolymers for food packaging application. Smart Polymers and Their Application, 15: 476-509.

4.      Cavallaro, G., Lazzara, G. and Milioto, S. (2011). Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Langmuir, 27(3): 1158-1167.

5.      Biddeci, G., Cavallaro, G., Blasi, F. D, Lazzara, G. Massaro, M. Milioto, S., Parisi, F., Riela, S. and Spinelli, G. (2016). Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydrate Polymers, 152: 548-557.

6.      Munarin, F., Tanzi, M.C. and Petrini, P. (2012). Advances in biomedical applications of pectin gels. International Journal of Biological Macromolecules, 51(4): 681-689.

7.      Obara, S. and McGinity, W. (1995). Influence of processing variables on the properties of free films prepared from aqueous polymeric dispersions by a spray technique. International Journal of Pharmaceutics, 126 (1-2): 1-10.

8.      Gennadios, A., Hanna, M. A. and Kurth, L. B. (1997). Application of edible coatings on meats, poultry and seafoods: a review. LWT-Food Science and Technology, 30(4): 337-350.

9.      Pilla, S. (2011). Handbook of Bioplastic and Biocomposites Engineering Applications. ISBN 978 0-470-62607-8, Publisher John Wiley & Sons.

10.   Abolibda, T. Z. (2015). Physical and chemical investigations of starch based bio-plastics. PhD Diss., University of Leicester.

11.   Kang, D. J., Pal, K., Park, S. J., Bang, D. S., & Kim, J. K. (2010). Effect of eggshell and silk fibroin on styrene-ethylene/butylene-styrene as bio-filler. Materials & Design, 31(4): 2216-2219.

12.   Toro, P. Quijada, R., Arias, J. L. and Yazdani-Pedram, M. (2007). Mechanical and morphological studies of poly (propylene)-filled eggshell composites. Macromolecular Materials and Engineering, 292(9): 1027-1034.

13.   Vieira, M. G. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3): 254-263.

14.   Kasmuri, N. and Abu Zait, M. S. (2018). Enhancement of bio-plastic using eggshells and chitosan on potato starch based. International Journal of Engineering & Technology, 7:110-115.

15.   Abbott, A. P., Ballantyne, A. D., Conde, J. P., Ryder, K. S. and Wise, W. R. (2012). Salt modified starch: sustainable, recyclable plastics. Green Chemistry, 14(5): 1302-1307.

16.   Galvis-Sanchez, A. C., Sousa, A. M. M, Goncalves, M. P. and Souza, H. K. S. (2016). Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chemistry 18(6): 1571-1580.

17.   Leroy, E., Decaen, P., Coativy, G., Pontoire, B., Reguerre, A. and Lourdin, D. (2012). Deep eutectic solvents as functional additives for starch based plastics. Green Chemistry, 14(11): 3063-3066.

18.   Zdanowicz, M. and Johansson, C. (2016). Mechanical and barrier properties of starch-based films plasticized with two-or three component deep eutectic solvents. Carbohydrate Polymers 151: 103-112.

19.  Shafie, M. H., Samsudin, D., Yusof, R. and Gan, C.Y. (2018). Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent. International Journal of Biological Macromolecules, 118: 1183-1192.

20.  Malarvannan G, Onghena, M., Verstraete, S., Puffelen, E.V., Jacobs, A., Vanhorebeek, I., Verbruggen, C. A. T., Joosten, K. F. M., Berghe, G. V. D., Jorens, P. G. and Covaci, A. (2018). Phthalate and alternative plasticisers in indwelling medical devices in pediatric intensive care units. Journal of Hazardous Materials, 363: 64-72.

21.   Mekonnen, T., Mussone, P., Khalil, H. and Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43): 13379-13398.

22.   Tome, L. I., Baiao, V., Silva, W. D. and Brett, M. A. (2018). Deep eutectic solvents for the production and application of new materials. Applied Materials Today, 10: 30-50.

23.   Zhang, Q., Vigier, K. D. O., Royer, S. and Jerome, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41(21): 7108-7146.

24.   Shamsuri, A. A. and Daik, R. (2012). Plasticizing eutectic-based ionic liquid on physicochemical. BioResources, 7(4): 4760-4775.

25.   Cataldo, V. A., Cavallaro, G., Lazzara, G., Milioto, S. and Parisi, F. (2017). Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation. Carbohydrate Polymers, 170: 198-205.

26.   Almeida, C. M.R., Magalhaes, J.M.C.S., Souza, H.K.S. and Concalves, M.P. (2018). The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloids, 81: 456-466.

27.   Zarate-Ramirez, L. S., Bengoechea, C., Partal, P. and Guerrero, A. (2014). Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics. Carbohydrate polymers, 112: 24-31.

28.   Bichara, L. C, Alvarez, P. E., Bimbi, M. V. F, Vaca, H., Gervasi, C. and Brandan, S. A. (2016). Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations. Infrared Physics & Technology, 76: 315-327.

29.   Li, Y., Xin, S., Bian, Y., Xu, K., Han, C. and Dong, L. (2016). The physical properties of poly (l-lactide) and functionalized eggshell powder composites. International Journal of Biological Macromolecules, 85: 63-73.

30.   Siriprom, W., Sangwaranatee, N., Hidayat, R., Kongsriprapan, S., Teanchai K. and Chamchoi, N. (2018). The physicochemical characteristic of biodegradable methylcellulose film reinforced with chicken eggshells. Materials Today: Proceedings, 5(7): 14836-14839.

31.   Pradhan, A. K. and Sahoo, P. K. (2017). Synthesis and study of thermal, mechanical and biodegradation properties of chitosan-g-PMMA with chicken egg shell (nano-CaO) as a novel bio-filler. Materials Science and Engineering: C, 80: 149-155.

32.   Gouveia, T. I. A. Biernacki, K., Castro, M. C. R., Goncalves, M. P. and Souza, H. K. S. (2019). A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloids, 97:105175.

33.   Kong, J., Li, Y., Bai, Y., Li, Z., Cao, Z., Yu, Y., Han, C. and Dong, L. (2018). High-performance biodegradable polylactide composites fabricated using a novel plasticiser and functionalized eggshell powder. International Journal of Biological Macromolecules, 112: 46-53.

34.   Esposito, M., Pierro, P. D, Gonzales, C.R., Mariniello, L., Giosafatto, C. V. L and Porta, R. (2016). Polyamines as new cationic plasticisers for pectin-based edible films. Carbohydrate polymers, 153: 222-228.

35.   Muscat, D. Adhikari, B., Adhikari, R. and Chaudhary, D. S. (2012). Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticisers. Journal of Food Engineering, 109(2): 189-201.

36.   Sanyang, M. L., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Sahari, J. (2016). Effect of plasticiser type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53: 326-336.

37.   Trindade, J. R., Visak, Z. P., Blesic, M., Marrucho, I. M., Coutinho. J. A. P., Lopes, J. N. C. and Rebelo, L. P. N. (2007). Salting-out effects in aqueous ionic liquid solutions: Cloud-point temperature shifts. The Journal of Physical Chemistry B, 111(18): 4737-4741.

38.  Suppakul, P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S. and Munchukangwan, N. (2013). Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing-antiplasticizing effects. LWT-Food Science and Technology, 50(1): 290-297.