Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 47 - 57
SYNTHESIS, CHARACTERIZATION, AND IN-SILICO STUDIES OF CINNAMIC ACID
DERIVATIVES TOWARDS DENGUE VIRUS
(Sintesis, Pencirian dan Kajian In-Siliko Sebatian
Terbitan Asid Sinamik Terhadap Virus Denggi)
Anis Najwa Mohd Wahid1, Nadia Mohamed Yusoff1, Asnuzilawati
Asari1,2*, Siti Nor Khadijah Addis1, Hanis Mohd Yusoff1,2, Habsah Mohamad3, Fauziah
Abdullah4
1Faculty
of Science and Marine Environment
2Advanced Nano Materials
(ANoMa) Research Group, Faculty of
Science and Marine Environment
3Institute of Marine
Biotechnology
Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
4Phytochemistry
Programme, Natural Products Division,
Forest Research Institute of Malaysia, 52109
Kepong, Selangor, Malaysia
*Corresponding author: asnu@umt.edu.my
Received: 7 August 2021;
Accepted: 18 December 2021; Published: 25 February 2022
Abstract
The dengue virus (DENV)
has posed a serious global threat to human health for the past few decades.
However, there are still no clinically approved antiviral drug available for
the treatment of DENV. Cinnamic acid and its derivatives have attracted great
attention due to their broad range of pharmacological properties. The present
study aimed to synthesize and investigate the affinity of cinnamic acid
derivatives against DENV. Six cinnamic acid derivatives (AC1-AC6) were synthesized
by the reaction of substituted cinnamoyl chloride with the corresponding
alcohol and amine. The structures of the compounds were confirmed by using 1H
and 13C Nuclear Magnetic Resonance (NMR) and mass spectrometry. The
synthesized compounds were then simulated for molecular docking to investigate
their binding affinity to the protein target of DENV-2 NS2B/NS3 protease. The
in-silico study reveals that the compound AC5 has the highest binding affinity
and fit into the allosteric pocket of DENV-2 NS2B/NS3 serine protease with van
der Waals interaction, C-H bonding and a few pi interactions such as
π-cation, π-lone pair, π-π T-shaped as well as π-alkyl
interaction.
Keywords: cinnamic
acid, synthesis, anti-dengue virus, docking
Abstrak
Virus
denggi (DENV) memberikan ancaman sejagat yang serius dalam kesihatan manusia
sejak beberapa dekad yang lalu. Walau bagaimanapun, masih belum ada ubat
anti-virus yang diluluskan secara klinikal bagi rawatan DENV. Asid sinamik dan
terbitannya telah menarik banyak perhatian oleh kerana sifat farmakologi yang
mempunyai julat yang luas. Kajian ini bertujuan untuk mensintesis dan menyiasat
afiniti terbitan asid sinamik terhadap DENV. Enam terbitan asid sinamik (AC1-AC6)
telah disintesis dengan tindakbalas penukargantian sinnamoil klorida dengan
alkohol dan amina. Struktur sebatian telah disahkan dengan menggunakan 1H
dan 13C Resonans Magnet Nukleus (NMR) dan spektrometer jisim.
Sebatian yang telah disintesis kemudian disimulasikan dengan mengedok molekul
untuk mengkaji sifat afiniti dengan protein sasaran iaitu protease DENV-2 NS2B
/ NS3. Kajian in-siliko mendedahkan bahawa sebatian AC5 mempunyai
afiniti pengikatan tertinggi dan dapat memasuki poket alosterik DENV-2 NS2B /
NS3 protease serin dengan interaksi van der Waals, ikatan C-H dan beberapa
interaksi pi seperti π-cation, π -lone pair, π-π berbentuk
T dan juga interaksi π-alkil.
Kata kunci: asid sinamik, sintesis,
anti-virus denggi, mengedok
Graphical Abstract
References
1.
Martin-Tanguy, J., Cabanne, F., Perdrizet, E. and Martin, C.
(1978). The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry, 17(11): 1927-1928.
2. Mohammadzadeh, S.,
Shariatpanahi, M., Hamedi, M., Ahmadkhaniha, R., Samadi, N. and Ostad, S. N.
(2007). Chemical composition, oral toxicity and antimicrobial activity of
Iranian propolis. Food Chemistry, 103(4): 1097-1103.
3. Clifford, M. N. (1999).
Chlorogenic acids and other cinnamates � nature, occurrence and dietary burden.
Journal of the Science of Food and
Agriculture, 79(3): 362-372.
4. De, P., Baltas, M. and Bedos-Belval,
F. (2011). Cinnamic acid derivatives as anticancer agents-a review. Current Medicinal Chemistry, 18(11): 1672-1703.
5. Sova, M. (2012). Antioxidant and
antimicrobial activities of cinnamic acid derivatives. Mini-Reviews in Medicinal Chemistry, 12(8): 749-767.
6. Amano, R., Yamashita, A.,
Kasai, H., Hori, T., Miyasato, S., Saito, S., Yokoe, H., Takahashi, K., Tanaka,
T., Otoguro, T., Maekawa, S., Enomoto, N., Tsubuki, M. and Moriishi, K. (2017).
Cinnamic acid derivatives inhibit hepatitis C virus replication via the
induction of oxidative stress. Antiviral Research, 145: 123-130.
7. Chen, Y., Li, Z., Pan, P., Lao,
Z., Xu, J., Li, Z., Zhan, S., Liu, X., Wu, Y., Wang, W. and Li, G. (2021).
Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antiviral
Research, 192(11): 105117.
8. Wang, Y., He, F., Wu, S., Luo,
Y., Wu, R., Hu, D. and Song, B. (2020). Design, synthesis, anti-TMV activity,
and preliminary mechanism of cinnamic acid derivatives containing dithioacetal
moiety. Pesticide Biochemistry and Physiology, 164(1): 115-121.
9. Abdul Rahim, N. H. C., Asari,
A., Ismail, N. and Osman, H. (2017). Synthesis and antibacterial study of
eugenol derivatives. Asian Journal of
Chemistry, 29(1): 22-26.
10. Grinter, S. Z. and Zou, X.
(2014). Challenges, applications, and recent advances of protein-ligand docking
in structure-based drug design. Molecules,
19(7): 10150-10176.
11. Leung, D., Schroder, K.,
White, H., Fang, N. X., Stoermer, M. J., Abbenante, G., Martin, J. L., Young,
P. R. and Fairlie, D. P. (2001). Activity of recombinant Dengue 2 Virus NS3 protease
in the presence of a truncated NS2B co-factor, small peptide substrates, and
inhibitors. Journal of Biological
Chemistry, 276(49): 45762-45771.
12. Chiu, M. W., Shih, H. M.,
Yang, T. H. and Yang, Y. L. (2007). The type 2 dengue virus envelope protein
interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9
(Ubc9). Journal of Biomedical Science,
14(3): 429-444.
13. Chen, W. N., Loscha, K. V.,
Nitsche, C., Graham, B. and Otting, G. (2014). The dengue virus NS2B-NS3
protease retains the closed conformation in the complex with BPTI. FEBS Letters, 588(14): 2206-2211.
14. Tomlinson, S., Malmstrom, R.
and Watowich, S. (2012). New approaches to structure-based discovery of dengue
protease inhibitors. Infectious Disorders
- Drug Targets, 9(3): 327-343.
15. Preugschat, F., Yao, C. W. and
Strauss, J. H. (1990). In vitro processing of dengue virus type 2 nonstructural
proteins NS2A, NS2B, and NS3. Journal of
Virology, 64(9): 4364-4374.
16. Wichapong, K., Pianwanit, S.,
Sippl, W. and Kokpol, S. (2010). Homology modeling and molecular dynamics
simulations of Dengue virus NS2B/NS3 protease: Insight into molecular
interaction. Journal of Molecular Recognition,
23(3): 283-300.
17. Hevener, K., Zhao, W., Ball,
D., Babaoglu, K., Qi, J., White, S. and Lee, R. (2009). Validation of molecular
docking programs for virtual screening against dihydropteroate synthase. Journal
of Chemical Information and Modeling, 49(2): 444-460.
18. Datar, P. A and Jadhav, S. R.
(2015). Design and synthesis of pyrazole-3-one derivatives as hypoglycaemic
agents. International Journal of Medicinal Chemistry, 2015: 1-10.
19. Noble, C. G., Seh, C. C.,
Chao, A. T. and Shi, P. Y. (2012). Ligand-bound structures of the dengue virus
protease reveal the active conformation. Journal of Virology, 86(1): 438-446.