Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 47 - 57

 

 

 

 

SYNTHESIS, CHARACTERIZATION, AND IN-SILICO STUDIES OF CINNAMIC ACID DERIVATIVES TOWARDS DENGUE VIRUS

 

(Sintesis, Pencirian dan Kajian In-Siliko Sebatian Terbitan Asid Sinamik Terhadap Virus Denggi)

 

Anis Najwa Mohd Wahid1, Nadia Mohamed Yusoff1, Asnuzilawati Asari1,2*, Siti Nor Khadijah Addis1, Hanis Mohd Yusoff1,2, Habsah Mohamad3, Fauziah Abdullah4

 

1Faculty of Science and Marine Environment

2Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment

3Institute of Marine Biotechnology

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

4Phytochemistry Programme, Natural Products Division,

Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Malaysia

 

*Corresponding author: asnu@umt.edu.my

 

 

Received: 7 August 2021; Accepted: 18 December 2021; Published: 25 February 2022

 

 

Abstract

The dengue virus (DENV) has posed a serious global threat to human health for the past few decades. However, there are still no clinically approved antiviral drug available for the treatment of DENV. Cinnamic acid and its derivatives have attracted great attention due to their broad range of pharmacological properties. The present study aimed to synthesize and investigate the affinity of cinnamic acid derivatives against DENV. Six cinnamic acid derivatives (AC1-AC6) were synthesized by the reaction of substituted cinnamoyl chloride with the corresponding alcohol and amine. The structures of the compounds were confirmed by using 1H and 13C Nuclear Magnetic Resonance (NMR) and mass spectrometry. The synthesized compounds were then simulated for molecular docking to investigate their binding affinity to the protein target of DENV-2 NS2B/NS3 protease. The in-silico study reveals that the compound AC5 has the highest binding affinity and fit into the allosteric pocket of DENV-2 NS2B/NS3 serine protease with van der Waals interaction, C-H bonding and a few pi interactions such as π-cation, π-lone pair, π-π T-shaped as well as π-alkyl interaction.

 

Keywords: cinnamic acid, synthesis, anti-dengue virus, docking

 

Abstrak

Virus denggi (DENV) memberikan ancaman sejagat yang serius dalam kesihatan manusia sejak beberapa dekad yang lalu. Walau bagaimanapun, masih belum ada ubat anti-virus yang diluluskan secara klinikal bagi rawatan DENV. Asid sinamik dan terbitannya telah menarik banyak perhatian oleh kerana sifat farmakologi yang mempunyai julat yang luas. Kajian ini bertujuan untuk mensintesis dan menyiasat afiniti terbitan asid sinamik terhadap DENV. Enam terbitan asid sinamik (AC1-AC6) telah disintesis dengan tindakbalas penukargantian sinnamoil klorida dengan alkohol dan amina. Struktur sebatian telah disahkan dengan menggunakan 1H dan 13C Resonans Magnet Nukleus (NMR) dan spektrometer jisim. Sebatian yang telah disintesis kemudian disimulasikan dengan mengedok molekul untuk mengkaji sifat afiniti dengan protein sasaran iaitu protease DENV-2 NS2B / NS3. Kajian in-siliko mendedahkan bahawa sebatian AC5 mempunyai afiniti pengikatan tertinggi dan dapat memasuki poket alosterik DENV-2 NS2B / NS3 protease serin dengan interaksi van der Waals, ikatan C-H dan beberapa interaksi pi seperti π-cation, π -lone pair, π-π berbentuk T dan juga interaksi π-alkil.

 

Kata kunci: asid sinamik, sintesis, anti-virus denggi, mengedok

 

 


Graphical Abstract




References

1.      Martin-Tanguy, J., Cabanne, F., Perdrizet, E. and Martin, C. (1978). The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry, 17(11): 1927-1928.

2.      Mohammadzadeh, S., Shariatpanahi, M., Hamedi, M., Ahmadkhaniha, R., Samadi, N. and Ostad, S. N. (2007). Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chemistry, 103(4): 1097-1103.

3.      Clifford, M. N. (1999). Chlorogenic acids and other cinnamates � nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 79(3): 362-372.

4.      De, P., Baltas, M. and Bedos-Belval, F. (2011). Cinnamic acid derivatives as anticancer agents-a review. Current Medicinal Chemistry, 18(11): 1672-1703.

5.      Sova, M. (2012). Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Reviews in Medicinal Chemistry, 12(8): 749-767.

6.     Amano, R., Yamashita, A., Kasai, H., Hori, T., Miyasato, S., Saito, S., Yokoe, H., Takahashi, K., Tanaka, T., Otoguro, T., Maekawa, S., Enomoto, N., Tsubuki, M. and Moriishi, K. (2017). Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Research, 145: 123-130.

7.      Chen, Y., Li, Z., Pan, P., Lao, Z., Xu, J., Li, Z., Zhan, S., Liu, X., Wu, Y., Wang, W. and Li, G. (2021). Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antiviral Research, 192(11): 105117.

8.      Wang, Y., He, F., Wu, S., Luo, Y., Wu, R., Hu, D. and Song, B. (2020). Design, synthesis, anti-TMV activity, and preliminary mechanism of cinnamic acid derivatives containing dithioacetal moiety. Pesticide Biochemistry and Physiology, 164(1): 115-121.

9.      Abdul Rahim, N. H. C., Asari, A., Ismail, N. and Osman, H. (2017). Synthesis and antibacterial study of eugenol derivatives. Asian Journal of Chemistry, 29(1): 22-26.

10.   Grinter, S. Z. and Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules, 19(7): 10150-10176.

11.   Leung, D., Schroder, K., White, H., Fang, N. X., Stoermer, M. J., Abbenante, G., Martin, J. L., Young, P. R. and Fairlie, D. P. (2001). Activity of recombinant Dengue 2 Virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. Journal of Biological Chemistry, 276(49): 45762-45771.

12.   Chiu, M. W., Shih, H. M., Yang, T. H. and Yang, Y. L. (2007). The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Journal of Biomedical Science, 14(3): 429-444.

13.   Chen, W. N., Loscha, K. V., Nitsche, C., Graham, B. and Otting, G. (2014). The dengue virus NS2B-NS3 protease retains the closed conformation in the complex with BPTI. FEBS Letters, 588(14): 2206-2211.

14.   Tomlinson, S., Malmstrom, R. and Watowich, S. (2012). New approaches to structure-based discovery of dengue protease inhibitors. Infectious Disorders - Drug Targets, 9(3): 327-343.

15.   Preugschat, F., Yao, C. W. and Strauss, J. H. (1990). In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. Journal of Virology, 64(9): 4364-4374.

16.   Wichapong, K., Pianwanit, S., Sippl, W. and Kokpol, S. (2010). Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: Insight into molecular interaction. Journal of Molecular Recognition, 23(3): 283-300.

17.   Hevener, K., Zhao, W., Ball, D., Babaoglu, K., Qi, J., White, S. and Lee, R. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2): 444-460.

18.   Datar, P. A and Jadhav, S. R. (2015). Design and synthesis of pyrazole-3-one derivatives as hypoglycaemic agents. International Journal of Medicinal Chemistry, 2015: 1-10.

19.   Noble, C. G., Seh, C. C., Chao, A. T. and Shi, P. Y. (2012). Ligand-bound structures of the dengue virus protease reveal the active conformation. Journal of Virology, 86(1): 438-446.