Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 39 - 46

 

 

 

 

MEASUREMENT OF SOLVENT PROPERTIES USING KAMLET-TAFT APPROACH FOR APPLICATION IN SYNTHESIS

 

(Pengukuran Sifat Pelarut Menggunakan Pendekatan Kamlet-Taft untuk Penggunaan dalam Sintesis)

 

Tariqul Islam1, A. B. M. Helal Uddin1, Sahena Ferdosh2, Md. Zaidul Islam Sarker1,3*

 

1Faculty of Pharmacy

2Faculty of Science

International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

3Program Leader of Food Science Program, Cooperative Research, Education Extension Services,

Northern Marianas College, 501250, Saipan MP 96950, USA

 

*Corresponding author:  mdzaidul.sarker@marianas.edu

 

 

Received: 31 August 2021; Accepted: 11 January 2022; Published: 25 February 2022

 

 

Abstract

Solvents are an unavoidable part of pharmaceutical and chemical manufacturing/synthesis, most of them are toxic or hazardous. The study on toxic solvent replacement is ongoing over the world. Researchers are trying to overcome the hazardous issues that can be possible using the mixture of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) solvent as a safe/recommended solvent mixture. This study presents the possibility for the replacement/limitation of dipolar aprotic solvent in drug synthesis using solvent-pair mixture where the Kamlet-Taft (KT) parameter works as a tool to alternate the uses of such types of toxic solvents. It has been simplified here among the many methods and equations of the KT approach. The polarity (π*), basicity (β), and acidity (α) of 10 pure solvents and 16 solvent-pair mixtures were measured spectroscopically, utilizing well-suited dyes or indicators. The highest absorption wavenumber value of indicators in the solution was selected and the simplified KT equations were used to determine the solvent properties (π*, β, α). Solvent mixtures were classified as per the solvent selection guideline of GSK2016 and CHEM21. Four pure solvents (tetrahydrofuran, dimethylformamide, dimethylsulfoxide, and acetone) exhibited low KT acidity, high KT basicity, and high KT polarity. Eight aqueous solvent mixtures (water-acetone, water-ethanol, water-isopropyl alcohol, water-dimethylsulfoxide, water-dimethylformamide, water-tetrahydrofuran), and two non-aqueous solvent mixtures (ethanol-dimethylformamide, ethanol-dimethylsulfoxide) showed low KT acidity and high KT basicity. Solvent classification by composite score showed that four solvent mixtures were as recommended and 5 mixtures were near to recommended solvent among 16 solvent mixtures. KT parameter was a simplified approach to determine which mixture can bind with active pharmaceutical ingredients (API) that is indicated by KT solvatochromic properties and solvent classification.

 

Keywords: Kamlet-Taft parameters, hazardous solvent, solvent-pair mixture, dipolar aprotic solvent, drug synthesis

 

Abstrak

Pelarut adalah bahagian yang tidak dapat dielakkan dalam pembuatan/sintesis farmaseutikal dan kimia, kebanyakannya beracun atau berbahaya. Kajian mengenai penggantian pelarut toksik sedang dijalankan di seluruh dunia. Penyelidik berusaha mengatasi masalah berbahaya yang mungkin dilakukan dengan menggunakan campuran pelarut penderma ikatan hidrogen (HBD) dan pelarut ikatan hidrogen (HBA) sebagai campuran pelarut yang selamat/disyorkan. Kajian ini menunjukkan kemungkinan penggantian/pembatasan pelarut aprotik dipolar dalam sintesis ubat dengan campuran pasangan pelarut di mana parameter Kamlet-Taft (KT) berfungsi sebagai alat untuk mengganti penggunaan jenis pelarut toksik tersebut. Ini telah dipermudahkan di sini antara banyak kaedah dan persamaan pendekatan KT. Kekutuban (π*), asas (β), dan keasidan (α) daripada 10 pelarut tulen dan 16 campuran pasangan pelarut telah diukur dengan menggunakan spektroskopi, berdasarkan pewarna atau indikator yang sesuai. Nilai penyerapan gelombang tertinggi dari indikator dalam larutan dipilih dan persamaan KT digunakan untuk menentukan sifat pelarut (π*, β, α). Campuran pelarut dikelaskan mengikut garis panduan pemilihan pelarut GSK 2016 dan CHEM21. Empat pelarut tulen (tetrahidrofuran, dimetilformamida, dimetilsulfoksida, dan aseton) menunjukkan keasidan KT rendah, asas KT tinggi, dan kekutuban KT tinggi. Lapan campuran pelarut berasaskan air (air-aseton, air-etanol, air-isopropil alkohol, air-dimetilsulfoksida, air-dimetilformamida, air-tetrahidrofuran), dan dua campuran pelarut tidak berasaskan air (etanol-dimetilformamida, etanol-dimetilsulfoksida) menunjukkan keasidan KT rendah dan asas KT yang tinggi. Penggolongan terhadap 16 campuran pelarut berdasarkan skor komposit menunjukkan empat campuran pelarut adalah seperti yang disyorkan dan 5 campuran pelarut hampir dengan yang disyorkan. Parameter KT adalah pendekatan yang dipermudah untuk menentukan campuran mana yang dapat mengikat dengan bahan aktif farmaseutikal (API) yang ditunjukkan oleh sifat solvatochromic KT dan klasifikasi pelarut.

 

Kata kunci: parameter Kamlet-Taft, pelarut berbahaya, campuran pasangan pelarut, pelarut aprotik dipolar, sintesis ubat

 

 

 


Graphical Abstract

References

1.      Kamlet, M. J., and Taft, R. W. (1976). The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicity. Journal of the American chemical Society, 98(2): 377-383.

2.      Labban, A. S. and Marcus, Y. (1997). Solvatochromic parameters of ethanolamines. Journal of the Chemical Society, Faraday Transactions, 93(1): 77-79.

3.     Islam, T., Sarker, M. Z. I., Uddin, A. H., Yunus, K. B., Prasad, R., Mia, M. A. R. and Ferdosh, S. (2020). Kamlet Taft parameters: A tool to alternate the usage of hazardous solvent in pharmaceutical and chemical manufacturing/synthesis-A gateway towards green technology. Analytical Chemistry Letters, 10 (5): 550-561.

4.   Duereh, A., Guo, H., Honma, T., Hiraga, Y., Sato, Y., Lee Smith Jr, R. and Inomata, H. (2018). Solvent polarity of cyclic ketone (cyclopentanone, cyclohexanone): Alcohol (methanol, ethanol) renewable mixed-solvent systems for applications in pharmaceutical and chemical processing. Industrial & Engineering Chemistry Research, 57(22): 7331-7344.

5.      Duereh, A., Sato, Y., Smith Jr, R. L., and Inomata, H. (2016). Analysis of the cybotactic region of two renewable lactone water mixed-solvent systems that exhibit synergistic Kamlet Taft basicity. The Journal of Physical Chemistry B, 120(19): 4467-4481.

6.      Marcus, Y. (1994). The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. Journal of the Chemical Society, Perkin Transactions 2(8): 1751-1758.

7.      Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C. R., Abou-Shehada, S. and Dunn, P. J. (2015). CHEM21 selection guide of classical-and less classical-solvents. Green Chemistry, 18(1): 288-296.

8.      European Medicines Agency (2019), ICH guideline Q3C (R6) on impurities: guideline for residual solvents, step 5. https://www.ema.europa.eu/ en/ich-q3c-r6-residual-solvents [Access online 08 October 2021].

9.      Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H., Clark, J. H., Farmer, T. J., Hunt, A. J., McElroy, C. R. and Sherwood, J. (2016). Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 4(1): 1-24.

10.     Prat, D., Hayler, J. and Wells, A. (2014). A survey of solvent selection guides. Green Chemistry, 16(10): 4546-4551.

11.     Duereh, A., Sato, Y., Smith Jr, R. L. and Inomata, H. (2017). Methodology for replacing dipolar aprotic solvents used in API processing with safe hydrogen-bond donor and acceptor solvent-pair mixtures. Organic Process Research & Development, 21(1): 114-124.

12.    Duereh, A., Sato, Y., Smith Jr, R. L. and Inomata, H. (2015). Spectroscopic analysis of binary mixed-solvent-polyimide precursor systems with the preferential solvation model for determining solute-centric Kamlet Taft solvatochromic parameters. The Journal of Physical Chemistry B, 119(46): 14738-14749.

13.     Duereh, A., Sato, Y., Smith Jr, R. L. and Inomata, H. (2015). Replacement of hazardous chemicals used in engineering plastics with safe and renewable hydrogen-bond donor and acceptor solvent-pair mixtures. ACS Sustainable Chemistry & Engineering, 3(8): 1881-1889.

14.      Capello, C., Fischer, U. and Hungerbhler, K. (2007). What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chemistry, 9(9): 927-934.

15.      Clark, J. H., and Tavener, S. J. (2007). Alternative solvents: shades of green. Organic Process Research & Development, 11(1): 149-155.

16.      Jessop, P. G. (2011). Searching for green solvents. Green Chemistry, 13(6): 1391-1398.

17.      Ashcroft, C. P., Dunn, P. J., Hayler, J. D. and Wells, A. S. (2015). Survey of solvent usage in papers published in organic process research & development 1997-2012. Organic Process Research & Development, 19(7): 740-747.

18.      Sherwood, J., Granelli, J., McElroy, C. R. and Clark, J. H. (2019). A method of calculating the Kamlet Abboud Taft solvatochromic parameters using COSMO-RS. Molecules, 24(12): 2209.

19.      Dolan, D. A., Sherman, D. A., Atkin, R., and Warr, G. G. (2016). Kamlet taft solvation parameters of solvate ionic liquids. ChemPhysChem, 17(19): 3096-3101.

20.      Marcus, Y. (1998). The properties of solvents. John Wiley & Sons, England: pp. 256

21.      Marcus, Y. (1993). The properties of organic liquids that are relevant to their use as solvating solvents. Chemical Society Reviews, 22(6): 409-416.

22.      Alder, C. M., Hayler, J. D., Henderson, R. K., Redman, A. M., Shukla, L., Shuster, L. E. and Sneddon, H. F. (2016). Updating and further expanding GSK's solvent sustainability guide. Green Chemistry, 18 (13): 3879-3890.

23.      Hellsten, S., Qu, H. and Louhi‐Kultanen, M. (2011). Screening of binary solvent mixtures and solvate formation of indomethacin. Chemical Engineering & Technology, 34(10): 1667-1674.