Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 29 - 38
BIOMIMETIC SYNTHESIS OF SILVER NANOPARTICLES USING EXTRACT AND ITS ANTIBACTERIAL PROPERTIES Eleusine indica
(Sintesis Biomimetik Nanopartikel Perak Menggunakan Ekstrak Eleusine
indica dan Ciri Antibakteria)
Ropisah Me1*, Muhammad Hafiz Istamam1,
Noor Hidayah Pungot2, Nazlina Ibrahim3, Alice Shanthi4
1Universiti
Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,
72000
Kuala Pilah, Negeri Sembilan, Malaysia.
2Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Universiti
Teknologi MARA, Cawangan Negeri Sembilan, Kampus Seremban,
70300
Seremban, Negeri Sembilan, Malaysia.
*Corresponding
author: ropisah@uitm.edu.my
Received: 14 September 2021; Accepted: 18 December 2021;
Published: 25 February 2022
Abstract
The biomimetic method, which relies on natural resources such
as plant extracts, bacteria, and fungi, offers an alternative for synthesizing
silver nanoparticles (AgNPs). The use of biomimetic method for synthesizing
AgNPs have various benefits including cost effectiveness, low toxicity, and
suitabiity for biomedical application. This study synthesizes plant mediated
nanoparticle using Eleusine indica to determine its antibacterial
activity. Eleusine indica methanol extract is treated with 1 mM of
silver nitrate at room temperature (25-27 oC ) for 24 hours. The resulting
product is characterized using UV-Vis spectroscopy and transmission electron
microscope (TEM). UV-Vis absorption spectroscopy displays a strong resonance
centered on the surface of AgNPs at approximately 413 nm. Physical appearance
of AgNPs as characterized by transmission electron microscopy (TEM) showed
formation of AgNPs with average particle size of 20 nm. In the antibacterial
activity of the synthesized AgNPs, minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC) assays are performed. The plant
mediated AgNPs has predicted bacteriocidal activity according to the ratio of
MBC to MIC values against selected Gram-positive and Gram-negative bacteria. In
this study, plant mediated AgNPs has been successfully synthesized by reduction
of silver nitrate with Eleusine indica leaves methanol extract.
Keywords: Plant-mediated silver nanoparticles, Eleusine indica, UV-Vis analysis,
transmission electron microscope,
antibacterial activity
Abstrak
Kaedah biomimetik yang bergantung kepada sumber alam seperti
ekstrak tumbuhan, bakteria dan kulat, menawarkan alternatif dalam sintesis
nanopartikel perak (AgNPs). Penggunaan kaedah biomimetik dalam sintesis AgNPs
mempunyai pelbagai kelebihan termasuk keberkesanan kos, ketoksikan yang rendah,
dan kesesuaian dalam kegunaan biomedik. Objektif kajian ini adalah untuk mensintesis
nanopartikel perak diperantara tumbuhan menggunakan Eleusine indica dan
menentukan aktiviti antibakteria. Ekstrak metanol Eleusine indica telah dirawat dengan 1 mM larutan perak nitrat pada
suhu bilik (25 - 27 oC) selama 24 jam. Sampel telah dicirikan menggunakan
spektroskopi UV-Vis dan mikroskopi transmisi elektron
(TEM). Spektroskopi penyerapan UV-Vis menunjukkan resonans berpusat yang
kuat atas permukaan AgNPs pada kira-kira 413 nm. Rupabentuk fizikal AgNPs yang
dicirikan melalui mikroskopi transmisi elektron (TEM) menunjukkan pembentukan
AgNP dengan purata saiz partikel 20 nm. Aktiviti antibakteria nanopartikel perak
perantaraan-tumbuhan yang disintesis telah diasai melalui penentuan
kepekatan perencatan minimum (MIC) dan
kepekatan bakterisidal minimum (MBC). Gabungan nanopartikel perak perantaraan-tumbuhan diramal mempunyai aktiviti bacteriosidal berdasarkan nisbah nilai
MBC kepada MIC terhadap bakteria Gram positif dan Gram negatif bakteria. Dalam
kajian ini, AgNPs perantaraan-tumbuhan telah berjaya disintesis melalui
penurunan perak nitrat dengan ekstrak metanol daun Eleusine indica.
Kata kunci: nanopartikel
perak perantaraan-tumbuhan, Eleusine indica, analisa
UV-Vis, mikroskopi transmisi elektron, aktiviti antibakteria
Graphical Abstract
References
1.
Logeswari,
P., Silambarasan, S. and Abraham, J. (2015). Synthesis of silver nanoparticles
using plants extract and analysis of their antimicrobial property. Journal
of Saudi Chemical Society, 19(3): 311-317.
2.
Safari,
J. and Zarnegar, Z. (2014). Advanced drug delivery systems: Nanotechnology of
health design a review. Journal of Saudi Chemical Society, 18(2): 85-99.
3.
Rajeshkumar,
S. and Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver
nanoparticles � A review on biomolecules involved, characterisation and
antibacterial activity. Chemico-Biological Interactions, 273: 219-227.
4.
Ahmed,
S., Saifullah, Ahmad, M., Swami, B. L. and Ikram, S. (2016). Green synthesis of silver nanoparticles using
Azadirachta indica aqueous leaf extract. Journal of Radiation
Research and Applied Sciences, 9(1): 1-7.
5.
Poulose,
S., Panda, T., Nair, P. P. and Theodore, T. (2014). Biosynthesis of silver
nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2):
2038-2049.
6.
Mosaviniya,
M., Kikhavani, T., Tanzifi, M., Tavakkoli Yaraki, M., Tajbakhsh, P. and
Lajevardi, A. (2019). Facile green synthesis of silver nanoparticles using Crocus
Haussknechtii Bois bulb extract: Catalytic activity and antibacterial
properties. Colloids and Interface Science Communications, 33(8):
100211.
7.
Zhao,
X., Zhou, L., Riaz Rajoka, M. S., Yan, L., Jiang, C., Shao, D. and Jin, M.
(2018). Fungal silver nanoparticles: Synthesis, application and challenges. Critical
Reviews in Biotechnology, 38(6): 817-835.
8.
Larayetan,
R., Ojemaye, M. O., Okoh, O. O. and Okoh, A. I. (2019). Silver nanoparticles
mediated by Callistemon citrinus extracts and their antimalaria,
antitrypanosoma and antibacterial efficacy. Journal of Molecular Liquids,
273: 615-625.
9.
Roy, K.,
Sarkar, C. K. and Ghosh, C. K. (2015). Plant-mediated synthesis of silver
nanoparticles using parsley (Petroselinum crispum) leaf extract:
spectral analysis of the particles and antibacterial study. Applied
Nanoscience (Switzerland), 5(8): 945-951.
10.
Shehzad,
A., Qureshi, M., Jabeen, S., Ahmad, R., Alabdalall, A. H., Aljafary, M. A. and
Al-Suhaimi, E. (2018). Synthesis, characterization and antibacterial activity
of silver nanoparticles using Rhazya stricta. PeerJ, 2018(12):
1-15.
11.
Lalitha,
A., Subbaiya, R. and Ponmurugan, P. (2013). Green synthesis of silver
nanoparticles from leaf extract Azhadirachta indica and to study its
anti-bacterial and antioxidant property. International Journal of Current
Microbiology and Applied Sciences, 2(6): 228-235.
12.
Abdul,
A. B., Al-Zubairi, A. S., Abdelwahab, S. I., Peng, C. Y., Mohan, S. and
Elhassan, M. M. (2011). Eleucine indica possesses antioxidant, antibacterial
and cytotoxic properties. Evidence-Based Complementary and Alternative
Medicine, 2011: 965370.
13.
Iberahim,
R., Nor, N. S. M., Yaacob, W. A. and Ibrahim, N. (2018). Eleusine indica
inhibits early and late phases of herpes simplex virus type 1 replication cycle
and reduces progeny infectivity. Sains Malaysiana, 47(7): 1431-1438.
14.
Devi,
M., Devi, S., Sharma, V., Rana, N., Bhatia, R. K. and Bhatt, A. K. (2020).
Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle
marmelos and their antimicrobial potential against human bacterial
pathogens. Journal of Traditional and Complementary Medicine, 10(2):
158-165.
15.
Lee, S.
H. and Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for
nanomedicine. International Journal of Molecular Sciences, 20(4): 1-23.
16.
Din, L.
B., Mie, R., Samsudin, M. W., Ahmad, A. and Ibrahim, N. (2015). Biomimetic
synthesis of silver nanoparticles using the Lichen ramalina dumeticola
and the antibacterial activity. Malaysian Journal of Analytical Sciences,
19(2): 369-376.
17.
Wang,
W., Li, N., Luo, M., Zu, Y. and Efferth, T. (2012). Antibacterial activity and
anticancer activity of Rosmarinus officinalis L. essential oil compared
to that of its main components. Molecules, 17(3): 2704-2713.
18.
Zarai,
Z., Kadri, A., Ben Chobba, I., Ben Mansour, R., Bekir, A., Mejdoub, H. and
Gharsallah, N. (2011). The in-vitro evaluation of antibacterial, antifungal and
cytotoxic properties of Marrubium vulgare L. essential oil grown in
Tunisia. Lipids in Health and Disease, 10(1): 161.
19.
Ahmad,
Aftab, Husain, A., Mujeeb, M., Khan, S. A., Alhadrami, H. A. A., &
Bhandari, A. (2015). Quantification of total phenol, flavonoid content and
pharmacognostical evaluation including HPTLC fingerprinting for the
standardization of Piper nigrum Linn fruits. Asian Pacific Journal of
Tropical Biomedicine, 5(2): 101-107.
20.
Truong,
D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H. and Nguyen, H. C.
(2019). Evaluation of the use of different solvents for phytochemical
constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia
buxifolia. Journal of Food Quality, 2019: 8178294.
21.
Gupta,
M., Thakur, S., Sharma, A. and Gupta, S. (2013). Qualitative and quantitative
analysis of phytochemicals and pharmacological value of some dye yielding
medicinal plants. Oriental Journal of Chemistry, 29(2): 475-481.
22.
Sahu,
N., Soni, D., Chandrashekhar, B., Satpute, D. B., Saravanadevi, S., Sarangi, B.
K. and Pandey, R. A. (2016). Synthesis of silver nanoparticles using
flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects
and cytotoxicity. International Nano Letters, 6(3): 173-181.
23.
Iberahim,
R., Yaacob, W. A. and Ibrahim, N. (2015). Phytochemistry, cytotoxicity and
antiviral activity of Eleusine indica (sambau). AIP Conference
Proceedings, 1678: 1-5.
24.
Shankar,
S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004).
Biological synthesis of triangular gold nanoprisms. Nature Materials,
3(7): 482-488.
25.
Kumar R,
Ghoshal G, J. A. and G. M. (2017). Rapid green synthesis of silver
nanoparticles (AgNPs) using (Prunus persica) plants extract: Exploring
its antimicrobial and catalytic activities. Journal of Nanomedicine &
Nanotechnology, 08(04): 2157-7439
26.
Ashraf,
J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A. and Choi, I. (2016). Green
synthesis of silver nanoparticles and characterization of their inhibitory
effects on AGEs formation using biophysical techniques. Scientific Reports,
2015(6): 1-10.
27.
Zhang,
X. F., Liu, Z. G., Shen, W. and Gurunathan, S. (2016). Silver nanoparticles:
Synthesis, characterization, properties, applications, and therapeutic
approaches. International Journal of Molecular Sciences, 17(9):
1534.
28.
Kerker,
M. (1985). The optics of colloidal silver: something old and something new. Journal
of Colloid and Interface Science, 105(2): 297-314.
29.
Singh,
K., Naidoo, Y., Mocktar, C. and Baijnath, H. (2018). Biosynthesis of silver
nanoparticles using Plumbago auriculata leaf and calyx extracts and
evaluation of their antimicrobial activities. Advances in Natural Sciences:
Nanoscience and Nanotechnology, 9(3): 035004.
30.
Gomathi,
M., Rajkumar, P. V., Prakasam, A. and Ravichandran, K. (2017). Green synthesis
of silver nanoparticles using Datura stramonium leaf extract and
assessment of their antibacterial activity. Resource-Efficient Technologies,
3(3): 280-284.
31.
Narchin,
F., Larijani, K., Rustaiyan, A., Ebrahimi, S. N. and Tafvizi, F. (2018).
Phytochemical synthesis of silver nanoparticles by two techniques using Saturaja
rechengri Jamzad extract: Identifying and comparing in vitro
anti-proliferative activities. Advanced Pharmaceutical Bulletin, 8(2):
235-244.
32.
Ramesh,
A. V., Devi, D. R., Battu, G. R. and Basavaiah, K. (2018). A Facile plant
mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus
hispida Linn. f. for catalytic, antioxidant and antibacterial applications.
South African Journal of Chemical Engineering, 26(7): 25-34.
33.
Jain, S.
and Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid
mediated green synthesis of silver nanoparticles and their enhanced
antibacterial property. Scientific Reports, 7(1): 1-13.
34.
Burdușel,
A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A. and
Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An
up-to-date overview. Nanomaterials, 8(9): 1-25.
35.
Mie, R.,
Samsudin, M. W., Din, L. B., Ahmad, A., Ibrahim, N. and Adnan, S. N. A. (2013).
Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema
praesorediosum. International Journal of Nanomedicine, 9(1):
121-127.
36.
Kim, J.
S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J. and Cho, M. H.
(2007). Antimicrobial effects of silver nanoparticles. Nanomedicine:
Nanotechnology, Biology, and Medicine, 3(1): 95-101
37. Salomoni, R., Leo, P. and Rodrigues,
M. F. A. (2015). Antibacterial activity of silver nanoparticles (agnps) in staphylococcus
aureus and cytotoxicity effect in mammalian cells. The Battle Against
Microbial Pathogens: Basic Science, Technological Advances and Educational
Programs, 2015: 851-857.