Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 29 - 38

 

 

 

 

BIOMIMETIC SYNTHESIS OF SILVER NANOPARTICLES USING EXTRACT AND ITS ANTIBACTERIAL PROPERTIES Eleusine indica

 

(Sintesis Biomimetik Nanopartikel Perak Menggunakan Ekstrak Eleusine indica dan Ciri Antibakteria)

 

Ropisah Me1*, Muhammad Hafiz Istamam1, Noor Hidayah Pungot2, Nazlina Ibrahim3, Alice Shanthi4

 

1Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia.

2Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Seremban,

70300 Seremban, Negeri Sembilan, Malaysia.

 

*Corresponding author:  ropisah@uitm.edu.my

 

 

Received: 14 September 2021; Accepted: 18 December 2021; Published: 25 February 2022

 

 

Abstract

The biomimetic method, which relies on natural resources such as plant extracts, bacteria, and fungi, offers an alternative for synthesizing silver nanoparticles (AgNPs). The use of biomimetic method for synthesizing AgNPs have various benefits including cost effectiveness, low toxicity, and suitabiity for biomedical application. This study synthesizes plant mediated nanoparticle using Eleusine indica to determine its antibacterial activity. Eleusine indica methanol extract is treated with 1 mM of silver nitrate at room temperature (25-27 oC ) for 24 hours. The resulting product is characterized using UV-Vis spectroscopy and transmission electron microscope (TEM). UV-Vis absorption spectroscopy displays a strong resonance centered on the surface of AgNPs at approximately 413 nm. Physical appearance of AgNPs as characterized by transmission electron microscopy (TEM) showed formation of AgNPs with average particle size of 20 nm. In the antibacterial activity of the synthesized AgNPs, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays are performed. The plant mediated AgNPs has predicted bacteriocidal activity according to the ratio of MBC to MIC values against selected Gram-positive and Gram-negative bacteria. In this study, plant mediated AgNPs has been successfully synthesized by reduction of silver nitrate with Eleusine indica leaves methanol extract.

 

Keywords: Plant-mediated silver nanoparticles, Eleusine indica, UV-Vis analysis, transmission electron microscope, antibacterial activity

 

Abstrak

Kaedah biomimetik yang bergantung kepada sumber alam seperti ekstrak tumbuhan, bakteria dan kulat, menawarkan alternatif dalam sintesis nanopartikel perak (AgNPs). Penggunaan kaedah biomimetik dalam sintesis AgNPs mempunyai pelbagai kelebihan termasuk keberkesanan kos, ketoksikan yang rendah, dan kesesuaian dalam kegunaan biomedik. Objektif kajian ini adalah untuk mensintesis nanopartikel perak diperantara tumbuhan menggunakan Eleusine indica dan menentukan aktiviti antibakteria. Ekstrak metanol Eleusine indica telah dirawat dengan 1 mM larutan perak nitrat pada suhu bilik (25 - 27 oC) selama 24 jam. Sampel telah dicirikan menggunakan spektroskopi UV-Vis dan mikroskopi transmisi elektron (TEM). Spektroskopi penyerapan UV-Vis menunjukkan resonans berpusat yang kuat atas permukaan AgNPs pada kira-kira 413 nm. Rupabentuk fizikal AgNPs yang dicirikan melalui mikroskopi transmisi elektron (TEM) menunjukkan pembentukan AgNP dengan purata saiz partikel 20 nm. Aktiviti antibakteria nanopartikel perak perantaraan-tumbuhan yang disintesis telah diasai melalui penentuan kepekatan perencatan minimum (MIC) dan kepekatan bakterisidal minimum (MBC). Gabungan nanopartikel perak perantaraan-tumbuhan diramal mempunyai aktiviti bacteriosidal berdasarkan nisbah nilai MBC kepada MIC terhadap bakteria Gram positif dan Gram negatif bakteria. Dalam kajian ini, AgNPs perantaraan-tumbuhan telah berjaya disintesis melalui penurunan perak nitrat dengan ekstrak metanol daun Eleusine indica.

 

Kata kunci: nanopartikel perak perantaraan-tumbuhan, Eleusine indica, analisa UV-Vis, mikroskopi transmisi elektron, aktiviti antibakteria


 


 


Graphical Abstract



References

1.      Logeswari, P., Silambarasan, S. and Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19(3): 311-317.

2.      Safari, J. and Zarnegar, Z. (2014). Advanced drug delivery systems: Nanotechnology of health design a review. Journal of Saudi Chemical Society, 18(2): 85-99.

3.      Rajeshkumar, S. and Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles � A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273: 219-227.

4.      Ahmed, S., Saifullah, Ahmad, M., Swami, B. L. and Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1): 1-7.

5.      Poulose, S., Panda, T., Nair, P. P. and Theodore, T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2): 2038-2049.

6.      Mosaviniya, M., Kikhavani, T., Tanzifi, M., Tavakkoli Yaraki, M., Tajbakhsh, P. and Lajevardi, A. (2019). Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties. Colloids and Interface Science Communications, 33(8): 100211.

7.      Zhao, X., Zhou, L., Riaz Rajoka, M. S., Yan, L., Jiang, C., Shao, D. and Jin, M. (2018). Fungal silver nanoparticles: Synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6): 817-835.

8.      Larayetan, R., Ojemaye, M. O., Okoh, O. O. and Okoh, A. I. (2019). Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy. Journal of Molecular Liquids, 273: 615-625.

9.      Roy, K., Sarkar, C. K. and Ghosh, C. K. (2015). Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Applied Nanoscience (Switzerland), 5(8): 945-951.

10.   Shehzad, A., Qureshi, M., Jabeen, S., Ahmad, R., Alabdalall, A. H., Aljafary, M. A. and Al-Suhaimi, E. (2018). Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ, 2018(12): 1-15.

11.   Lalitha, A., Subbaiya, R. and Ponmurugan, P. (2013). Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. International Journal of Current Microbiology and Applied Sciences, 2(6): 228-235.

12.   Abdul, A. B., Al-Zubairi, A. S., Abdelwahab, S. I., Peng, C. Y., Mohan, S. and Elhassan, M. M. (2011). Eleucine indica possesses antioxidant, antibacterial and cytotoxic properties. Evidence-Based Complementary and Alternative Medicine, 2011: 965370.

13.   Iberahim, R., Nor, N. S. M., Yaacob, W. A. and Ibrahim, N. (2018). Eleusine indica inhibits early and late phases of herpes simplex virus type 1 replication cycle and reduces progeny infectivity. Sains Malaysiana, 47(7): 1431-1438.

14.   Devi, M., Devi, S., Sharma, V., Rana, N., Bhatia, R. K. and Bhatt, A. K. (2020). Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. Journal of Traditional and Complementary Medicine, 10(2): 158-165.

15.   Lee, S. H. and Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20(4): 1-23.

16.   Din, L. B., Mie, R., Samsudin, M. W., Ahmad, A. and Ibrahim, N. (2015). Biomimetic synthesis of silver nanoparticles using the Lichen ramalina dumeticola and the antibacterial activity. Malaysian Journal of Analytical Sciences, 19(2): 369-376.

17.   Wang, W., Li, N., Luo, M., Zu, Y. and Efferth, T. (2012). Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules, 17(3): 2704-2713.

18.   Zarai, Z., Kadri, A., Ben Chobba, I., Ben Mansour, R., Bekir, A., Mejdoub, H. and Gharsallah, N. (2011). The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids in Health and Disease, 10(1): 161.

19.   Ahmad, Aftab, Husain, A., Mujeeb, M., Khan, S. A., Alhadrami, H. A. A., & Bhandari, A. (2015). Quantification of total phenol, flavonoid content and pharmacognostical evaluation including HPTLC fingerprinting for the standardization of Piper nigrum Linn fruits. Asian Pacific Journal of Tropical Biomedicine, 5(2): 101-107.

20.   Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H. and Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality, 2019: 8178294.

21.   Gupta, M., Thakur, S., Sharma, A. and Gupta, S. (2013). Qualitative and quantitative analysis of phytochemicals and pharmacological value of some dye yielding medicinal plants. Oriental Journal of Chemistry, 29(2): 475-481.

22.   Sahu, N., Soni, D., Chandrashekhar, B., Satpute, D. B., Saravanadevi, S., Sarangi, B. K. and Pandey, R. A. (2016). Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. International Nano Letters, 6(3): 173-181.

23.   Iberahim, R., Yaacob, W. A. and Ibrahim, N. (2015). Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau). AIP Conference Proceedings, 1678: 1-5.

24.   Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004). Biological synthesis of triangular gold nanoprisms. Nature Materials, 3(7): 482-488.

25.   Kumar R, Ghoshal G, J. A. and G. M. (2017). Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) plants extract: Exploring its antimicrobial and catalytic activities. Journal of Nanomedicine & Nanotechnology, 08(04): 2157-7439

26.   Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A. and Choi, I. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Scientific Reports, 2015(6): 1-10.

27.   Zhang, X. F., Liu, Z. G., Shen, W. and Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9): 1534.

28.   Kerker, M. (1985). The optics of colloidal silver: something old and something new. Journal of Colloid and Interface Science, 105(2): 297-314.

29.   Singh, K., Naidoo, Y., Mocktar, C. and Baijnath, H. (2018). Biosynthesis of silver nanoparticles using Plumbago auriculata leaf and calyx extracts and evaluation of their antimicrobial activities. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3): 035004.

30.   Gomathi, M., Rajkumar, P. V., Prakasam, A. and Ravichandran, K. (2017). Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technologies, 3(3): 280-284.

31.   Narchin, F., Larijani, K., Rustaiyan, A., Ebrahimi, S. N. and Tafvizi, F. (2018). Phytochemical synthesis of silver nanoparticles by two techniques using Saturaja rechengri Jamzad extract: Identifying and comparing in vitro anti-proliferative activities. Advanced Pharmaceutical Bulletin, 8(2): 235-244.

32.   Ramesh, A. V., Devi, D. R., Battu, G. R. and Basavaiah, K. (2018). A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. South African Journal of Chemical Engineering, 26(7): 25-34.

33.   Jain, S. and Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports, 7(1): 1-13.

34.   Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A. and Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9): 1-25.

35.   Mie, R., Samsudin, M. W., Din, L. B., Ahmad, A., Ibrahim, N. and Adnan, S. N. A. (2013). Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. International Journal of Nanomedicine, 9(1): 121-127.

36.   Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J. and Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3(1): 95-101

37.   Salomoni, R., Leo, P. and Rodrigues, M. F. A. (2015). Antibacterial activity of silver nanoparticles (agnps) in staphylococcus aureus and cytotoxicity effect in mammalian cells. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, 2015: 851-857.