Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 16 - 28
ENHANCING TRYPSIN RECOVERY
USING POLYMER-BASED AFFINITY ULTRAFILTRATION MEMBRANE: EFFECTS OF ELUTION pH
AND DISPLACING SALTS
(Meningkatkan Perolehan
Tripsin menggunakan Membran Afiniti Ultrafiltrasi berasaskan Polimer: Kesan pH
Pengeluatan dan Penggantian Garam)
Norhafiza Ilyana Yatim1,
Sofiah Hamzah2*, Maslinda Alias2, Nora'aini Ali1,2,
Marinah Mohd Ariffin3, Abdul Wahab Mohammad4
1Higher Institution Centre of
Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries
2Faculty of Ocean Engineering
Technology and Informatics
3Faculty of Science and Marine Environment
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
4Faculty of Engineering and
Built Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
*Corresponding author: sofiah@umt.edu.my
Received: 27 August 2021; Accepted: 11 January 2022;
Published: 25 February 2022
Abstract
Downstream processing of
trypsin synthesis, which includes purification, is a major issue due to high
complexity of the bio-suspension itself and the stress sensitivity of the
desired target molecules. Therefore, an affinity membrane was fabricated in
this study using polysulfone polymers and modified by chitosan to enhance
biofouling resistance. To determine the optimum conditions for maximum trypsin
adsorption and desorption during affinity ultrafiltration process, elution
buffers and pH were investigated using various types of displacing salts
(potassium chloride, KCl; sodium chloride, NaCl; magnesium chloride, MgCl2;
calcium chloride, CaCl2) and elution pH (pH 4, 5, 6, 7, 8). The
result showed that the buffer using KCl was identified as the best displacing
salt as it recovered the highest trypsin of 78.84%, with a purification fold of
1.31. Trypsin recovery increased to 92% and 1.20 purification fold when the
experiments were at pH 8. These buffers dissolved the interference chemical
bonds comprising trypsin-trypsin inhibitor interactions and restore target
trypsin to the permeate stream in an active state for maximum trypsin recovery.
The information provided in this study represents a possible future avenue for
developing an affinity membrane system.
Keywords: affinity, ultrafiltration, trypsin, elution pH,
displacing salt creator
Abstrak
Pemprosesan hiliran sintesis tripsin, yang
termasuk penulinan, adalah isu utama kerana kerumitan bio-pengampaian itu
sendiri dan kepekaan tekanan molekul sasaran yang dikehendaki. Oleh itu,
membran afiniti telah direka dalam kajian ini menggunakan polimer polisulfon
dan diubahsuai oleh kitosan untuk meningkatkan rintangan bio-kotoran. Untuk
menentukan keadaan optimum untuk penjerapan tripsin maksimum dan penyahjerapan
semasa proses ultrafiltrasi perkaitan, penimbal pengeluat dan pH telah disiasat
menggunakan pelbagai jenis garam
pengganti (kalium klorida, KCl; natrium
klorida, NaCl; magnesium klorida, MgCl2; kalsium klorida, CaCl2)
dan pH pengeluatan (pH 4, 5, 6, 7, 8). Hasilnya menunjukkan bahawa penimbal
menggunakan KCl dikenal pasti sebagai garam pengganti terbaik kerana ia
perolehan tripsin tertinggi sebanyak 78.84%, dengan lipatan penulenan 1.31.
Perolehan tripsin meningkat kepada 92% dan 1.20 lipatan penulenan apabila
eksperimen berada di pH 8. Penimbal ini telah melarutkan ikatan kimia yang
menganggu yang terdiri daripada interaksi perencat tripsin-tripsin dan
memulihkan tripsin sasaran ke aliran menelap dalam keadaan aktif untuk
perolehan maksimum tripsin. Maklumat yang disediakan dalam kajian ini mewakili
jalan masa depan yang mungkin untuk
membangunkan sistem membran afiniti.
Kata kunci: afiniti,
ultrafiltrasi, tripsin, pH pengeluat, pencipta pengganti garam
Graphical Abstract
References
1.
Fane, A. G. and Radovich,
J. M. (2020). Membrane systems. Separation processes in biotechnology.
CRC Press: pp 209-262.
2.
Kielkopf, C. L., Bauer, W. and Urbatsch, I. L. (2021). Considerations
for membrane protein purification. Cold Spring Harbor Protocols, 2021(1):
102285.
3.
Bayramoglu, G., Ozalp, V. C., Altintas, B. and Arica, M. Y. (2014).
Preparation and characterization of mixed-mode magnetic adsorbent with
p-amino-benzamidine ligand: Operated in a magnetically stabilized fluidized bed
reactor for purification of trypsin from bovine pancreas. Process
Biochemistry, 49(3): 520-528.
4.
Ghosh, R. (2016). Bioseparations using integrated membrane
processes. Integrated Membrane Systems and Processes: pp 23-34.
5.
Khangembam, B. K. and Chakrabarti, R. (2015). Trypsin from the digestive
system of carp Cirrhinus mrigala: Purification, characterization and its
potential application. Food Chemistry, 175: 386-394.
6.
Zamani, A. and Benjakul, S. (2016). Trypsin from unicorn leatherjacket (Aluterus
monoceros) pyloric caeca: Purification and its use for preparation of fish
protein hydrolysate with antioxidative activity. Journal of the Science
of Food and Agriculture, 96(3): 962-969.
7.
Sun, J., Yang, L., Jiang,
M. and Xu, B. (2017). Stability and activity of immobilized trypsin on
carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with
carbodiimide and glutaraldehyde. Journal of Chromatography B, 1054:
57-63.
8.
Mondal, K. and Gupta, M.
N. 2006. The affinity concept in bioseparation: Evolving paradigms and
expanding range of applications. Biomolecular Engineering, 23: 59-76.
9.
Poonsin, T., Simpson, B.
K., Benjakul, S., Visessanguan, W. and Klomklao, S. (2017). Albacore tuna (Thunnus
alalunga) spleen trypsin partitioning in an aqueous two-phase system and
its hydrolytic pattern on Pacific white shrimp (Litopenaeus vannamei)
shells. International Journal of Food Properties, 20(10): 2409-2422.
10.
Mukherjee, S., Roy, D.
and Bhattacharya, P. (2008). Comparative performance study of polyethersulfone
and polysulfone membranes for trypsin isolation from goat pancreas using
affinity ultrafiltration. Separation and Purification Technology, 60(3):
345-351.
11.
Braia, M., Loureiro, D., Tubio,
G., Lienqueo, M. E. and Romanini, D. (2017). Interaction between trypsin and
alginate: An ITC and DLS approach to the formation of insoluble complexes.
Colloids and Surfaces B: Biointerfaces, 155: 507-511.
12.
Vatić, S.,
Mirković, N., Milosević, J. R., Jovčić, B. and
Polović, N. Đ. (2021). Trypsin activity and freeze-thaw stability in
the presence of ions and non-ionic surfactants. Journal of bioscience and
bioengineering, 131(3): 234-240.
13.
Lemma, S. M., Boi, C. and
Carbonell, R. G. (2021). Nonwoven Ion-Exchange Membranes with High Protein
Binding Capacity for Bioseparations. Membranes, 11(3): 181.
14.
Soper, A. S. and Aird, S.
D. (2007). Elution of tightly bound solutes from concanavalin A Sepharose:
Factors affecting the desorption of cottonmouth venom glycoproteins. Journal
of Chromatography A, 1154(1-2): 308-318.
15.
Wang, L., Shen, S., He,
X., Yun, J., Yao, K. and Yao, S.-J. (2008). Adsorption and elution behaviors of
bovine serum albumin in metal-chelated affinity cryogel beds. Biochemical
Engineering Journal. 42: 237-242.
16.
Malmquist, G. and
Lundell, N. 1992. Characterization of the influence of displacing salts on
retention in gradient elution ion-exchange chromatography of proteins and
peptides. Journal of Chromatography A,
627: 107-124.
17.
Ghosh, R., Wan, Y. H. and
Cui, Z. F. (2003). Parameter scanning ultrafiltration: rapid optimization of
protein separation. Biotechnology Bioengineering. 81: 673-682.
18.
Ghosh, R. and Cui, Z. F. (2000). Protein
purification by ultrafiltration with pre-treated membrane. Journal of
Membrane Science, 167: 47-53.
19.
Jellouli, K., Bougatef,
A., Daassi, D., Balti, R., Barkia, A. and Nasri, M. (2009). New alkaline
trypsin from the intestine of Grey triggerfish (Balistes capriscus) with high
activity at low temperature: Purification and characterisation. Food
Chemistry, 116: 644-650.
20.
Guo, W. and Ruckenstein,
E. (2002). Crosslinked mercerized cellulose membranes for the affinity
chromatography of papain inhibitors. Journal of Membrane Science, 197: 53-62.
21.
Chen, T. -X., Nie, H.
-L., Li, S. -B., Branford-White, C., Su, S. -N. and Zhu, L. -M. (2009).
Comparison: Adsorption of papain using immobilized dye ligands on affinity
membranes. Colloids and Surfaces B: Biointerfaces, 72: 25-31.
22.
Boributh, S., Chanachai ,
A. and Jiraratananon, R. (2009). Modification of PVDF membrane by
chitosan solution. Journal of Membrane
Science, 342: 97-104.
23.
Varghese, J. G., Kittur,
A. A., Rachipudi, P. S. and Kariduraganavar, M. Y. (2010). Synthesis,
characterization and pervaporation performance of chitosan-g-polyaniline
membranes for the dehydration of isopropanol. Journal of Membrane Science, 364: 111-121.
24.
Mansur, H. S., Sadahira,
C. M., Souza, A. N. and Mansur, A. A. P. (2008). FTIR spectroscopy
characterization of poly (vinyl alcohol) hydrogel with different hydrolysis
degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering
C, 28: 539-548.
25.
Geng, L., Li, N., Xiang,
M., Wen, X., Xu, D., Zhao, F. and Li, K. (2003). The covalent immobilization of trypsin at the
galleries of layered γ-zirconium phosphate. Colloids and Surfaces B: Biointerfaces, 30: 99-109.
26.
Firer, M. A. (2001).
Efficient elution of functional proteins in affinity chromatography. Journal of Biochemical and Biophysical
Methods, 49: 433-442.
27.
Lee, W. -C., Chen, C. -H.
(2001). Predicting the elution behavior of proteins in affinity chromatography
on non-porous particles. Journal of Biochemical and Biophysical Methods,
49: 63-82.
28.
Wu, J., Luan, M. and
Zhao, J. (2006). Trypsin immobilization by direct adsorption on metal ion
chelated macroporous chitosan-silica gel beads. International Journal of Biological Macromolecules, 39: 185-191.
29.
Dudev, T. and Lim, C.
(2014). Competition among metal ions for protein binding sites: determinants of
metal ion selectivity in proteins. Chemical reviews, 114(1): 538-556.
30.
de Gonzalo, G., and
Lavandera, I. (Eds.). (2021). Biocatalysis for Practitioners: Techniques,
reactions and applications. John Wiley & Sons.
31.
Kishimura, H. and
Hayashi, K. (2002). Isolation and characteristics of trypsin from pyloric ceca
of the starfish Asterina pectinifera. Comparative Biochemistry and
Physiology Part B. Biochemistry and Molecular Biology, 132: 485-490.
32.
Klomklao, S., Benjakul,
S., and Visessanguan, W. (2004) Comparative studies on proteolytic activity of
spleen extracts from three tuna species commonly used in Thailand. Journal
of Food Biochemistry, 28: 355-372.
33.
Li, C., Han, Y., Gao, L., Zhang, Y. and Simpson, B. K. (2021).
Development of a novel trypsin affinity material using a recombinant buckwheat
trypsin inhibitor mutant with enhanced activity. LWT, 146,
111382.
34.
Aravind, U. K., Mathew,
J. and Aravindakumar, C. T. (2007). Transport studies of BSA, lysozyme and
ovalbumin through chitosan/polystyrene sulfonate multilayer membrane. Journal of Membrane Science, 299: 146-155.
35.
Purkait, M. K., Sinha, M. K., Mondal, P. and Singh, R. (2018).
Introduction to membranes. Interface science and technology, Elsevier,
25: 1-37.
36.
Gustafsson, H., Thorn, C.
and Holmberg, K. (2011). A comparison of lipase and trypsin encapsulated in
mesoporous materials with varying pore sizes and pH conditions. Colloids and Surfaces B: Biointerfaces, 87: 464-471.
37.
Chen, N., Zou, J., Wang,
S., Ye, Y., Huang, Y., Gadda, G. and Yang, J. (2009). Designing protease
sensors for real-time imaging of trypsin activation in pancreatic cancer cells.
Biochemistry, 48: 3519
38.
Li, X., Zhang, Y. and Fu,
X. 2004. Adsorption of glutamicum onto polysulphone membrane. Separation and
Purification Technology, 37:
187-198.
39.
Zhou, L., Liao, T., Liu,
J., Zou, L., Liu, C. and Liu, W. (2019). Unfolding and inhibition of
polyphenoloxidase induced by acidic pH and mild thermal treatment. Food and
Bioprocess Technology, 12(11): 1907-1916.
40.
Kim, J. S. and Lee, S.
(2019). Immobilization of trypsin from porcine pancreas onto chitosan nonwoven
by covalent bonding. Polymers, 11: 1462.