Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 16 - 28

 

 

 

 

ENHANCING TRYPSIN RECOVERY USING POLYMER-BASED AFFINITY ULTRAFILTRATION MEMBRANE: EFFECTS OF ELUTION pH AND DISPLACING SALTS

 

(Meningkatkan Perolehan Tripsin menggunakan Membran Afiniti Ultrafiltrasi berasaskan Polimer: Kesan pH Pengeluatan dan Penggantian Garam)

 

Norhafiza Ilyana Yatim1, Sofiah Hamzah2*, Maslinda Alias2, Nora'aini Ali1,2, Marinah Mohd Ariffin3, Abdul Wahab Mohammad4

 

1Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries

2Faculty of Ocean Engineering Technology and Informatics

3Faculty of Science and Marine Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

4Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: sofiah@umt.edu.my

 

 

Received: 27 August 2021; Accepted: 11 January 2022; Published: 25 February 2022

 

 

Abstract

Downstream processing of trypsin synthesis, which includes purification, is a major issue due to high complexity of the bio-suspension itself and the stress sensitivity of the desired target molecules. Therefore, an affinity membrane was fabricated in this study using polysulfone polymers and modified by chitosan to enhance biofouling resistance. To determine the optimum conditions for maximum trypsin adsorption and desorption during affinity ultrafiltration process, elution buffers and pH were investigated using various types of displacing salts (potassium chloride, KCl; sodium chloride, NaCl; magnesium chloride, MgCl2; calcium chloride, CaCl2) and elution pH (pH 4, 5, 6, 7, 8). The result showed that the buffer using KCl was identified as the best displacing salt as it recovered the highest trypsin of 78.84%, with a purification fold of 1.31. Trypsin recovery increased to 92% and 1.20 purification fold when the experiments were at pH 8. These buffers dissolved the interference chemical bonds comprising trypsin-trypsin inhibitor interactions and restore target trypsin to the permeate stream in an active state for maximum trypsin recovery. The information provided in this study represents a possible future avenue for developing an affinity membrane system.

 

Keywords: affinity, ultrafiltration, trypsin, elution pH, displacing salt creator

 

Abstrak

Pemprosesan hiliran sintesis tripsin, yang termasuk penulinan, adalah isu utama kerana kerumitan bio-pengampaian itu sendiri dan kepekaan tekanan molekul sasaran yang dikehendaki. Oleh itu, membran afiniti telah direka dalam kajian ini menggunakan polimer polisulfon dan diubahsuai oleh kitosan untuk meningkatkan rintangan bio-kotoran. Untuk menentukan keadaan optimum untuk penjerapan tripsin maksimum dan penyahjerapan semasa proses ultrafiltrasi perkaitan, penimbal pengeluat dan pH telah disiasat menggunakan pelbagai jenis garam pengganti (kalium klorida, KCl; natrium klorida, NaCl; magnesium klorida, MgCl2; kalsium klorida, CaCl2) dan pH pengeluatan (pH 4, 5, 6, 7, 8). Hasilnya menunjukkan bahawa penimbal menggunakan KCl dikenal pasti sebagai garam pengganti terbaik kerana ia perolehan tripsin tertinggi sebanyak 78.84%, dengan lipatan penulenan 1.31. Perolehan tripsin meningkat kepada 92% dan 1.20 lipatan penulenan apabila eksperimen berada di pH 8. Penimbal ini telah melarutkan ikatan kimia yang menganggu yang terdiri daripada interaksi perencat tripsin-tripsin dan memulihkan tripsin sasaran ke aliran menelap dalam keadaan aktif untuk perolehan maksimum tripsin. Maklumat yang disediakan dalam kajian ini mewakili jalan masa depan yang mungkin untuk membangunkan sistem membran afiniti.

 

Kata kunci: afiniti, ultrafiltrasi, tripsin, pH pengeluat, pencipta pengganti garam

 

 


Graphical Abstract




References

1.      Fane, A. G. and Radovich, J. M. (2020). Membrane systems. Separation processes in biotechnology. CRC Press: pp 209-262.

2.      Kielkopf, C. L., Bauer, W. and Urbatsch, I. L. (2021). Considerations for membrane protein purification. Cold Spring Harbor Protocols, 2021(1): 102285.

3.      Bayramoglu, G., Ozalp, V. C., Altintas, B. and Arica, M. Y. (2014). Preparation and characterization of mixed-mode magnetic adsorbent with p-amino-benzamidine ligand: Operated in a magnetically stabilized fluidized bed reactor for purification of trypsin from bovine pancreas. Process Biochemistry, 49(3): 520-528.

4.      Ghosh, R. (2016). Bioseparations using integrated membrane processes. Integrated Membrane Systems and Processes: pp 23-34.

5.      Khangembam, B. K. and Chakrabarti, R. (2015). Trypsin from the digestive system of carp Cirrhinus mrigala: Purification, characterization and its potential application. Food Chemistry, 175: 386-394.

6.      Zamani, A. and Benjakul, S. (2016). Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: Purification and its use for preparation of fish protein hydrolysate with antioxidative activity. Journal of the Science of Food and Agriculture, 96(3): 962-969.

7.      Sun, J., Yang, L., Jiang, M. and Xu, B. (2017). Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde. Journal of Chromatography B, 1054: 57-63.

8.      Mondal, K. and Gupta, M. N. 2006. The affinity concept in bioseparation: Evolving paradigms and expanding range of applications. Biomolecular Engineering, 23: 59-76.

9.      Poonsin, T., Simpson, B. K., Benjakul, S., Visessanguan, W. and Klomklao, S. (2017). Albacore tuna (Thunnus alalunga) spleen trypsin partitioning in an aqueous two-phase system and its hydrolytic pattern on Pacific white shrimp (Litopenaeus vannamei) shells. International Journal of Food Properties, 20(10): 2409-2422.

10.   Mukherjee, S., Roy, D. and Bhattacharya, P. (2008). Comparative performance study of polyethersulfone and polysulfone membranes for trypsin isolation from goat pancreas using affinity ultrafiltration. Separation and Purification Technology, 60(3): 345-351.

11.   Braia, M., Loureiro, D., Tubio, G., Lienqueo, M. E. and Romanini, D. (2017). Interaction between trypsin and alginate: An ITC and DLS approach to the formation of insoluble complexes. Colloids and Surfaces B: Biointerfaces, 155: 507-511.

12.   Vatić, S., Mirković, N., Milosević, J. R., Jovčić, B. and Polović, N. Đ. (2021). Trypsin activity and freeze-thaw stability in the presence of ions and non-ionic surfactants. Journal of bioscience and bioengineering, 131(3): 234-240.

13.   Lemma, S. M., Boi, C. and Carbonell, R. G. (2021). Nonwoven Ion-Exchange Membranes with High Protein Binding Capacity for Bioseparations. Membranes, 11(3): 181.

14.   Soper, A. S. and Aird, S. D. (2007). Elution of tightly bound solutes from concanavalin A Sepharose: Factors affecting the desorption of cottonmouth venom glycoproteins. Journal of Chromatography A, 1154(1-2): 308-318.

15.   Wang, L., Shen, S., He, X., Yun, J., Yao, K. and Yao, S.-J. (2008). Adsorption and elution behaviors of bovine serum albumin in metal-chelated affinity cryogel beds. Biochemical Engineering Journal. 42: 237-242.

16.   Malmquist, G. and Lundell, N. 1992. Characterization of the influence of displacing salts on retention in gradient elution ion-exchange chromatography of proteins and peptides. Journal of Chromatography A, 627: 107-124.

17.   Ghosh, R., Wan, Y. H. and Cui, Z. F. (2003). Parameter scanning ultrafiltration: rapid optimization of protein separation. Biotechnology Bioengineering. 81: 673-682.

18.   Ghosh, R. and Cui, Z. F. (2000). Protein purification by ultrafiltration with pre-treated membrane. Journal of Membrane Science, 167: 47-53.

19.   Jellouli, K., Bougatef, A., Daassi, D., Balti, R., Barkia, A. and Nasri, M. (2009). New alkaline trypsin from the intestine of Grey triggerfish (Balistes capriscus) with high activity at low temperature: Purification and characterisation. Food Chemistry, 116: 644-650.

20.   Guo, W. and Ruckenstein, E. (2002). Crosslinked mercerized cellulose membranes for the affinity chromatography of papain inhibitors. Journal of Membrane Science, 197: 53-62.

21.   Chen, T. -X., Nie, H. -L., Li, S. -B., Branford-White, C., Su, S. -N. and Zhu, L. -M. (2009). Comparison: Adsorption of papain using immobilized dye ligands on affinity membranes. Colloids and Surfaces B: Biointerfaces, 72: 25-31.

22.   Boributh, S., Chanachai , A. and Jiraratananon, R. (2009). Modification of PVDF membrane by chitosan solution. Journal of Membrane Science, 342: 97-104.

23.   Varghese, J. G., Kittur, A. A., Rachipudi, P. S. and Kariduraganavar, M. Y. (2010). Synthesis, characterization and pervaporation performance of chitosan-g-polyaniline membranes for the dehydration of isopropanol. Journal of Membrane Science, 364: 111-121.

24.   Mansur, H. S., Sadahira, C. M., Souza, A. N. and Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28: 539-548.

25.   Geng, L., Li, N., Xiang, M., Wen, X., Xu, D., Zhao, F. and Li, K. (2003). The covalent immobilization of trypsin at the galleries of layered γ-zirconium phosphate. Colloids and Surfaces B: Biointerfaces, 30: 99-109.

26.   Firer, M. A. (2001). Efficient elution of functional proteins in affinity chromatography. Journal of Biochemical and Biophysical Methods, 49: 433-442.

27.   Lee, W. -C., Chen, C. -H. (2001). Predicting the elution behavior of proteins in affinity chromatography on non-porous particles. Journal of Biochemical and Biophysical Methods, 49: 63-82.

28.   Wu, J., Luan, M. and Zhao, J. (2006). Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. International Journal of Biological Macromolecules, 39: 185-191.

29.   Dudev, T. and Lim, C. (2014). Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chemical reviews, 114(1): 538-556.

30.   de Gonzalo, G., and Lavandera, I. (Eds.). (2021). Biocatalysis for Practitioners: Techniques, reactions and applications. John Wiley & Sons.

31.   Kishimura, H. and Hayashi, K. (2002). Isolation and characteristics of trypsin from pyloric ceca of the starfish Asterina pectinifera. Comparative Biochemistry and Physiology Part B. Biochemistry and Molecular Biology, 132: 485-490.

32.   Klomklao, S., Benjakul, S., and Visessanguan, W. (2004) Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. Journal of Food Biochemistry, 28: 355-372.

33.   Li, C., Han, Y., Gao, L., Zhang, Y. and Simpson, B. K. (2021). Development of a novel trypsin affinity material using a recombinant buckwheat trypsin inhibitor mutant with enhanced activity. LWT, 146, 111382.

34.   Aravind, U. K., Mathew, J. and Aravindakumar, C. T. (2007). Transport studies of BSA, lysozyme and ovalbumin through chitosan/polystyrene sulfonate multilayer membrane. Journal of Membrane Science, 299: 146-155.

35.   Purkait, M. K., Sinha, M. K., Mondal, P. and Singh, R. (2018). Introduction to membranes. Interface science and technology, Elsevier, 25: 1-37.

36.   Gustafsson, H., Thorn, C. and Holmberg, K. (2011). A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Colloids and Surfaces B: Biointerfaces, 87: 464-471.

37.   Chen, N., Zou, J., Wang, S., Ye, Y., Huang, Y., Gadda, G. and Yang, J. (2009). Designing protease sensors for real-time imaging of trypsin activation in pancreatic cancer cells. Biochemistry, 48: 3519

38.   Li, X., Zhang, Y. and Fu, X. 2004. Adsorption of glutamicum onto polysulphone membrane. Separation and Purification Technology, 37: 187-198.

39.   Zhou, L., Liao, T., Liu, J., Zou, L., Liu, C. and Liu, W. (2019). Unfolding and inhibition of polyphenoloxidase induced by acidic pH and mild thermal treatment. Food and Bioprocess Technology, 12(11): 1907-1916.

40.   Kim, J. S. and Lee, S. (2019). Immobilization of trypsin from porcine pancreas onto chitosan nonwoven by covalent bonding. Polymers, 11: 1462.