Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 8 - 15

 

 

 

 


INSIGHT MECHANISTIC STUDY OF SAMARIUM OXIDE BASED CATALYST IN METHANATION REACTION

 

(Kajian Mendalam Mekanistik Pemangkin Berasaskan Samarium Oksida dalam Tindak Balas Metanasi)

 

Salmiah Jamal Mat Rosid1*, Susilawati Toemen2, Wan Azelee Wan Abu Bakar2, Ahmad Zamani Ab Halim3, Sarina Mat Rosid4

 

1Unisza Science and Medicine Foundation Centre,

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia

2Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

3Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

4Advanced Membrane Technology Research Centre (AMTEC),

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

 

*Corresponding author:  salmiahjamal@unisza.edu.my

 

 

Received:  8 September 2021; Accepted: 1 January 2022; Published:  25 February 2022

 

 

Abstract

An understanding of the mechanism of chemical reactions is needed to optimize the reaction process and improve performance. The adsorption of reactant molecules, formation of reaction intermediates, and finally the distribution of products depend on the composition and surface structure of the catalyst. This research work deployed Fourier transform infrared (FTIR), high performance liquid chromatography (HPLC), and gas chromatography (GC) to identify the mechanism of Sm/Mn/Ru (60:35:5)/Al2O3 catalyst. The envisioned methanation reaction initially follows the Langmuir Hinselwood mechanism with the adsorption of CO2 and H2 gases on the catalyst surface. From the gaseous product, only methane peak was observed. Meanwhile, from the liquid product, methanol peak is observed at retention time 20 mins which accordance with standard methanol. Therefore, the final products acquired from the methanation reaction ofSm/Mn/Ru (60:35:5)/Al2O3 catalyst are CH4, CH3OH and H2O.

 

Keywords:  methanation, hydrogenation, samarium oxide, catalyst, mechanism


 

Abstrak

Pemahaman kepada mekanisme tindak balas kimia adalah perlu untuk mengoptimumkan proses tindak balas dan meningkatkan prestasi. Penjerapan molekul reaktan, pembentukan perantaraan tindak balas, dan taburan produk pada asasnya bergantung kepada komposisi dan struktur permukaan pemangkin. Kerja penyelidikan ini menggunakan inframerah transformasi Fourier (FTIR), kromatografi cecair prestasi tinggi (HPLC), dan kromatografi gas (GC) untuk mengenal pasti mekanisma mangkin Sm/Mn/Ru (60:35:5)/Al2O3. Tindak balas metana yang dipostulatkan adalah mengikut mekanisma Langmuir Hinselwood yang pada mulanya melibatkan penjerapan gas CO2 dan H2 pada permukaan mangkin. Daripada produk gas, hanya puncak metana diperhatikan. Manakala, daripada produk cecair, puncak metanol diperhatikan pada minit ke 20 masa tahanan mengikut larutan piawai metanol. Oleh itu, produk akhir yang diperoleh daripada tindak balas metana mangkin Sm/Mn/Ru (60:35:5)/Al2O3 ialah CH4, CH3OH dan H2O.

 

Kata kunci:  metanasi, penghidrogenan, samarium oksida, pemangkin, mekanisma

 

 


Graphical Abstract




References

1.      Asif Iqbal, M. M., Toemen, S., Abu bakar, W. A. W., Razak, F. I. A., Rosid, S. J. M. and Azelee, N. I. W. (2020). Catalytic methanation over nanoparticle heterostructure of Ru/Fe/Ce/γ-Al2O3 catalyst: Performance and characterization, Renewable Energy, 162: 513-524,

2.      Rosid, S. J. M., Toemen, S., Iqbal, M. M. A., Bakar, W. A. W. A., Mokhtar, W. N. A. W. and Aziz, M. M. A. (2019). Overview performance of lanthanide oxide catalysts in methanation reaction for natural gas production. Environmental Science and Pollution Research, 26(36): 36124-36140.

3.      Hu, D., Gao, J., Ping, Y., Jia, L., Gunawan, P., Zhong, Z., Xu, G., Gu, F. and Su, F. (2012). Enhanced Investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Industrial & Engineering Chemistry Research, 51: 4875-4886.

4.      Panagiotopoulou, P., Kondarides, D. I. and Verykios, X. E. (2008). Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance. Applied Catalysis A: General, 344(1-2): 45-54.

5.      Erdohelyi, A. (2021). Catalytic reaction of carbon dioxide with methane on supported noble metal catalysts. Catalysts, 11: 159.

6.      Wang, X., Hong, Y., Shi, H., & Szanyi, J. (2016). Kinetic modeling and transient DRIFTS�MS studies of CO2 methanation over Ru/Al2O3 catalysts. Journal of Catalysis, 343:185-195.

7.      Fisher I.A. and Bell A.T. (1996). A comparative study of Co and CO2 hydrogenation over Rh/SiO2. Journal of Catalysis, 162: 54-65.

8.      Marc J. Antoine Beuls, Patricio R. (2010). Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalyst Today, 157: 462-466.

9.      Gabor A. S. and Yimin L. (2010). Major success of theory and experiment-combined studies in surface chemistry and heterogeneous catalysis. Top Catalyst, 53: 311-325.

10.   Marwood, M., Doepper, R. and Renken, A. (1997). In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General. 151: 223-246.

11.   Sharma, S., Hu, Z., Zhang, P., McFarland, E. W. and Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278: 297-309.

12.   Solymosi, F., Erdehelyi, A. and Bansagi, T. (1981). Methanation of CO2 on supported rhodium catalyst. Journal of Catalysis, 68: 371-382.

13.   Zamani, A. H., Shohaimi, N. A. M., Rosid, S. J. M., Abdullah, N. H. and Shukri, N. M. (2019). Enhanced low temperature reaction for the CO2 methanation over Ru promoted Cu/Mn on alumina support catalyst using double reactor system.Journal of the Taiwan Institute of Chemical Engineers, 96: 400-408.

14.   Rosid, S. J.M., Abu Bakar, W.A.W., Toemen, S., Yusoff, N. M., Azid, A. and Mokhtar, W. N. A.W. (2019). Investigation of active species in methanation reaction over cerium based loading. Malaysian Journal of Fundamental and Applied Sciences, 2018: 319-323.

15.   Li, C., Sakata, Y., Arai, T., Domen, K. and Maruya, K. (1989). Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier- transform infrared spectroscopy. Journal of Chemical Society: Faraday Transaction. 85(4): 929-943.

16.   Stevens, R. W., Siriwardane, R. V and Logan, J. (2008). In situ Fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energy & Fuels. 22(12): 3070-3079.

17.   Narain, K., Yazdani, T., Bhat, M. M. and Yunus M. (2012). Effect on physico-chemical and structural properties of soil emended with distillery effluent and ameliorated by cropping two cereal plant spp. Environmental Earth Sciences, 66: 977-984.

18.   Haldor Topsoe A/S, (2005). Methanation of CO over nickel mechanism and kinetics at high H2/Co ratios. Journal Physical Chemistry B, 109(6): 2432-2438.