Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 8 - 15
INSIGHT MECHANISTIC STUDY OF
SAMARIUM OXIDE BASED CATALYST IN METHANATION
REACTION
(Kajian Mendalam Mekanistik
Pemangkin Berasaskan Samarium Oksida dalam Tindak Balas Metanasi)
Salmiah Jamal Mat Rosid1*,
Susilawati Toemen2, Wan Azelee Wan Abu Bakar2, Ahmad Zamani
Ab Halim3, Sarina Mat Rosid4
1Unisza Science and Medicine
Foundation Centre,
Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300
Kuala Nerus, Terengganu, Malaysia
2Department of Chemistry,
Faculty of Science,
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,
Malaysia
3Faculty of Industrial Sciences & Technology,
Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang,
Malaysia
4Advanced Membrane Technology
Research Centre (AMTEC),
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,
Malaysia
*Corresponding author: salmiahjamal@unisza.edu.my
Received: 8 September 2021; Accepted: 1 January 2022;
Published: 25 February 2022
Abstract
An understanding of the
mechanism of chemical reactions is needed to optimize the reaction process and
improve performance. The adsorption of reactant molecules, formation of
reaction intermediates, and finally the distribution of products depend on the
composition and surface structure of the catalyst. This research work deployed
Fourier transform infrared (FTIR), high performance liquid chromatography
(HPLC), and gas chromatography (GC) to identify the mechanism of Sm/Mn/Ru
(60:35:5)/Al2O3 catalyst. The envisioned methanation
reaction initially follows the Langmuir Hinselwood mechanism with the
adsorption of CO2 and H2 gases on the catalyst surface.
From the gaseous product, only methane peak was observed. Meanwhile, from the
liquid product, methanol peak is observed at retention time 20 mins which
accordance with standard methanol. Therefore, the final products acquired from
the methanation reaction of� Sm/Mn/Ru
(60:35:5)/Al2O3 catalyst are CH4, CH3OH
and H2O.
Keywords: methanation,
hydrogenation, samarium oxide, catalyst, mechanism
Abstrak
Pemahaman kepada mekanisme
tindak balas kimia adalah perlu untuk mengoptimumkan proses tindak balas dan
meningkatkan prestasi. Penjerapan molekul reaktan, pembentukan perantaraan
tindak balas, dan taburan produk pada asasnya bergantung kepada komposisi dan
struktur permukaan pemangkin. Kerja penyelidikan ini menggunakan inframerah
transformasi Fourier (FTIR), kromatografi cecair prestasi tinggi (HPLC), dan
kromatografi gas (GC) untuk mengenal pasti mekanisma mangkin Sm/Mn/Ru
(60:35:5)/Al2O3. Tindak balas metana yang dipostulatkan
adalah mengikut mekanisma Langmuir Hinselwood yang pada mulanya melibatkan
penjerapan gas CO2 dan H2 pada permukaan mangkin.
Daripada produk gas, hanya puncak metana diperhatikan. Manakala, daripada
produk cecair, puncak metanol diperhatikan pada minit ke 20 masa tahanan
mengikut larutan piawai metanol. Oleh itu, produk akhir yang diperoleh daripada
tindak balas metana mangkin Sm/Mn/Ru (60:35:5)/Al2O3
ialah CH4, CH3OH dan H2O.
Kata kunci: metanasi,
penghidrogenan, samarium oksida, pemangkin, mekanisma
Graphical Abstract
References
1.
Asif Iqbal, M. M., Toemen, S., Abu bakar, W. A. W.,
Razak, F. I. A., Rosid, S. J. M. and Azelee, N. I. W. (2020). Catalytic
methanation over nanoparticle heterostructure of Ru/Fe/Ce/γ-Al2O3
catalyst: Performance and characterization, Renewable Energy, 162:
513-524,
2.
Rosid, S. J. M., Toemen, S., Iqbal, M. M. A., Bakar, W.
A. W. A., Mokhtar, W. N. A. W. and Aziz, M. M. A. (2019). Overview performance
of lanthanide oxide catalysts in methanation reaction for natural gas
production. Environmental Science and
Pollution Research, 26(36): 36124-36140.
3.
Hu, D., Gao, J., Ping, Y., Jia, L., Gunawan, P., Zhong,
Z., Xu, G., Gu, F. and Su, F. (2012). Enhanced Investigation of CO methanation
over Ni/Al2O3 catalysts for synthetic natural gas
production. Industrial & Engineering Chemistry Research, 51:
4875-4886.
4.
Panagiotopoulou, P., Kondarides, D. I. and Verykios, X.
E. (2008). Selective methanation of CO over supported noble metal catalysts:
Effects of the nature of the metallic phase on catalytic performance. Applied Catalysis A: General, 344(1-2):
45-54.
5.
Erdohelyi, A. (2021). Catalytic reaction of carbon
dioxide with methane on supported noble metal catalysts. Catalysts, 11:
159.
6.
Wang, X., Hong, Y., Shi, H., & Szanyi, J. (2016).
Kinetic modeling and transient DRIFTS�MS studies of CO2 methanation
over Ru/Al2O3 catalysts. Journal of Catalysis, 343:185-195.
7.
Fisher I.A. and Bell A.T. (1996). A comparative study of
Co and CO2 hydrogenation over Rh/SiO2. Journal of Catalysis, 162: 54-65.
8.
Marc J. Antoine Beuls, Patricio R. (2010). Catalytic
production of methane from CO2 and H2 at low temperature:
Insight on the reaction mechanism. Catalyst Today, 157: 462-466.
9.
Gabor A. S. and Yimin L. (2010). Major success of theory
and experiment-combined studies in surface chemistry and heterogeneous
catalysis. Top Catalyst, 53:
311-325.
10.
Marwood, M., Doepper, R. and Renken, A. (1997). In-situ surface and gas phase analysis
for kinetic studies under transient conditions: The catalytic hydrogenation of
CO2. Applied Catalysis A: General. 151: 223-246.
11.
Sharma, S., Hu, Z., Zhang, P., McFarland, E. W. and
Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278: 297-309.
12.
Solymosi, F., Erdehelyi, A. and Bansagi, T. (1981).
Methanation of CO2 on supported rhodium catalyst. Journal of Catalysis, 68: 371-382.
13.
Zamani, A. H., Shohaimi, N. A. M., Rosid, S. J. M.,
Abdullah, N. H. and Shukri, N. M. (2019). Enhanced low temperature reaction for
the CO2 methanation over Ru promoted Cu/Mn on alumina support
catalyst using double reactor system.� Journal
of the Taiwan Institute of Chemical Engineers, 96: 400-408.
14.
Rosid, S. J.M., Abu Bakar, W.A.W., Toemen, S., Yusoff,
N. M., Azid, A. and Mokhtar, W. N. A.W. (2019). Investigation of active species
in methanation reaction over cerium based loading. Malaysian Journal of
Fundamental and Applied Sciences, 2018:
319-323.
15.
Li, C., Sakata, Y., Arai, T., Domen, K. and Maruya, K.
(1989). Carbon monoxide and carbon dioxide adsorption on cerium oxide studied
by Fourier- transform infrared spectroscopy. Journal of Chemical Society:
Faraday Transaction. 85(4): 929-943.
16.
Stevens, R. W., Siriwardane, R. V and Logan, J. (2008). In situ Fourier transform infrared
(FTIR) investigation of CO2 adsorption onto zeolite materials. Energy
& Fuels. 22(12): 3070-3079.
17.
Narain, K., Yazdani, T., Bhat, M. M. and Yunus M.
(2012). Effect on physico-chemical and structural properties of soil emended
with distillery effluent and ameliorated by cropping two cereal plant spp. Environmental
Earth Sciences, 66: 977-984.
18.
Haldor Topsoe A/S, (2005). Methanation of CO over nickel
mechanism and kinetics at high H2/Co ratios. Journal Physical
Chemistry B, 109(6): 2432-2438.