Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 152 - 163

 

 

 

 

CATALYTIC NEUTRALIZATION OF ACIDIC PETROLEUM CRUDE OIL UTILIZING 2-METHYLIMIDAZOLE WITH ADDITION OF Cu/Ce(10:90)/Al2O3 CATALYST

 

(Peneutralan Pemangkin Minyak Mentah Petroleum Berasid Menggunakan 2-Metilimidazol dengan Tambahan Mangkin Cu/Ce(10:90)/Al2O3)

 

Norshahidatul Akmar Mohd Shohaimi1*, Noraini Safar Che Harun1, Hisyam Saufi Tajudin1, Wan Azelee Wan Abu Bakar2, Nurasmat Mohd Shukri3, Nor Hakimin Abdullah4, Ahmad Zamani Ab Halim5

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2Faculty of Sciences,

Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

3School of Health Sciences,

Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan

4Advanced Materials Research Centre (AMRC), Faculty of Bioengineering and Technology,

Universiti Malaysia Kelantan, Locked Bag 100, 17600 Jeli, Kelantan

5Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

 

*Corresponding author:  akmarshohaimi@uitm.edu.my

 

 

Received: 22 December 2021; Accepted: 3 February 2022; Published: 25 February 2022

 

 

Abstract

The presence of naphthenic acid (NA) in crude oil leads to corrosion problems within oil refineries which may increase the maintenance cost and produce lower quality of crude oil. The objective of this study is to reduce the total acid number (TAN) of Petronas Penapisan Melaka (PPM)'s crude oil (TAN = 2.43 mgKOH/g) using 2-methylimidazole with the aid of Cu/Ce (10:90)/Al2O3 catalyst through the catalytic neutralization technique. A 10% of 2-methylimidazole in ethanol solution was used as the acid removal agent. Cerium oxide based catalysts with copper as a dopant were supported onto alumina and calcined at different calcination temperatures of 800 ℃, 900 ℃ and 1000 ℃. The potential catalyst was characterized by using TGA-DTG, FTIR and XRD for its physicochemical properties. The results showed TAN was reduced to 0.53 mg KOH/g with 78.2% reduction at catalyst calcination temperature of 900 ℃, 0.5% catalyst loading, reaction temperature of 27 ℃ and 10 minutes reaction time. The small particle size of catalyst calcined at 900 ℃ which was 18.02 nm led to bigger surface areas that enhanced the neutralization process. These structural properties contributed to the excellent catalytic performance which removed the NAs in the PPM's crude oil and concurrently reduced the TAN value below than one.

 

Keywords:  catalyst, catalytic neutralization, crude oil, naphthenic acid

 

 

Abstrak

Kehadiran asid naftenik (NA) dalam minyak mentah membawa kepada masalah kakisan dalam kilang penapisan minyak yang boleh meningkatkan kos penyelenggaraan dan menghasilkan minyak mentah yang berkualiti rendah. Objektif kajian ini adalah untuk mengurangkan jumlah asid (TAN) minyak mentah Petronas Penapisan Melaka (PPM) (TAN = 2.43 mgKOH/g) menggunakan 2-metilimidazol dengan bantuan mangkin Cu/Ce (10:90)/ Al2O3 melalui teknik peneutralan pemangkin. 10% daripada 2-metilimidazol dalam larutan etanol digunakan sebagai agen penyingkiran asid. Pemangkin berasaskan serium oksida dengan kuprum sebagai dopan disokong pada alumina dan dikalsinkan pada suhu pengkalsinan berbeza 800 ℃, 900 ℃ dan 1000 ℃. Mangkin berpotensi dicirikan dengan menggunakan TGA-DTG, FTIR dan XRD untuk sifat fizikokimianya. Keputusan menunjukkan TAN dikurangkan kepada 0.53 mg KOH/g dengan pengurangan 78.2% pada suhu pengkalsinan mangkin 900 ℃, 0.5% pemuatan mangkin, suhu tindak balas 27 ℃ dan 10 minit masa tindak balas. Saiz zarah kecil pemangkin yang dikalsinkan pada 900 ℃ iaitu 18.02 nm membawa kepada kawasan permukaan yang lebih besar yang meningkatkan proses peneutralan. Ciri-ciri struktur ini menyumbang kepada prestasi pemangkin yang sangat baik yang mengeluarkan NA dalam minyak mentah PPM dan secara serentak mengurangkan nilai TAN di bawah satu.

 

Kata kunci:  mangkin, peneutralan pemangkin, minyak mentah, asid naftenik

 

 


Graphical Abstract




References

1.      Shohaimi, N. A., Mohd Halim, N. S., Ab Halim, A. Z., Mohd Shukri, N. and Abdullah, N. H. (2020). Catalytic study of Ni/Ce/Al2O3 and Ni/Ca/Al2O3 on the removal of naphthenic acid from petroleum crude oil utilizing sodium thiocyanate in ethanol. Petroleum Science and Technology, 38(6): 602-608.

2.      Sun, Y. and Shi, L. (2012). Basic ionic liquids with imidazole anion: New reagents to remove naphthenic acids from crude oil with high total acid number. Fuel, 99: 83-87.

3.    Cho, K., Rana, B. S., Cho, D. W., Beum, H. T., Kim, C. H. and Kim, J. N. (2020). Catalytic removal of naphthenic acids over Co-Mo/γ-Al2O3 catalyst to reduce total acid number (TAN) of highly acidic crude oil. Applied Catalysis A: General, 606: 117835.

4.      Shukri, N. M., Bakar, W. A., Jaafar, J. and Majid, Z. A. (2015). Removal of naphthenic acids from high acidity Korean crude oil utilizing catalytic deacidification method. Journal of Industrial and Engineering Chemistry. 28: 110-116.

5.      Wu, C., De Visscher, A. and Gates, I. D. (2019). On naphthenic acids removal from crude oil and oil sands process-affected water. Fuel, 253: 1229-1246.

6.    Shukri, N. M., Bakar, W. A., Jaafar, J. and Majid, Z. A. (2015b) Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design. Clean Techn Environ Policy Clean Technologies and Environmental Policy, 17(8), 2387-2400.

7.    Zamani, A. H., Shohaimi, N. A. M., Rosid, S. J. M., Abdullah, N. H. and Shukri, N. M. (2019). Enhanced low temperature reaction for the CO2 methanation over Ru promoted Cu/Mn on alumina support catalyst using double reactor system. Journal of the Taiwan Institute of Chemical Engineers, 96: 400-408.

8.    Shohaimi, N. A. M., and Marodzi, N. F. S. (2018). Transesterification of waste cooking oil in biodiesel production utilizing CaO/Al2O3 Heterogeneous Catalyst. Malaysian Journal of Analytical Sciences, 22(1): 157-165.

9.    Aziz, N. H., Shohaimi, N. A. M. and Che Harun, N. S. (2021). The effectiveness of Ni/Ce/Al2O3 catalyst in the extraction of naphthenic acids from acidic crude oil. Materials Science Forum, 1025: pp. 284-289.

10.  Shohaimi, N. A. M, Jelani, N., Ab Halim, A. Z., Abdullah, N. H. and Shukri, N. M. (2021). Catalytic neutralization of naphthenic acid from petroleum crude oil by using cerium oxide catalyst and 2-methylimidazole in polyethylene glycol. Recent Innovations in Chemical Engineering, 14(3): 219-227.

11.   Shohaimi, N. A. M., Jaafar, J. and Bakar, W. A. W. A. (2015). Catalytic deacidification optimization of Korean crude oil based on response surface methodology. Clean Technologies and Environmental Policy, 17(6), 1513-1522.

12.   Shohaimi N.A.M, Bakar, W. A. W. A. and Jaafar, J. (2014). Catalytic neutralization of acidic crude oil utilizing ammonia in ethylene glycol basic solution. Journal of Industrial and Engineering Chemistry, 20(4): 2086-2094 .

13.   Shi, L. J., Shen, B. X., Wang, G. Q. (2008). Removal of naphthenic acids from beijiang crude oil by forming ionic liquids. Energy & Fuels Energy Fuels. 22(6): 4177-4181.

14.   Shohaimi, N. A. M., Bakar, W. A. W. A. and Jaafar, J. (2014). Catalytic neutralization method for naphthenic acid removal in crude oil by alumina supported Ca and Ba catalysts. Petroleum Science and Technology, 32(19): 2365-2375.

15.   Dias, A. P. S., Bernardo, J., Felizardo, P. and Neiva Correi, M. J. (2012). Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites. Energy. 41: 344-353.

16.   Alouche, A. (2008). Preparation and characterization of copper and/or cerium catalysts supported on alumina or ceria. Jordan Journal of Mechanical and Industrial Engineering, 2: 111-116.

17.   Bakar, W. A. W. A., Ali, R., Sulaiman, N. and Rahim, H. A. (2010). Manganese oxide doped noble metals supported catalyst for carbon dioxide methanation reaction. Iranian Journal of Science and Technology Transactions. 17: 115-123.

18.  Lamonier, C., Bennani, A., D'Huysser, A., Aboukais, A. and Wrobel, G. (1996). Evidence for different copper species in precursors of copper-cerium oxide catalysts for hydrogenation reactions: An X-ray diffraction, EPR and X-ray photoelectron spectroscopy study. Journal of Chemical Society Faraday Transaction, 92(l): 131-136.

19.   Bueno-Ferrer, C., Parres-Esclapez, S., Lozano-Castello, D. and Bueno-Lopez, A., (2010). Relationship between surface area and crystal size of pure and doped cerium oxides. Journal of Rare Earths, 28: 647-656.

20.   Roy, A. and Bhattacharya, J., (2011). Microwave-assisted synthesis and characterization of CaO nanoparticles. International Journal Nanoscience, 10(41): 3-8.

21.   Li, X., Zhu, J., Liu, Q. and Wu, B., (2013). The removal of naphthenic acids from dewaxed VGO via esterification catalyzed by Mg�Al hydrotalcite. Fuel Processing Technology, 111: 68-77.