Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 130 - 151
PHYSICAL AND CHEMICAL DISCRIMINATION OF METHAMPHETAMINE TABLETS FOR
FORENSIC INTELLIGENCE
(Diskriminasi Fizikal dan
Kimia bagi Pil Metamfetamin untuk Perisikan Forensik)
Noor Azlina Awang1,2, Khai Lee1, Way
Koon Teoh1, Vanitha Kunalan3, Ahmad Fahmi Lim Abdullah1, Kah Haw Chang1*
1Forensic Science Programme, School of
Health Sciences,
Universiti
Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Department of Chemistry Malaysia
(Kelantan Branch), 16100 Panji, Kota Bharu, Malaysia
3Narcotics Division, Forensic Science
Analysis Centre,
Department
of Chemistry, Jalan Sultan, 46661 Petaling Jaya, Selangor, Malaysia
*Corresponding author: changkh@usm.my
Received: 16 September 2021; Accepted: 10 November
2021; Published: 25 February 2022
Abstract
Illicit methamphetamine seizures have risen
significantly worldwide, and its widespread use threatens societal well-being.
Thus, attention from various parties is required to stem methamphetamine
trafficking; however, routine forensic analysis is generally limited to
identifying and quantifying the controlled substances according to standard
operating procedures. Although further analytical characterization and drug
profiling via physical and chemical methods is not routinely conducted, it
warrants further exploration for forensic comparison and intelligence. In this
study, the physical and chemical profiles of seized illicit methamphetamine
tablets were obtained employing various analytical techniques, including
physical examination, attenuated total reflectance-Fourier transformed infrared
(ATR-FTIR) spectroscopy, thin layer chromatography (TLC), and gas
chromatography (GC). Physical characterization did not enable the
identification of methamphetamine, but sample discrimination based on unique
logos and dimensions was achieved. Based on ATR-FTIR and principal component
analysis results, caffeine was found to be the most common adulterant, while
the dyes used in the composition were identified via TLC analysis. GC analysis
results confirmed the presence of methamphetamine and its quantity. Overall, a
methamphetamine tablet profiling strategy was implemented to gather important
information regarding the similarities and differences among illicit
methamphetamine tablets, potentially beneficial for sample-to-sample,
case-to-case, and seizure-to-seizure comparisons.
Keywords:
forensic science, methamphetamine, drug profiling, physical examination,
chemical analysis
Abstrak
Rampasan
metamfetamin haram telah meningkat dengan ketara di seluruh dunia and penggunaannya
secara meluas telah mengancam kesejahteraan masyarakat. Justeru, perhatian
daripada pelbagai pihak adalah diperlukan untuk mengurangkan penjualan
metamfetamin. Namun begitu, analisis forensik rutin secara umumnya dihadkan
kepada pengenalpastian dan pengkuantitian bahan terkawal berdasarkan prosedur
operasi standard. Sungguhpun pencirian analitikal dan pemprofilan dadah
seterusnya melalui kaedah fizikal dan kaedah kimia tidak dilaksanakan secara
rutin, hal ini membolehkan penerokaan selanjutnya untuk perbandingan dan
perisikan forensik. Dalam kajian ini, profil fizikal and profil kimia pil
metamfetamin haram yang dirampas telah diperoleh dengan menggunakan pelbagai
teknik analitikal, termasuk pemeriksaan fizikal, spektroskopi transformasi
inframerah Fourier dengan pantulan keseluruhan dikecilkan (ATR-FTIR),
kromatografi lapisan nipis (TLC) dan kromatografi gas (GC). Pencirian fizikal
tidak membolehkan pengenalpastian metamfetamin tetapi diskriminasi sampel
berdasarkan logo dan dimensi unik telah dicapai. Berdasarkan keputusan ATR-FTIR
dan analisis komponen utama, kafien dinampakkan sebagai bahan adukan yang
paling lazim, manakala pewarna yang digunakan dalam kandungan telah dikenal
pasti melalui analisis TLC. Keputusan analisis GC telah memastikan kehadiran
metamfetamin and kuantitinya. Secara keseluruhannya, satu strategi pemprofilan
pil metamfetamin telah dilaksanakan untuk mengumpulkan maklumat penting
berkenaan dengan kesamaan dan perbezaan antara pil metamfetamin haram. Hal ini
berpotensi dalam memanfaatkan perbandingan sampel kepada sampel, kes kepada
kes, dan rampasan kepada rampasan.
Kata kunci: sains
forensik, metamfetamin, pemprofilan dadah, pemeriksaan fizikal, analisis kimia
Graphical Abstract
References
1.
National Institute on
Drug Abuse (2021). Methamphetamine. Access from
https://www.drugabuse.gov/publications/drugfacts/methamphetamine. [Access
online 29 May 2021].
2.
United Nations Office on
Drugs and Crime (2020). Drug use and health consequences. Vienna: United
Nations Office on Drugs and Crime.
3.
United Nations Office on
Drugs and Crime (2020). Synthetic drugs in east and southeast Asia: Trends and
patterns of amphetamine-type stimulants and new psychoactive substances.
Vienna: United Nations Office on Drugs and Crime.
4.
United Nations Office on
Drugs and Crime (2020). Drug supply. Vienna: United Nations Office on Drugs and
Crime.
5.
Hamdan, R., Nik Hassan,
N. F., Mat Desa, W. N. S., Kunalan, V., Sulaiman, M. and Abdullah, A. F. L.
(2015). Characterisation of seized clandestine methamphetamine in Malaysia. Malaysian
Journal of Forensic Sciences, 6(1): 20-29.
6.
United Nations Office on
Drugs and Crime (2020). Synthetic drugs in east and southeast Asia: Latest
developments and challenges. Vienna: United Nations Office on Drugs and Crime.
7.
Libby H. (2018). Myanmar�s
meth crisis reaches as far as Australia. ABC News. Access
https://www.abc.net.au/news/2018-07-29/myanmars-meth-crisis-reaches-australia/10044502
[Access online 29 May 2021].
8.
Puthaviriyakorn, V.,
Siriviriyasomboon, N., Phorachata, J., Pan-ox, W., Sasaki, T. and Tanaka, K.
(2002). Identification of impurities and statistical classification of
methamphetamine tablets (Ya-Ba) seized in Thailand. Forensic Science
International, 126(2): 105-113.
9.
Sennello, L. T. (1971).
GLC determination of methamphetamine hydrochloride in methyl acrylate-methyl
methacrylate sustained-release tablets. Journal of Pharmaceutical Sciences,
60 (4): 595-596.
10.
Mitrevski, B. and
Zdravkovski, Z. (2005). Rapid and simple method for direct determination of
several amphetamines in seized tablets by GC-FID. Forensic Science
International, 152 (2-3): 199-203.
11.
United Nations Office on
Drugs and Crime (2001). Drug characterization/impurity profiling Background
and concept. Vienna: United Nations Office on Drugs and Crime.
12.
Dufey, V., Dujourdy, L.,
Besacier, F. and Chaudron, H. (2007). A quick and automated method for
profiling heroin samples for tactical intelligence purposes. Forensic
Science International, 169:108-117.
13.
Esseiva, P., Dujourdy,
L., Anglada, F., Taroni, F. and Margot, P. (2003). A methodology for illicit
heroin seizures comparison in a drug intelligence perspective using large
databases. Forensic Science International, 132(2): 139-152.
14.
European Monitoring
Centre for Drugs and Drug Addiction (2009). Methamphetamine: A european union
perspective in the global context. Portugal: European monitoring centre for
drugs and drug addiction.
15.
Cole, C., Jones, L.,
Mcveigh, J., Kicman, A., Syed, Q. and Mark, A. B. (2010). A guide to
adulterants, bulking agents and other contaminants found in illicit drugs.
Faculty of Health and Applied Social Sciences, Liverpool John Moores
University, Liverpool.
16.
De Andrade, F. I.,
Florindo Guedes, M. I., Pinto Vieira, . G., Pereira Mendes, F. N., Salmito
Rodrigues, P. A., Costa Maia, C. S., Marques vila, M. M. and de Matos Ribeiro,
L. (2014). Determination of Synthetic Food Dyes in Commercial Soft Drinks by
TLC and Ion-pair HPLC. Food Chemistry, 157: 193-198.
17.
Dixon, E. A. and Renyk,
G. (1982). Isolation, separation, and identification of synthetic food colors. Journal
of Chemical Education, 59(1): 67-69.
18.
Kucharska, M. and Grabka,
J. (2010). A review of chromatographic methods for determination of synthetic
food dyes. Talanta, 80(3): 1045-1051.
19.
Fadil, F. A. and
McSharry, W. O. (1979). Extraction and TLC separation of food, drug, and
cosmetic dyes from tablet-coating formulations. Journal of Pharmaceutical
Sciences, 68(1): 97-98.
20.
United Nations on Office
Drugs and Crime (2006). Recommended methods for the identification and analysis
of amphetamine, methamphetamine and their ring-substituted analogues in seized
materials. Vienna: United Nations Office on Drugs and Crime.
21.
Adam, P., Natakankitkul,
S., Sirithunyalug, J. and Aramrattana, A. (2005). Physio-chemical profiles of
methamphetamine tablets. CMU Journal, 4(1): 65-70.
22.
Adam, P., Natakankitkul,
S., Sirithunyalug, J. and Aramrattana, A. (2004). Drug characterization of
methamphetamine tablets a scientific tool to help identify drug production
and trafficking networks. In: The third Australasian drug strategy conference �
preventing and reducing substance abuse, 4-6 May 2004, Alice Springs,
Australia.
23.
Li, T., Hua, Z., Meng, X.
and Liu, C. (2018). A Simple and effective physical characteristic profiling
method for methamphetamine tablet seized in China. Journal of Forensic
Sciences, 63(2): 541-547.
24.
Haywood, A. and Glass, B.
D. (2011). Pharmaceutical excipients - where do we begin? Australian
Prescriber, 34(4): 112-114.
25.
Armstrong, N. (2006).
Tablet manufacturer. In: Encyclopedia of pharmaceutical technology (3rd
edition). Marcel Dekker, New York.
26.
Gordon, R. E., Rosanske,
T. W. and Fonner, D. E. (1990). Granulation technology and tablet
characterization. In: Pharmaceutical dosage forms. Marcel Dekker, New York.
27.
Cole, M. D. (2003). The
analysis of controlled substances. John Wiley and Sons Ltd Wiley, New Jersey.
28.
Bunaciu, A. A. and
Aboul-Enein, H. Y. (2021). Adulterated drug analysis using FTIR spectroscopy. Applied
Spectroscopy Reviews, 56 (5): 423-437.
29.
Mail, R., Teoh, W. K.,
Kunalan, V., Chang, K. H. and Abdullah, A. F. L. (2021). Quick discrimination
of seized erimin-5 tablets by attenuated total reflectance-Fourier transform
infra-red spectroscopy. Australian Journal of Forensic Sciences, In
Press.
30.
Liu, C-M., Han, Y., Min,
S-G., Jia, W., Meng, X. and Liu, P-P. (2018). Rapid qualitative analysis of
methamphetamine, ketamine, heroin, and cocaine by Fourier transform infrared
spectroscopy (FTIR). Forensic Science International, 290: 162-168.
31.
He, X., Wang, J., You,
X., Niu, F., Fan, L. and Lv, Y. (2020). Classification of heroin,
methamphetamine, ketamine and their additives by attenuated total
reflection-Fourier transform infrared spectroscopy and chemometrics. Spectrochimica
Acta Part A: Molecular and Biomolecular, 241: 118665.
32.
Chan, K. W., Tan, G. H.
and Wong, R. C. S. (2012). Gas chromatographic method validation for the
analysis of major components in illicit heroin seized in Malaysia. Science
and Justice, 52(1): 9-16.
33.
Broseus, J., Gentile, N.
and Esseiva, P. (2016). The cutting of cocaine and heroin: A critical review. Forensic
Science International, 262: 73-83.
34.
Hughes, J., Ayoko, G.,
Collett, S. and Golding, G. (2013). Rapid quantification of methamphetamine:
Using attenuated total reflectance Fourier transform infrared spectroscopy
(ATR-FTIR) and chemometrics. PLoS One 8(7): e69609.
35.
Abdullah, A. F. L.,
Abraham, A. A., Sulaiman, M. and Kunalan, V. (2012). Forensic drug profiling of
erimin-5 using TLC and GC-MS. Malaysian Journal of Forensic Sciences, 3
(1): 11-15.
36.
Joyce, J. R. (1980). The
identification of dyes in illicit tablets. Journal of Forensic Science
Society, 20(4): 247-252.
37.
Chiarotti, M., Fucci, N.
and Furnari, C. (1991). Comparative analysis of illicit heroin samples. Forensic
Science International, 50(1): 47-56.
38.
Barnfield, C., Burns, S.,
Byrom, D. L. and Kemmenoe, A. V. (1988). The routine profiling of forensic
heroin samples. Forensic Science International, 39(2): 107-117.
39.
Johnston, A. and King, L.
A. (1988). Heroin profiling: Predicting the country of origin of seized heroin.
Forensic Science International, 95(1): 47-55.
40.
Yusoff, M. Z., Chang, K.
H. and Abdullah, A. F. L. (2017). Attenuated total reflectance-Fourier
transform infra-red spectral profiling of illicit heroin for forensic
intelligence. Australian Journal of Forensic Sciences, 50(5): 543-551.
41.
Collins, M., Huttunen,
J., Evans, I. and Robertson, J. (2007). Illicit drug profiling: The Australian
experience. Australian Journal of Forensic Sciences, 39(1): 25-32.
42.
Dams, R., Benijts, T.,
Lambert, W. E., Massart, D. L. and De Leenheer, A. P. (2001). Heroin impurity
profiling: Trends throughout a decade of experimenting. Forensic Science
International, 123(2-3): 81-88.
43.
United Nations on Office
Drugs and Crime (2005). Methods for impurity profiling of heroin and cocaine -
manual for use by national drug testing laboratories. Vienna: United Nations
Office on Drugs and Crime.