Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 130 - 151

 

 

 

 

PHYSICAL AND CHEMICAL DISCRIMINATION OF METHAMPHETAMINE TABLETS FOR FORENSIC INTELLIGENCE

 

(Diskriminasi Fizikal dan Kimia bagi Pil Metamfetamin untuk Perisikan Forensik)

 

Noor Azlina Awang1,2, Khai Lee1, Way Koon Teoh1, Vanitha Kunalan3, Ahmad Fahmi Lim Abdullah1, Kah Haw Chang1*

 

1Forensic Science Programme, School of Health Sciences,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Department of Chemistry Malaysia (Kelantan Branch), 16100 Panji, Kota Bharu, Malaysia

3Narcotics Division, Forensic Science Analysis Centre,

Department of Chemistry, Jalan Sultan, 46661 Petaling Jaya, Selangor, Malaysia

 

*Corresponding author: changkh@usm.my

 

 

Received: 16 September 2021; Accepted: 10 November 2021; Published: 25 February 2022

 

 

Abstract

Illicit methamphetamine seizures have risen significantly worldwide, and its widespread use threatens societal well-being. Thus, attention from various parties is required to stem methamphetamine trafficking; however, routine forensic analysis is generally limited to identifying and quantifying the controlled substances according to standard operating procedures. Although further analytical characterization and drug profiling via physical and chemical methods is not routinely conducted, it warrants further exploration for forensic comparison and intelligence. In this study, the physical and chemical profiles of seized illicit methamphetamine tablets were obtained employing various analytical techniques, including physical examination, attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy, thin layer chromatography (TLC), and gas chromatography (GC). Physical characterization did not enable the identification of methamphetamine, but sample discrimination based on unique logos and dimensions was achieved. Based on ATR-FTIR and principal component analysis results, caffeine was found to be the most common adulterant, while the dyes used in the composition were identified via TLC analysis. GC analysis results confirmed the presence of methamphetamine and its quantity. Overall, a methamphetamine tablet profiling strategy was implemented to gather important information regarding the similarities and differences among illicit methamphetamine tablets, potentially beneficial for sample-to-sample, case-to-case, and seizure-to-seizure comparisons.

 

Keywords: forensic science, methamphetamine, drug profiling, physical examination, chemical analysis

 

Abstrak

Rampasan metamfetamin haram telah meningkat dengan ketara di seluruh dunia and penggunaannya secara meluas telah mengancam kesejahteraan masyarakat. Justeru, perhatian daripada pelbagai pihak adalah diperlukan untuk mengurangkan penjualan metamfetamin. Namun begitu, analisis forensik rutin secara umumnya dihadkan kepada pengenalpastian dan pengkuantitian bahan terkawal berdasarkan prosedur operasi standard. Sungguhpun pencirian analitikal dan pemprofilan dadah seterusnya melalui kaedah fizikal dan kaedah kimia tidak dilaksanakan secara rutin, hal ini membolehkan penerokaan selanjutnya untuk perbandingan dan perisikan forensik. Dalam kajian ini, profil fizikal and profil kimia pil metamfetamin haram yang dirampas telah diperoleh dengan menggunakan pelbagai teknik analitikal, termasuk pemeriksaan fizikal, spektroskopi transformasi inframerah Fourier dengan pantulan keseluruhan dikecilkan (ATR-FTIR), kromatografi lapisan nipis (TLC) dan kromatografi gas (GC). Pencirian fizikal tidak membolehkan pengenalpastian metamfetamin tetapi diskriminasi sampel berdasarkan logo dan dimensi unik telah dicapai. Berdasarkan keputusan ATR-FTIR dan analisis komponen utama, kafien dinampakkan sebagai bahan adukan yang paling lazim, manakala pewarna yang digunakan dalam kandungan telah dikenal pasti melalui analisis TLC. Keputusan analisis GC telah memastikan kehadiran metamfetamin and kuantitinya. Secara keseluruhannya, satu strategi pemprofilan pil metamfetamin telah dilaksanakan untuk mengumpulkan maklumat penting berkenaan dengan kesamaan dan perbezaan antara pil metamfetamin haram. Hal ini berpotensi dalam memanfaatkan perbandingan sampel kepada sampel, kes kepada kes, dan rampasan kepada rampasan.

 

Kata kunci: sains forensik, metamfetamin, pemprofilan dadah, pemeriksaan fizikal, analisis kimia

 

 

 


Graphical Abstract




References

1.      National Institute on Drug Abuse (2021). Methamphetamine. Access from https://www.drugabuse.gov/publications/drugfacts/methamphetamine. [Access online 29 May 2021].

2.      United Nations Office on Drugs and Crime (2020). Drug use and health consequences. Vienna: United Nations Office on Drugs and Crime.

3.      United Nations Office on Drugs and Crime (2020). Synthetic drugs in east and southeast Asia: Trends and patterns of amphetamine-type stimulants and new psychoactive substances. Vienna: United Nations Office on Drugs and Crime.

4.      United Nations Office on Drugs and Crime (2020). Drug supply. Vienna: United Nations Office on Drugs and Crime.

5.      Hamdan, R., Nik Hassan, N. F., Mat Desa, W. N. S., Kunalan, V., Sulaiman, M. and Abdullah, A. F. L. (2015). Characterisation of seized clandestine methamphetamine in Malaysia. Malaysian Journal of Forensic Sciences, 6(1): 20-29.

6.      United Nations Office on Drugs and Crime (2020). Synthetic drugs in east and southeast Asia: Latest developments and challenges. Vienna: United Nations Office on Drugs and Crime.

7.      Libby H. (2018). Myanmar�s meth crisis reaches as far as Australia. ABC News. Access https://www.abc.net.au/news/2018-07-29/myanmars-meth-crisis-reaches-australia/10044502 [Access online 29 May 2021].

8.     Puthaviriyakorn, V., Siriviriyasomboon, N., Phorachata, J., Pan-ox, W., Sasaki, T. and Tanaka, K. (2002). Identification of impurities and statistical classification of methamphetamine tablets (Ya-Ba) seized in Thailand. Forensic Science International, 126(2): 105-113.

9.      Sennello, L. T. (1971). GLC determination of methamphetamine hydrochloride in methyl acrylate-methyl methacrylate sustained-release tablets. Journal of Pharmaceutical Sciences, 60 (4): 595-596.

10.   Mitrevski, B. and Zdravkovski, Z. (2005). Rapid and simple method for direct determination of several amphetamines in seized tablets by GC-FID. Forensic Science International, 152 (2-3): 199-203.

11.   United Nations Office on Drugs and Crime (2001). Drug characterization/impurity profiling Background and concept. Vienna: United Nations Office on Drugs and Crime.

12.   Dufey, V., Dujourdy, L., Besacier, F. and Chaudron, H. (2007). A quick and automated method for profiling heroin samples for tactical intelligence purposes. Forensic Science International, 169:108-117.

13.   Esseiva, P., Dujourdy, L., Anglada, F., Taroni, F. and Margot, P. (2003). A methodology for illicit heroin seizures comparison in a drug intelligence perspective using large databases. Forensic Science International, 132(2): 139-152.

14.   European Monitoring Centre for Drugs and Drug Addiction (2009). Methamphetamine: A european union perspective in the global context. Portugal: European monitoring centre for drugs and drug addiction.

15.   Cole, C., Jones, L., Mcveigh, J., Kicman, A., Syed, Q. and Mark, A. B. (2010). A guide to adulterants, bulking agents and other contaminants found in illicit drugs. Faculty of Health and Applied Social Sciences, Liverpool John Moores University, Liverpool.

16.   De Andrade, F. I., Florindo Guedes, M. I., Pinto Vieira, . G., Pereira Mendes, F. N., Salmito Rodrigues, P. A., Costa Maia, C. S., Marques vila, M. M. and de Matos Ribeiro, L. (2014). Determination of Synthetic Food Dyes in Commercial Soft Drinks by TLC and Ion-pair HPLC. Food Chemistry, 157: 193-198.

17.   Dixon, E. A. and Renyk, G. (1982). Isolation, separation, and identification of synthetic food colors. Journal of Chemical Education, 59(1): 67-69.

18.   Kucharska, M. and Grabka, J. (2010). A review of chromatographic methods for determination of synthetic food dyes. Talanta, 80(3): 1045-1051.

19.   Fadil, F. A. and McSharry, W. O. (1979). Extraction and TLC separation of food, drug, and cosmetic dyes from tablet-coating formulations. Journal of Pharmaceutical Sciences, 68(1): 97-98.

20.   United Nations on Office Drugs and Crime (2006). Recommended methods for the identification and analysis of amphetamine, methamphetamine and their ring-substituted analogues in seized materials. Vienna: United Nations Office on Drugs and Crime.

21.   Adam, P., Natakankitkul, S., Sirithunyalug, J. and Aramrattana, A. (2005). Physio-chemical profiles of methamphetamine tablets. CMU Journal, 4(1): 65-70.

22.  Adam, P., Natakankitkul, S., Sirithunyalug, J. and Aramrattana, A. (2004). Drug characterization of methamphetamine tablets a scientific tool to help identify drug production and trafficking networks. In: The third Australasian drug strategy conference � preventing and reducing substance abuse, 4-6 May 2004, Alice Springs, Australia.

23.   Li, T., Hua, Z., Meng, X. and Liu, C. (2018). A Simple and effective physical characteristic profiling method for methamphetamine tablet seized in China. Journal of Forensic Sciences, 63(2): 541-547.

24.   Haywood, A. and Glass, B. D. (2011). Pharmaceutical excipients - where do we begin? Australian Prescriber, 34(4): 112-114.

25.   Armstrong, N. (2006). Tablet manufacturer. In: Encyclopedia of pharmaceutical technology (3rd edition). Marcel Dekker, New York.

26.   Gordon, R. E., Rosanske, T. W. and Fonner, D. E. (1990). Granulation technology and tablet characterization. In: Pharmaceutical dosage forms. Marcel Dekker, New York.

27.   Cole, M. D. (2003). The analysis of controlled substances. John Wiley and Sons Ltd Wiley, New Jersey.

28.   Bunaciu, A. A. and Aboul-Enein, H. Y. (2021). Adulterated drug analysis using FTIR spectroscopy. Applied Spectroscopy Reviews, 56 (5): 423-437.

29.   Mail, R., Teoh, W. K., Kunalan, V., Chang, K. H. and Abdullah, A. F. L. (2021). Quick discrimination of seized erimin-5 tablets by attenuated total reflectance-Fourier transform infra-red spectroscopy. Australian Journal of Forensic Sciences, In Press.

30.   Liu, C-M., Han, Y., Min, S-G., Jia, W., Meng, X. and Liu, P-P. (2018). Rapid qualitative analysis of methamphetamine, ketamine, heroin, and cocaine by Fourier transform infrared spectroscopy (FTIR). Forensic Science International, 290: 162-168.

31.  He, X., Wang, J., You, X., Niu, F., Fan, L. and Lv, Y. (2020). Classification of heroin, methamphetamine, ketamine and their additives by attenuated total reflection-Fourier transform infrared spectroscopy and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular, 241: 118665.

32.   Chan, K. W., Tan, G. H. and Wong, R. C. S. (2012). Gas chromatographic method validation for the analysis of major components in illicit heroin seized in Malaysia. Science and Justice, 52(1): 9-16.

33.   Broseus, J., Gentile, N. and Esseiva, P. (2016). The cutting of cocaine and heroin: A critical review. Forensic Science International, 262: 73-83.

34.   Hughes, J., Ayoko, G., Collett, S. and Golding, G. (2013). Rapid quantification of methamphetamine: Using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics. PLoS One 8(7): e69609.

35.   Abdullah, A. F. L., Abraham, A. A., Sulaiman, M. and Kunalan, V. (2012). Forensic drug profiling of erimin-5 using TLC and GC-MS. Malaysian Journal of Forensic Sciences, 3 (1): 11-15.

36.   Joyce, J. R. (1980). The identification of dyes in illicit tablets. Journal of Forensic Science Society, 20(4): 247-252.

37.   Chiarotti, M., Fucci, N. and Furnari, C. (1991). Comparative analysis of illicit heroin samples. Forensic Science International, 50(1): 47-56.

38.   Barnfield, C., Burns, S., Byrom, D. L. and Kemmenoe, A. V. (1988). The routine profiling of forensic heroin samples. Forensic Science International, 39(2): 107-117.

39.   Johnston, A. and King, L. A. (1988). Heroin profiling: Predicting the country of origin of seized heroin. Forensic Science International, 95(1): 47-55.

40.   Yusoff, M. Z., Chang, K. H. and Abdullah, A. F. L. (2017). Attenuated total reflectance-Fourier transform infra-red spectral profiling of illicit heroin for forensic intelligence. Australian Journal of Forensic Sciences, 50(5): 543-551.

41.   Collins, M., Huttunen, J., Evans, I. and Robertson, J. (2007). Illicit drug profiling: The Australian experience. Australian Journal of Forensic Sciences, 39(1): 25-32.

42.   Dams, R., Benijts, T., Lambert, W. E., Massart, D. L. and De Leenheer, A. P. (2001). Heroin impurity profiling: Trends throughout a decade of experimenting. Forensic Science International, 123(2-3): 81-88.

43.   United Nations on Office Drugs and Crime (2005). Methods for impurity profiling of heroin and cocaine - manual for use by national drug testing laboratories. Vienna: United Nations Office on Drugs and Crime.