Malaysian
Journal of Analytical Sciences Vol 26 No 1
(2022): 119 - 129
CATALYTIC CONVERSION OF CELLULOSE TO LEVULINIC ACID USING SUPPORTED NOBLE
METAL PALLADIUM CATALYST
(Penukaran Bermangkin dari Selulosa
ke Asid Levulinik Menggunakan Mangkin Disokong Logam Adi Paladium)
Puteri Nurain
Syahirah Megat Muhammad Kamal, Norzahir Sapawe, Amin Safwan
Alikasturi*
Universiti
Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering
Technology,
Lot 1988
Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
*Corresponding author: aminsafwan@unikl.edu.my
Received: 15 September 2021; Accepted: 30 December 2021;
Published: 25 February 2022
Abstract
In resolving the current energy crisis, it is
vital to effectively use the abundant biomass to produce platform chemicals,
for instance levulinic acid (LA). LA is very flexible for the formation of high
value-added chemicals as it belongs to the family of carboxyl and ketone. This
valuable platform chemical can be produced from cellulose (the most abundant
biomass in nature). Palladium (Pd) as a noble metal was incorporated with catalyst
supports (silica-alumina; SiO2-Al2O3
and gamma-alumina; γ-Al2O3)
by using wet impregnation method, aiming for 4 wt.% of noble metal on supports
followed by catalyst calcination at 500 ˚C. The catalyst was characterized
using Fourier-transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller
(BET). The effects of reaction parameters such as agitation speed, reaction
temperature, and cellulose loading were investigated using this catalyst in a
semi-batch reactor for 8 hours. The highest conversion of cellulose (73.9%) and
yield of LA (43.3%) was achieved under these conditions: agitation speed of 1100
rpm, reaction temperature of 200 ˚C, and cellulose loading of 1.5 g with
pre-reduction of Pd/SiO2-Al2O3 catalyst (surface area and pore volume
up to 485.6 m2/g and 0.2459 cm3/g, respectively) at 150
˚C and agitation speed of 1300 rpm (in 5 bars of hydrogen, H2
for 1 hour).
Keywords:
Pd/SiO2-Al2O3,
cellulose, hydrolysis, levulinic acid
Abstrak
Dalam menyelesaikan krisis tenaga semasa, adalah
sangat penting untuk menggunakan biojisim yang berkesan dalam menghasilkan
bahan kimia platform seperti asid levulinik (LA). LA sangat fleksibel untuk
pembentukan bahan kimia bernilai tinggi, kerana ia tergolong dalam keluarga
karboksil dan keton. Bahan kimia platform yang berharga ini boleh dihasilkan
dari selulosa (biojisim yang paling banyak terdapat di alam semula jadi).
Paladium (Pd) sebagai logam adi boleh digabungkan dengan penampung mangkin
(silica-alumina; SiO2-Al2O3 and
gamma-alumina; γ-Al2O3) yang dihasilkan menggunakan
kaedah impregnasi basah yang bertujuan untuk 4% logam adi pada penampung mangkin
diikuti oleh kalsinasi mangkin pada suhu 500 ˚C. Mangkin dicirikan
menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan Brunauer-Emmett-Teller
(BET). Kajian mengenai pengaruh parameter reaksi seperti kelajuan pengadukan,
suhu tindak balas, dan pemuatan selulosa disiasat menggunakan mangkin ini dalam
reaktor semi-kelompok selama 8 jam. Penukaran selulosa tertinggi (73.9%) dan
hasil LA (43.3%) dicapai dalam keadaan ini; kelajuan pengadukan 1100 rpm, suhu tindak
balas 200 ˚C, dan pemuatan selulosa 1.5 g dengan pra-pengurangan mangkin
Pd/SiO2-Al2O3 (luas permukaan dan isi pori
485.6 m2/g dan 0.2459 cm3/g, masing masing) pada suhu 150
˚C dan kelajuan pengadukan 1300 rpm (dalam 5 bar hidrogen, H2
selama 1 jam).
Kata kunci: Pd/SiO2-Al2O3,
selulosa, hidrolisis, asid levulinik
Graphical Abstract
References
1.
Caretto,
A. and Perosa, A. (2013). Upgrading of levulinic acid with dimethylcarbonate as
solvent/ reagent. Sustainable Chemistry & Engineering, 1(8): 6-11.
2.
Dhepe,
P. L. and Fukuoka, A. (2007). Cracking of cellulose over supported metal
catalysts. Catalysis Surveys from Asia, 11(4): 186-191.
3.
Shrotri,
A., Kobayashi, H. and Fukuoka, A. (2018). Cellulose depolymerization over
heterogeneous catalysts. Accounts of Chemical Research, 51(3): 761-768.
4.
Peng,
L., Lin, L., Zhang, J., Zhuang, J., Zhang, B. and Gong, Y. (2010). Catalytic conversion
of cellulose to levulinic acid by metal chlorides. Molecules, 15: 5258-5272.
5.
Signoretto,
M., Taghavi, S., Ghedini, E. and Menegazzo, F. (2019). Catalytic production of
levulinic acid (LA) from actual biomass. Molecules (Basel, Switzerland),
24(15): 1-20.
6.
Jeong,
H., Jang, S., Hong, C. and Kim, S. (2016). Levulinic acid production by
two-step acid-catalyzed treatment of Quercus
mongolica using dilute sulfuric acid. Bioresource Technology, 225: 1-28.
7.
Thunyaratchatanon,
C., Sinsakullert, W., Luengnaruemitchai, A. and Faungnawakij, K. (2019). 5-hydroxymethylfurfural
production from hexose sugars using adjustable acid- and base-functionalized
mesoporous SBA-15 catalysts in aqueous media. Biomass Conversion and
Biorefinery, 2019: 1-15.
8.
Li, G., Liu, W., Ye, C.,
Li, X. and Si, C. L. (2018). Chemocatalytic conversion of cellulose into key
platform chemicals. International Journal of Polymer Science, 2018:
1-20.
9.
Li, X., Zhang, L., Wang,
S. and Wu, Y. (2020). Recent advances in aqueous-phase catalytic conversions of
biomass platform chemicals over heterogeneous catalysts. Frontiers in
Chemistry, 7(948): 1-21.
10.
Xu, S., Yan, X., Bu, Q.
and Xia, H. (2017). Catalytic conversion of cellulose into polyols using
carbon-nanotube-supported monometallic Pd and bimetallic Pd-Fe catalysts. Cellulose,
24(6): 2403-2413.
11.
Yoshimura, A., Tochigi,
S. and Matsuno, Y. (2021). Fundamental study of palladium recycling using "dry
aqua regia" considering the recovery from spent auto-catalyst. Journal of
Sustainable Metallurgy, 7(1): 266-276.
12.
Kamal, P. N. S. M. M.,
Mohamad, N. I., Serit, M. E. A., Rahim, N. S. A., Jimat, N. I. and Alikasturi,
A. S. (2020). Study on the effect of reaction and calcination temperature
towards glucose hydrolysis using solid acid catalyst. Materials Today: Proceedings, 31(8):
282-286.
13.
Benkhaled,
M., Morin, S., Pichon, C., Thomazeau, C., Verdon, C. and Uzio, D. (2006).
Synthesis of highly dispersed palladium alumina supported particles: Influence
of the particle surface density on physico-chemical properties. Applied
Catalysis A: General, 312(1-2):
1-11.
14.
Yabushita,
M., Kobayashi, H., Hara, K. and Fukuoka, A. (2014). Quantitative evaluation of
ball-milling effects on the hydrolysis of cellulose catalysed by activated
carbon. Catalysis Science and Technology, 4(8): 2312-2317.
15.
Anderson,
I. E., Shircliff, R. A., MacAuley, C., Smith, D. K., Lee, B. G., Agarwal, S.,
Stradins, P. and Collins, R. T. (2012). Silanization of low-temperature-plasma
synthesized silicon quantum dots for production of a tunable, stable, colloidal
solution. Journal of Physical Chemistry C, 116(6): 3979-3987.
16.
Zhang,
H., Huang, H., Ji, Y., Qiao, Z., Zhao, C. and He, J. (2010). Preparation,
characterization, and application of magnetic Fe-SBA-15 mesoporous silica
molecular sieves. Journal of Automated Methods and Management in Chemistry,
2010(1463-9246): 323509.
17.
Amadine,
O., Essamlali, Y., Fihri, A., Larzek, M. and Zahouily, M. (2017b). Effect of
calcination temperature on the structure and catalytic performance of
copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Advances,
7(21): 12586-12597.
18.
Yadav,
M. K., Kothari, A. V. and Naik, D. G. (2009). Morphological silica-supported
acid catalyst for esterification of aliphatic fatty acid. Green Chemistry
Letters and Reviews, 2(3):181-197.
19.
Shah, K.
A., Parikh, J. K., Dholakiya, B. Z. and Maheria, K. C. (2014). Fatty acid
methyl ester production from acid oil using silica sulfuric acid: Process
optimization and reaction kinetics. Chemical Papers, 68(4): 472-483.
20.
Amadine,
O., Essamlali, Y., Fihri, A., Larzek, M. and Zahouily, M. (2017a). Effect of
calcination temperature on the structure and catalytic performance of
copper-ceria mixed oxide catalyst in phenol hydroxylation. RSC Advances,
7:12586-12597.
21.
Inmanee,
T., Pinthong, P. and Jongsomjit, B. (2017). Effect of calcination temperatures
and mo modification on nanocrystalline (γ-χ)-Al2O3
catalysts for catalytic ethanol dehydration. Journal of Nanomaterials, 2017(2011): 1-9.
22.
Rahmati,
M., Huang, B., Mortensen, M. K., Keyvanloo, K., Fletcher, T. H., Woodfield, B.
F., Hecker, W. C. and Argyle, M. D. (2018). Effect of different alumina
supports on performance of cobalt Fischer-Tropsch catalysts. Journal of
Catalysis, 359: 92-100.
23.
Ahlkvist,
J. (2013). Formic and levulinic acid
from cellulose via heterogeneous catalysis. Doctoral dissertation, Ume� Universitet.
24.
Klinghoffer,
N. B., Castaldi, M. J., Nzihou, A. (2012). Catalyst properties and catalytic
performance of char from biomass gasification. Industrial and Engineering
Chemistry Research, 51(40):
13113-13122.
25.
Fadoni,
M. and Lucarelli, L. (1999). Temperature programmed desorption, reduction,
oxidation and flow chemisorption for the characterisation of heterogeneous
catalysts. Theoretical aspects, instrumentation and applications. Studies in
Surface Science and Catalysis, 120:
177-225.
26.
Shim, W.
G., Lee, J. W. and Kim, S. C. (2008). Analysis of catalytic oxidation of aromatic
hydrocarbons over supported palladium catalyst with different pretreatments
based on heterogeneous adsorption properties. Applied Catalysis B:
Environmental, 84(1-2): 133-141.
27.
Yuan,
Z., Long, J., Xia, Y., Zhang, X. and Wang, T. (2016). Production of levulinic
acid from Pennisetum alopecuroides in
the presence of an acid catalyst. Bioresources, 11(2): 3511-3523.
28.
Watanabe,
M., Aizawa, Y., Iida, T., Aida, T. M., Levy, C., Sue, K. and Inomata, H. (2005).
Glucose reactions with acid and base catalysts in hot compressed water at 473
K. Carbohydrate Research, 340:
1925-1930.
29.
Liu, L.,
Li, Z., Hou, W. and Shen, H. (2018). Direct conversion of lignocellulose to
levulinic acid catalyzed by ionic liquid. Carbohydrate Polymers, 181(7): 778-78.