Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 119 - 129

 

 

 

 

CATALYTIC CONVERSION OF CELLULOSE TO LEVULINIC ACID USING SUPPORTED NOBLE METAL PALLADIUM CATALYST

 

(Penukaran Bermangkin dari Selulosa ke Asid Levulinik Menggunakan Mangkin Disokong Logam Adi Paladium)

 

Puteri Nurain Syahirah Megat Muhammad Kamal, Norzahir Sapawe, Amin Safwan Alikasturi*

 

Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology,

Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author:  aminsafwan@unikl.edu.my

 

 

Received: 15 September 2021; Accepted: 30 December 2021; Published:  25 February 2022

 

 

Abstract

In resolving the current energy crisis, it is vital to effectively use the abundant biomass to produce platform chemicals, for instance levulinic acid (LA). LA is very flexible for the formation of high value-added chemicals as it belongs to the family of carboxyl and ketone. This valuable platform chemical can be produced from cellulose (the most abundant biomass in nature). Palladium (Pd) as a noble metal was incorporated with  catalyst supports (silica-alumina; SiO2-Al2O3 and gamma-alumina; γ-Al2O3) by using wet impregnation method, aiming for 4 wt.% of noble metal on supports followed by catalyst calcination at 500 ˚C. The catalyst was characterized using Fourier-transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET). The effects of reaction parameters such as agitation speed, reaction temperature, and cellulose loading were investigated using this catalyst in a semi-batch reactor for 8 hours. The highest conversion of cellulose (73.9%) and yield of LA (43.3%) was achieved under these conditions: agitation speed of 1100 rpm, reaction temperature of 200 ˚C, and cellulose loading of 1.5 g with pre-reduction of Pd/SiO2-Al2O3 catalyst (surface area and pore volume up to 485.6 m2/g and 0.2459 cm3/g, respectively) at 150 ˚C and agitation speed of 1300 rpm (in 5 bars of hydrogen, H2 for 1 hour).

 

Keywords:  Pd/SiO2-Al2O3, cellulose, hydrolysis, levulinic acid

 

Abstrak

Dalam menyelesaikan krisis tenaga semasa, adalah sangat penting untuk menggunakan biojisim yang berkesan dalam menghasilkan bahan kimia platform seperti asid levulinik (LA). LA sangat fleksibel untuk pembentukan bahan kimia bernilai tinggi, kerana ia tergolong dalam keluarga karboksil dan keton. Bahan kimia platform yang berharga ini boleh dihasilkan dari selulosa (biojisim yang paling banyak terdapat di alam semula jadi). Paladium (Pd) sebagai logam adi boleh digabungkan dengan penampung mangkin (silica-alumina; SiO2-Al2O3 and gamma-alumina; γ-Al2O3) yang dihasilkan menggunakan kaedah impregnasi basah yang bertujuan untuk 4% logam adi pada penampung mangkin diikuti oleh kalsinasi mangkin pada suhu 500 ˚C. Mangkin dicirikan menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan Brunauer-Emmett-Teller (BET). Kajian mengenai pengaruh parameter reaksi seperti kelajuan pengadukan, suhu tindak balas, dan pemuatan selulosa disiasat menggunakan mangkin ini dalam reaktor semi-kelompok selama 8 jam. Penukaran selulosa tertinggi (73.9%) dan hasil LA (43.3%) dicapai dalam keadaan ini; kelajuan pengadukan 1100 rpm, suhu tindak balas 200 ˚C, dan pemuatan selulosa 1.5 g dengan pra-pengurangan mangkin Pd/SiO2-Al2O3 (luas permukaan dan isi pori 485.6 m2/g dan 0.2459 cm3/g, masing masing) pada suhu 150 ˚C dan kelajuan pengadukan 1300 rpm (dalam 5 bar hidrogen, H2 selama 1 jam).


Kata kunci:  Pd/SiO2-Al2O3, selulosa, hidrolisis, asid levulinik

 

 


Graphical Abstract



References

1.      Caretto, A. and Perosa, A. (2013). Upgrading of levulinic acid with dimethylcarbonate as solvent/ reagent. Sustainable Chemistry & Engineering, 1(8): 6-11.

2.      Dhepe, P. L. and Fukuoka, A. (2007). Cracking of cellulose over supported metal catalysts. Catalysis Surveys from Asia, 11(4): 186-191.

3.      Shrotri, A., Kobayashi, H. and Fukuoka, A. (2018). Cellulose depolymerization over heterogeneous catalysts. Accounts of Chemical Research, 51(3): 761-768.

4.      Peng, L., Lin, L., Zhang, J., Zhuang, J., Zhang, B. and Gong, Y. (2010). Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules, 15: 5258-5272.

5.      Signoretto, M., Taghavi, S., Ghedini, E. and Menegazzo, F. (2019). Catalytic production of levulinic acid (LA) from actual biomass. Molecules (Basel, Switzerland), 24(15): 1-20.

6.      Jeong, H., Jang, S., Hong, C. and Kim, S. (2016). Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid. Bioresource Technology, 225: 1-28.

7.    Thunyaratchatanon, C., Sinsakullert, W., Luengnaruemitchai, A. and Faungnawakij, K. (2019). 5-hydroxymethylfurfural production from hexose sugars using adjustable acid- and base-functionalized mesoporous SBA-15 catalysts in aqueous media. Biomass Conversion and Biorefinery, 2019: 1-15.

8.      Li, G., Liu, W., Ye, C., Li, X. and Si, C. L. (2018). Chemocatalytic conversion of cellulose into key platform chemicals. International Journal of Polymer Science, 2018: 1-20.

9.      Li, X., Zhang, L., Wang, S. and Wu, Y. (2020). Recent advances in aqueous-phase catalytic conversions of biomass platform chemicals over heterogeneous catalysts. Frontiers in Chemistry, 7(948): 1-21.

10.   Xu, S., Yan, X., Bu, Q. and Xia, H. (2017). Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd-Fe catalysts. Cellulose, 24(6): 2403-2413.

11.   Yoshimura, A., Tochigi, S. and Matsuno, Y. (2021). Fundamental study of palladium recycling using "dry aqua regia" considering the recovery from spent auto-catalyst. Journal of Sustainable Metallurgy, 7(1): 266-276.

12.   Kamal, P. N. S. M. M., Mohamad, N. I., Serit, M. E. A., Rahim, N. S. A., Jimat, N. I. and Alikasturi, A. S. (2020). Study on the effect of reaction and calcination temperature towards glucose hydrolysis using solid acid catalyst. Materials Today: Proceedings, 31(8): 282-286.

13.   Benkhaled, M., Morin, S., Pichon, C., Thomazeau, C., Verdon, C. and Uzio, D. (2006). Synthesis of highly dispersed palladium alumina supported particles: Influence of the particle surface density on physico-chemical properties. Applied Catalysis A: General, 312(1-2): 1-11.

14.   Yabushita, M., Kobayashi, H., Hara, K. and Fukuoka, A. (2014). Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catalysis Science and Technology, 4(8): 2312-2317.

15.   Anderson, I. E., Shircliff, R. A., MacAuley, C., Smith, D. K., Lee, B. G., Agarwal, S., Stradins, P. and Collins, R. T. (2012). Silanization of low-temperature-plasma synthesized silicon quantum dots for production of a tunable, stable, colloidal solution. Journal of Physical Chemistry C, 116(6): 3979-3987.

16.   Zhang, H., Huang, H., Ji, Y., Qiao, Z., Zhao, C. and He, J. (2010). Preparation, characterization, and application of magnetic Fe-SBA-15 mesoporous silica molecular sieves. Journal of Automated Methods and Management in Chemistry, 2010(1463-9246): 323509.

17.   Amadine, O., Essamlali, Y., Fihri, A., Larzek, M. and Zahouily, M. (2017b). Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Advances, 7(21): 12586-12597.

18.   Yadav, M. K., Kothari, A. V. and Naik, D. G. (2009). Morphological silica-supported acid catalyst for esterification of aliphatic fatty acid. Green Chemistry Letters and Reviews, 2(3):181-197.

19.   Shah, K. A., Parikh, J. K., Dholakiya, B. Z. and Maheria, K. C. (2014). Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics. Chemical Papers, 68(4): 472-483.

20.   Amadine, O., Essamlali, Y., Fihri, A., Larzek, M. and Zahouily, M. (2017a). Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalyst in phenol hydroxylation. RSC Advances, 7:12586-12597.

21.   Inmanee, T., Pinthong, P. and Jongsomjit, B. (2017). Effect of calcination temperatures and mo modification on nanocrystalline (γ-χ)-Al2O3 catalysts for catalytic ethanol dehydration. Journal of Nanomaterials, 2017(2011): 1-9.

22.   Rahmati, M., Huang, B., Mortensen, M. K., Keyvanloo, K., Fletcher, T. H., Woodfield, B. F., Hecker, W. C. and Argyle, M. D. (2018). Effect of different alumina supports on performance of cobalt Fischer-Tropsch catalysts. Journal of Catalysis, 359: 92-100.

23.   Ahlkvist, J. (2013). Formic and levulinic acid from cellulose via heterogeneous catalysis. Doctoral dissertation, Ume� Universitet.

24.   Klinghoffer, N. B., Castaldi, M. J., Nzihou, A. (2012). Catalyst properties and catalytic performance of char from biomass gasification. Industrial and Engineering Chemistry Research, 51(40): 13113-13122.

25.   Fadoni, M. and Lucarelli, L. (1999). Temperature programmed desorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts. Theoretical aspects, instrumentation and applications. Studies in Surface Science and Catalysis, 120: 177-225.

26.   Shim, W. G., Lee, J. W. and Kim, S. C. (2008). Analysis of catalytic oxidation of aromatic hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties. Applied Catalysis B: Environmental, 84(1-2): 133-141.

27.   Yuan, Z., Long, J., Xia, Y., Zhang, X. and Wang, T. (2016). Production of levulinic acid from Pennisetum alopecuroides in the presence of an acid catalyst. Bioresources, 11(2): 3511-3523.

28.   Watanabe, M., Aizawa, Y., Iida, T., Aida, T. M., Levy, C., Sue, K. and Inomata, H. (2005). Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research, 340: 1925-1930.

29.   Liu, L., Li, Z., Hou, W. and Shen, H. (2018). Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohydrate Polymers, 181(7): 778-78.