Malaysian Journal of Analytical Sciences Vol 26 No 1 (2022): 109 - 118

 

 

 

 

THE CONJUGATION AND CHARACTERISATION OF THERMORESONSIVE POLY (N-ISOPROPYLACRYLAMIDE) WITH TERNATIN BIOMOLECULE

 

(Konjugasi dan Pencirian Poli (N-Isopropilakrilamida) dengan Biomolekul Ternatin)

 

Adrina Zulkifli, Farahiyah Najah Ab Samad, Nukman Ameen Rosli, Nurul Aina Jamaluddin, Nor Nadiah Mohamad Yusof, Noor Faizah Che Harun*

 

Green Chemistry and Sustainable Engineering Technology, Polymer Technology Section,

Universiti Kuala Lumpur (UniKL) MICET, Lot 1988, Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author: noorfaizah@unikl.edu.my

 

 

Received: 15 September 2021; Accepted: 4 January 2022; Published: 25 February 2022

 

 

Abstract

Poly (N-isopropylacrylamide) (PNIPAAm) is a well-known thermoresponsive polymer that shows a reversible coil-to-globule transition at the lower critical solution temperature (LCST) (32 oC) in aqueous solution. Chemically modified PNIPAAm with hydrophilic/hydrophobic compound will tune its LCST. Below the LCST, PNIPAAm and its conjugate behave as an extended coil form in an aqueous solution, whereas it shrinks into a globule form above the LCST. In this study, a direct conjugate of PNIPAAm with a ternatin biomolecule and their physicochemical characterizations were investigated. Ternatin biomolecule is an anti-adipogenic cyclic peptide that has a potential as a new treatment approach for obesity and metabolic disorders. Poly (N-isopropylacrylamide)-chain transfer agent (PNIPAAm-CTA) was synthesized through reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(Dodecylthiocarbonothioyltho)-2-methylpropanoic acid (DDMAT) as chain transfer reagent. One end-group of PNIPAAm-CTA was subsequently modified with maleimide to form PNIPAAm-Maleimide through aminolysis reaction. Thereafter, a carboxylic end-group of PNIPAAm-Maleimide was directly conjugated with a hydroxyl group of ternatin biomolecule (PNIPAAm-Ternatin) through esterification method. The chemical structure, molecular weight (Mw) and molecular weight distribution (Mw/Mn) of PNIPAAm were determined through the proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared (FTIR) and size exclusion chromatography (SEC) measurements. Moreover, the LCST of PNIPAAm and its conjugate were determined through light scattering intensity analysis. The results indicated that upon heating the solutions of PNIPAAm and its conjugates in 10 mM HEPES solution pH 7.4 at 25 oC-40 oC, PNIPAAm-CTA, PNIPAAm-Maleimide and PNIPAAm-Ternatin solutions started to increase their light intensities at 32 oC, 34 oC and 35 oC, respectively. In conclusion, chemical structure modification of PNIPAAm could tune their LCST.

 

Keywords: poly (n-isopropylacrylamide), raft polymerization, ternatin biomolecule, conjugation, lower critical solution temperature

 

Abstrak

N-isopropilakrilamida) (PNIPAAm) adalah polimer termoresponsif terkenal yang menunjukkan peralihan gegelung-ke-globule yang boleh berbalik pada suhu larutan kritikal rendah (LCST) (32 oC) dalam larutan akueus. PNIPAAm yang diubahsuai secara kimia dengan sebatian hidrofilik/hidrofobik akan mengubahkan LCSTnya. Pada suhu di bawah LCST, PNIPAAm dan konjugatnya berbentuk gegelung di dalam larutan akueus, manakala ia akan mengecut menjadi bentuk globul pada suhu di atas LCST Dalam kajian ini, konjugasi secara langsung PNIPAAm dengan biomolekul ternatin dan sifat fizikokimianya dikaji. Biomolekul ternatin adalah peptida siklik anti-adipogenik. Ia berpotensi sebagai rawatan baharu untuk obesiti dan gangguan metabolik. Poli (N-isopropilakrilamida)-agen pemindahan rantai (PNIPAAm-CTA) disintesis melalui polimerisasi radikal hidup menggunakan asid 2-(dodekilthiokarbonothioiltho)-2-metilpropanoik(DDMAT) sebagai reagen pemindahan rantai. Selepas itu, satu kumpulan akhir pada PNIPAAm-CTA diubahsuai dengan maleimida untuk membentuk PNIPAAm-Maleimida melalui tindak balas aminolisis. Kemudian, kumpulan akhir karboksilik PNIPAAm-Maleimida dihubungkan secara langsung dengan kumpulan hidroksil pada biomolekul ternatin (PNIPAAm-Ternatin) melalui kaedah esterifikasi. Struktur kimia, berat molekul (Mw) dan taburan berat molekul (Mw/ Mn) bagi PNIPAAm dikaji melalui analisis proton resonans magnetik nuklear (1H-NMR), spektroskopi inframerah Fourier transformasi (FTIR) dan kromatografi ekslusi saiz (SEC). Seterusnya, sifat LCST bagi PNIPAAm dan konjugatnya dikaji melalui analisis intensiti penyerakan cahaya. Hasilnya, setelah larutan PNIPAAm dan konjugat dalam larutan HEPES 10 mM pH 7.4 dipanaskan pada suhu 25-40 oC, intensiti cahaya bagi PNIPAAm-CTA, PNIPAAm-Maleimida dan PNIPAAm-Ternatin mula meningkat pada 32 oC, 34 oC dan 35 oC. Kesimpulannya, pengubahsuaian struktur kimia PNIPAAm dapat mengubah sifat LCST polimer.

 

Kata kunci:  poli (n-isopropilakrilamida), pempolimeran raft, biomolekul ternatin, konjugasi, suhu larutan kritikal rendah

 

 

 


Graphical Abstract



References

1.      Hoffman, A. S. and Stayton, P. S. (2007). Conjugates of stimuli-responsive polymers and proteins. Progress in Polymer Science, 32(8-9): 922-932.

2.      Martens, P. J., Bryant, S. J. and Anseth, K. S. (2003). Tailoring the degradation of hydrogels formed from multivinyl poly (ethylene glycol) and poly (vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 4(2): 283-292.

3.      Tan, L., Liu, J., Zhou, W., Wei, J. and Peng, Z. (2014). A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles. Materials Science and Engineering: C, 45(1): 524-529.

4.      Tian, Y., Wei, X., Wang, Z. J., Pan, P., Li, F., Ling, D., Wu, Z. L. and Zheng, Q. (2017). A facile approach to prepare tough and responsive ultrathin physical hydrogel films as artificial muscles. ACS Applied Materials & Interfaces, 9(39): 34349-34355.

5.      Bajpai, A., Shukla, S. K., Bhanu, S. and Kankane, S. (2008). Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33(11), 1088-1118.

6.      Xiong, X., Del Campo, A. and Cui, J. (2019). Photoresponsive polymers. Smart Polymers and Their Applications, 1: 87-153.

7.      Swift, T., Swanson, L., Geoghegan, M. and Rimmer, S. (2016). The pH-responsive behaviour of poly (acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter, 12: 2542-2549.

8.  Elbert, J., Mersini, J., Vilbrandt, N., Lederle, C., Kraska, M., Gallei, M., Stuhn, B., Plenio, H. and Rehahn, M. (2013). Reversible activity modulation of surface-attached grubbs second generation type catalysts using redox-responsive polymers. Macromolecules, 46(11): 4255-4267.

9.      Lustig, S. R., Everlof, G. J. and Jaycox, G. D. (2001). Stimuli-responsive polymers. 5. Azobenzene modified polyaramides containing atropisomeric binaphthyl linkages: Tuning chiroptical behavior with light and heat. Macromolecules, 34(7): 2364-2372.

10.   Schild, H. (1992). Poly(n-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science, 17(2): 163-249.

11.   Abbott, L. J., Tucker, A. K. and Stevens, M. J. (2015). Single chain structure of a poly(n-isopropylacrylamide) surfactant in water. The Journal of Physical Chemistry B, 119 (9): 3837-3845.

12.   Hirokawa, Y. and Tanaka, T. (1984). Volume phase transition in a nonionic gel. The Journal of Chemical Physics, 81 (12): 6379-6380.

13.   Cook, M. T., Haddow, P., Kirton, S. B. and McAuley, W. J. (2020). Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Advanced Functional Materials, 31(8): 2008123.

14.   Irani, C. A. and Cozewith, C. (1986). Lower critical solution temperature behavior of ethylene propylene copolymers in multicomponent solvents. Journal of Applied Polymer Science, 31(6): 1879-1899.

15.   Maeda, Y., Higuchi, T. and Ikeda, I. (2000). Change in hydration state during the coil−globule transition of aqueous solutions of poly(n-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir, 16(19): 7503-7509.

16.   Garc�a-Pe�as, A., Biswas, C. S., Liang, W., Wang, Y., Yang, P. and Stadler, F. J. (2019). Effect of hydrophobic interactions on lower critical solution temperature for poly (n-isopropylacrylamide-co-dopamine methacrylamide) copolymers. Polymers, 11 (6): 991.

17.   Ashbaugh, H. S. and Paulaitis, M. E. (2006). Monomer hydrophobicity as a mechanism for the LCST behavior of poly (ethylene oxide) in water. Industrial & Engineering Chemistry Research, 45(16): 5531-5537.

18.   Che Harun, N., Takemoto, H., Nomoto, T., Tomoda, K., Matsui, M. and Nishiyama, N. (2016). Artificial control of gene silencing activity based on siRNA conjugation with polymeric molecule having coil-globule transition behavior. Bioconjugate Chemistry, 27(9): 1961-1964.

19.   Nair, V., Bang, W. Y., Schreckinger, E., Andarwulan, N. and Cisneros-Zevallos, L. (2015). Protective role of ternatin anthocyanins and quercetin glycosides from butterfly pea (Clitoria ternatea Leguminosae) blue flower petals against lipopolysaccharide (LPS)-induced inflammation in macrophage cells. Journal of Agricultural and Food Chemistry, 63(28), 6355-6365.

20.   Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T. and Taunton, J. (2015). Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1a ternary complex. eLife4: e10222.

21.   Kobayashi, M., Kawashima, H., Takemori, K., Ito, H., Murai, A., Masuda, S., Yamada, K., Uemura, D. and Horio, F. (2012). Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-AY mice. Biochemical and Biophysical Research Communications, 427(2): 299-304.

22.   Kuo, S.-W., Hong, J.-L., Huang, Y.-C., Chen, J.-K., Fan, S.-K., Ko, F.-H. and Chang, F.-C. (2012). Star poly(n-isopropylacrylamide) tethered to polyhedral oligomeric silsesquioxane (POSS) nanoparticles by a combination of ATRP and click chemistry. Journal of Nanomaterials, 2012: 1-10.

23.   Coronado, R., Pekerar, S., Lorenzo, A. T. and Sabino, M. A. (2010). Characterization of thermo-sensitive hydrogels based on poly(n-isopropylacrylamide)/hyaluronic acid. Polymer Bulletin, 67(1): 101-124.

24.   Ma, Y.-M., Wei, D.-X., Yao, H., Wu, L.-P. and Chen, G.-Q. (2016). Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate-graft-poly(n-isopropylacryl amide) Biomacromolecules, 17(8): 2680-2690.

25.   Avila, A., Chinchilla, R. and N�jera, C. (2012). Enantioselective Michael addition of α,α-disubstituted aldehydes to maleimides organocatalyzed by chiral primary amine-guanidines. Tetrahedron: Asymmetry, 23(24): 1625-1627.

26.   Ho, T. H., Levere, M., Soutif, J.-C., Montembault, V., Pascual, S. and Fontaine, L. (2011). Synthesis of thermoresponsive oxazolone end-functional polymers for reactions with amines using Thiol-Michael addition �click� chemistry. Polymer Chemistry, 2(6): 1258.

27.   Lai, J. T., Filla, D. and Shea, R. (2002). Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules, 35(18): 6754-6756.

28.   Roach, P., McGarvey, D., Lees, M. and Hoskins, C. (2013). Remotely triggered scaffolds for controlled release of pharmaceuticals.  International Journal of Molecular Sciences, 14(4): 8585-8602.

29.   Willcock, H. and O'Reilly, R. K. (2010). End group removal and modification of RAFT polymers. Polymer Chemistry, 1(2): 149-157.

30.   Shen, G. (2004). X-ray photoelectron spectroscopy and infrared spectroscopy study of maleimide-activated supports for immobilization of oligodeoxyribonucleotides. Nucleic Acids Research, 32(20): 5973-5980.

31.   Icriverzi, M., Rusen, L., Sima, L. E., Moldovan, A., Brajnicov, S., Bonciu, A., Mihailescu, N., Dinescu, M., Cimpean, A., Roseanu, A. and Dinca, V. (2018). In vitro behavior of human mesenchymal stem cells on poly (n-isopropylacrylamide) based biointerfaces obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 440: 712-724.

32.   Smith, B. (2020). The C=O bond, Part VI: Esters and the rule of three. Access from https://www.spectroscopyonline.com/view/co-bon-part-vi-esters-and-rule-three. [Access online on 12 August 2021].

33.   Ludin, N. (2018). Utilization of natural dyes from zingiber officinale leaves and Clitoria ternatea flowers to prepare new photosensitisers for dye-sensitised solar cells. International Journal of Electrochemical Science, (1): 7451-7465.

34.   Ramesh, S., Sivasamy, A. and Kim, J. (2012). Synthesis and characterization of maleimide-functionalized polystyrene-SiO2/TiO2 hybrid nanocomposites by sol�gel process. Nanoscale Research Letters, 7(1): 350.

35.   Chung, J., Yokoyama, M., Yamato, M., Aoyagi, T., Sakurai, Y. and Okano, T. (1999). Thermo-responsive drug delivery from polymeric micelles constructed using B lock copolymers of poly(n-isopropylacrylamide) and poly(butylmethacrylate). Journal of Controlled Release, 62(1-2), 115-127.

36.   Yang, L., Fan, X., Zhang, J. and Ju, J. (2020). Preparation and characterization of thermoresponsive poly (n-isopropylacrylamide) for cell culture applications. Polymers, 12(2): 389.