Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 940 - 948
CONJUGATION OF TERNATIN BIOMOLECULE WITH
POLYETHYLENE GLYCOL ENHANCED CONJUGATES SOLUBILITY AND STABILITY: SYNTHESIS AND
PHYSICOCHEMICAL CHARACTERISATION
(Konjugasi
diantara Molekul Ternatin dan Polietilena Glikol dengan Penambahbaikan Sifat
Keterlarutan dan Kestabilan: Sintesis dan Pencirian Fizikokimia)
Nurul Aina Jamaludin and Noor Faizah Che Harun*
Green Chemistry and Sustainable Engineering
Technology, Polymer Engineering Technology Section,
Universiti Kuala Lumpur, Branch Campus
Malaysian Institute of Chemical and Bioengineering Technology,
78000 Alor Gajah, Melaka, Malaysia
*Corresponding author: noorfaizah@unikl.edu.my
Received: 15 September 2021; Accepted: 29 October 2021;
Published: 27 December 2021
Abstract
Ternatin, a highly N-methylated cyclic
heptapeptide has promising potential for cancer treatment. However, its
efficiency in biological treatment is limited due to its poor solubility and
high degradation in aqueous solution. In this present study, methoxy
polyethylene glycol (mPEG)-ternatin conjugate abbreviated as mPEG-ternatin was
synthesised by direct esterification between a carboxyl end group of methoxy
polyethylene glycol, mPEG-COOH and a hydroxyl group in the β-position of ternatin
biomolecule which enhanced its solubility and decreased the degradation of ternatin
biomolecule in aqueous solution while retaining its inherent anticancer
properties. To this end, mPEG-ternatin linked through ester bond was further
confirmed using various analytical techniques including FTIR, UV-Vis
spectroscopy and HPLC. Importantly, in the solubility and stability studies,
the solubility of mPEG-ternatin conjugate was found to be 8% higher than
unconjugated ternatin. Furthermore, mPEG-ternatin conjugate exhibited a
decreasing percentage of degradation of ternatin biomolecule by 1.9-fold lower
than unconjugated ternatin after incubation in 10 mM HEPES pH 7.4 buffer
solution at 37 °C for 6 hours. Ultimately, the enhanced properties of ternatin
biomolecule by conjugating with a mPEG segment is expected to become new
fundamental study in related fields as well as provide new insight into cancer
treatments.
Keywords: polyethylene glycol, ternatin, conjugation, esterification,
solubility
Abstrak
Ternatin,
dengan kandungan N-metil siklik heptapeptida yang tinggi mempunyai potensi
untuk rawatan kanser. Walau bagaimanapun, keberkesanannya terbatas dalam
rawatan biologi disebabkan rendah keterlarutan dan kestabilannya di dalam air.
Dalam kajian ini, konjugat diantara metoksi polietilena glikol (mPEG) dan ternatin,
mPEG-ternatin telah disediakan melalui proses pengesteran secara
langsung diantara kumpulan karboksil dari metoksi polietilena glikol, mPEG-COOH dan kumpulan hidroksil di posisi β dalam biomolekul ternatin. Hal
ini demikian, untuk meningkatkan keterlarutan dan kestabilan molekul ternatin
di dalam larutan akues tanpa mengganggu sifat anti kansernya. PEG-ternatin yang
dihubungkan melalui ikatan ester disahkan melalui pelbagai teknik analisa yang
telah dilakukan iaitu FTIR, spektroskopi UV-Vis dan HPLC. Hasil daripada kajian
ini, keterlarutan biomolekul ternatin di dalam konjugat PEG-ternatin didapati
⁓8% lebih tinggi daripada molekul ternatin bebas. Sementara itu, melalui
ujian kestabilan konjugat, PEG-ternatin menunjukkan penurunan peratusan degradasi
molekul Ternatin sebanyak 1.9 kali ganda lebih rendah daripada molekul ternatin
bebas. Kesimpulannya, penambahbaikan sifat molekul ternatin dengan kaedah
konjugasi secara terus dengan molekul mPEG akan memberikan peluang baru dalam
rawatan kanser.
Kata
kunci: polietilena
glikol, ternatin, konjugat, esterifikasi, keterlarutan, kestabilan
References
1.
Shu, J. Y., Panganiban,
B. and Xu, T. (2013). Peptide-polymer conjugates: From fundamental science to
application. Annual Review of Physical Chemistry, 64(1): 631-657.
2.
Dey, S., Ambattu, L. A.,
Hari, P. R., Rekha, M. R. and Sreenivasan, K. (2015). Glutathione-bearing
fluorescent polymer-curcumin conjugate enables simultaneous drug delivery and
label-free cellular imaging. Polymer, 75: 25-33.
3.
Ito, M., Ito, J.,
Kitazawa, H., Shimamura, K., Fukami, T., Tokita, S., Shimokawa, K., Yamada, K.,
Kanatani, A. and Uemura, D. (2009). (-)-Ternatin inhibits adipogenesis and
lipid metabolism in 3T3-L1 cells. Peptides, 30(6): 1074-1081.
4.
Shimokawa, K., Yamada,
K., Kita, M. and Uemura, D. (2007). Convergent synthesis and in vivo inhibitory
effect on fat accumulation of (-)-ternatin, a highly N-methylated cyclic
peptide. Bioorganic and Medicinal Chemistry Letters, 17(16): 4447-4449.
5.
Shimokawa, K., Iwase, Y.,
Miwa, R., Yamada, K. and Uemura, D. (2008). Whole structure-activity
relationships of the fat-accumulation inhibitor (-)-ternatin: Recognition of
the importance of each amino acid residue. Journal of Medicinal Chemistry,
51(19): 5912-5914.
6.
Shimokawa, K., Yamada,
K., Ohno, O., Oba, Y. and Uemura, D. (2009). Design, synthesis, and biological
evaluation of biotin-labeled (-)-ternatin, a potent fat-accumulation inhibitor
against 3T3-L1 adipocytes. Bioorganic and Medicinal Chemistry Letters,
19(1): 92-95.
7.
Che Harun, N. F.,
Takemoto, H., Nomoto, T., Tomoda, K., Matsui, M., and Nishiyama, N. (2016).
Artificial control of gene silencing activity based on sirna conjugation with
polymeric molecule having coil-globule transition behavior. Bioconjugate
Chemistry, 27(9): 1961-1964.
8.
Liechty, W. B., Kryscio,
D. R., Slaughter, B. V., and Peppas, N. A. (2010). Polymers for drug delivery
systems. Annual Review of Chemical and Biomolecular Engineering, 1(1):
149-173.
9.
Xu, M., Qian, J., Liu, X., Liu, T. and
Wang, H (2015). Stimuli-responsive PEGylated prodrugs for targeted doxorubicin
delivery. Materials Science Engineering, 50: 341-347.
10.
Böttger, R., Knappe, D.,
and Hoffmann, R (2016). Readily adaptable release kinetics of prodrugs using
protease-dependent reversible PEGylation. Journal Control Release, 230:
88-94.
11.
Böttger, R., Knappe, D.
and Hoffmann, R (2018). PEGylated prodrugs of antidiabetic peptides amylin and
GLP-1. J. Control, 292: 58–66.
12.
Shimokawa, K., Iwase, Y.,
Yamada, K., and Uemura, D. (2008). Synthesis and inhibitory effect on fat
accumulation of (-)-ternatin derivatives modified in the β-OH-d-Leu7
moiety. Organic and Biomolecular Chemistry, 6(1): 58-60.
13.
Kawazoe, Y., Tanaka, Y.,
Omura, S. and Uemura, D. (2014). Design, synthesis, and evaluation, derivatives
of the fat-accumulation inhibitor ternatin: toward ternatin molecular
probes. Tetrahedron Letters, 55(32): 4445-4447.
14.
Nair, V., Bang, W. Y.,
Schreckinger, E., Andarwulan, N. and Cisneros-Zevallos, L. (2015). Protective
role of ternatin anthocyanins and quercetin glycosides from butterfly pea (Clitoria
ternatea Leguminosae) blue flower petals against lipopolysaccharide
(LPS)-induced inflammation in macrophage cells. Journal of Agricultural and
Food Chemistry, 63(28): 6355-6365.
15.
Banerjee, S. S., Aher,
N., Patil, R. and Khandare, J. (2012). Poly(ethylene glycol)-prodrug
conjugates: Concept, design, and applications. Journal of Drug Delivery,
2012: 1-17.
16.
Knop, K., Hoogenboom, R.,
Fischer, D. and Schubert, U. S. (2010). Poly(ethylene glycol) in drug delivery:
Pros and cons as well as potential alternatives. Angewandte Chemie -
International Edition, 49: 6288-6308.
17.
Bayard, F. J. C.,
Thielemans, W., Pritchard, D. I., Paine, S. W., Young, S. S., Bäckman, P.,
Ewing, P., and Bosquillon, C. (2013). Polyethylene glycol-drug ester conjugates
for prolonged retention of small inhaled drugs in the lung. Journal of
Controlled Release, 171(2): 234-240.
18.
Gu, Y., Zhong, Y., Meng,
F., Cheng, R., Deng, C. and Zhong, Z. (2013). Acetal-linked paclitaxel prodrug
micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules,
14(8): 2772-2780.
19.
Stompor, M., Switalska,
M., Bajek, A., and Wietrzyk, J. (2019). Influence of amide versus ester
linkages on the anticancer properties of the new flavone-biotin conjugates. Zeitschrift
Fur Naturforschung - Section C Journal of Biosciences, 74(7–8): 193-200.
20.
Iwakiri, T., Mase, S.,
Murakami, T., Matsumoto, M., Hamada, H., Nakayama, T. and Ozaki, S. I. (2013).
Glucosylation of hydroxyflavones by glucosyltransferases from Phytolacca
americana. Journal of Molecular Catalysis B: Enzymatic, 90: 61-65.