Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 949 - 958
PURIFICATION
OF XANTHORRHIZOL AND SCREENING OF SELECTED MICROBES FOR ITS BIOTRANSFORMATION
(Penulenan
Xantorizol dan Pengesanan Mikrob Terpilih untuk Biotransformasinya)
Nurul Iman Aminudin1*, Nadia Farhana Yahya1,
Zaima Azira Zainal Abidin2, Deny Susanti1, Muhammad Taher3
1Department of
Chemistry, Kulliyyah of Science
2 Department of
Biotechnology, Kulliyyah of Science
International Islamic University Malaysia, 25200
Kuantan, Pahang Darul Makmur, Malaysia
3 Department of
Pharmaceutical Technology, Kulliyyah of Pharmacy
International Islamic University Malaysia, P. O. Box 141, 25710
Kuantan, Pahang Darul Makmur, Malaysia
*Corresponding author: nuruliman@iium.edu.my
Received: 5 September 2021;
Accepted: 11 November 2021; Published: 27
December 2021
Abstract
Xanthorrhizol is a
bisabolene-type sesquiterpenoid and is present abundantly in the essential oil
of Curcuma xanthorrhiza (temulawak). It was reported to possess various
pharmacological activities, including antimicrobial, anti-inflammatory,
antioxidant, antihyperglycemic, antihypertensive, and antiplatelet activities.
To further evaluate its pharmacological potency based on the structure-activity
relationship, a large amount of xanthorrhizol needs to be purified and
subjected to chemical synthesis to yield xanthorrhizol analogues. Common
approaches to synthesise the analogues are through chemical reactions.
Biotransformation utilising microbes as biocatalysts is one of the green
alternatives to replace chemical synthesis methods for producing xanthorrhizol analogues.
In this study, xanthorrhizol was purified from the crude essential oil by
utilising repetitive chromatographic separation and two-step chemical synthesis
involving acetylation and hydrolysis reactions. The purification successfully
yielded xanthorrhizol with a purity of 98.1%, as indicated by gas
chromatography-mass spectrometry (GC-MS) analysis. The structure of
xanthorrhizol was also characterised using nuclear magnetic resonance
spectroscopy (NMR). Four selected microbes (Aspergillus niger, Streptomyces
sp. K1-18, K3-20, and K7-11) were screened for the biotransformation of
xanthorrhizol. The results from thin layer chromatography (TLC) and GC-MS
showed that only A. niger could biotransform xanthorrhizol into its
derivatives.
Keywords: xanthorrhizol, biotransformation, Aspergillus
niger, Streptomyces sp., sesquiterpene
Abstrak
Xantorizol
adalah seskuiterpen jenis bisabolen dan hadir dengan banyak di dalam minyak
pati Curcuma xanthorrhiza (temulawak). Ia telah dilaporkan mempunyai
pelbagai aktiviti farmakologi termasuk antimikrob, anti-radang, antioksidan,
anti-hiperglisemik, anti-hipertensi dan antiplatlet. Untuk menilai lebih lanjut
potensi farmakologi berdasarkan hubungan struktur-aktiviti, xantorizol dalam
jumlah yang banyak perlu ditulenkan dan perlu melalui kaedah sintesis kimia
yang membolehkan analog xantorizol dihasilkan. Pendekatan biasa untuk sintesis
analog adalah melalui tindak balas kimia. Biotransformasi menggunakan mikrob
sebagai biopemangkin merupakan satu alternatif hijau menggantikan kaedah
sinstesis kimia yang boleh menghasilkan analog xantorizol. Dalam kajian ini,
xantorizol telah ditulenkan daripada minyak pati mentah menggunakan pemisahan
kromatografi berulang dan dua langkah sintesis kimia melibatkan tindak balas
asetilasi dan hidrolisis. Proses penulenan telah berjaya menghasilkan
xantorizol dengan ketulenan 98.1% seperti ditunjukkan oleh analisis
gas-kromatografi-jisim spektrometri (GK-JS). Struktur xantorizol juga telah
diperincikan menggunakan resonans magnetik nuklear (RMN) spektroskopi. Empat
mikrob terpilih, (Aspergillus niger, Streptomyces sp. K1-18, K3-20
dan K7-11) telah disaring untuk biotransformasi xantorizol. Keputusan
kromatografi lapisan nipis (KLN) dan JK-MS telah menunjukkan cuma A. niger berupaya
melakukan biotransformasi xantorizol kepada terbitannya.
Kata kunci: xantorizol,
biotransformasi, Aspergillus niger, Streptomyces sp., seskuiterpen
References
1. Dosoki, N. S. and Setzer, W. N. (2018). Chemical
composition and biological activities of essential oils of Curcuma
Species. Nutrients, 10(1196): 1-42.
2. Jantan, I., Saputri, F. C., Qaisar, M. N. and Buang,
F. (2012). Correlation between chemical composition of Curcuma
domestica and Curcuma xanthorrhiza and their antioxidant effect on
human low-density lipoprotein oxidation. Evidence-Based Complementary and
Alternative Medicine. 2012: 1-10.
3. Shahid, M., Azfaralariff, A., Law, D., Najm, A. A.,
Sanusi, S. A., Lim, S. J., Cheah, Y. H. and Fazry, S. (2021). Comprehensive
computational target fishing approach to identify xanthorrhizol putative
targets. Scientific Reports, 11(1594): 1-11.
4. Hegazy,
M.-E. F., Elshamy, A. I., Mohamed, T. A., Hussien, T. A., Helaly, S. E.,
Abdel-Azim, N. S. Shams, K. A., Shahat,
A. A., Tawfik, W. A., Shahen, A. M., Debbab, A., El Saedi, H. R., Mohamed, A.
E.-H. H., Hammouda, F. M., Sakr, M., Paré, P. W. and Efferth, T. (2020).
Terpenoid bio-transformations and applications via cell/organ cultures: A
systematic review. Critical Reviews in Biotechnology, 40(1): 64-82.
5. Aminudin,
N. I., Ridzuan, M., Darnis, D. S. and Zainal A. Z. A. (2021). Biotransformation
of sesquiterpenoids: A recent insight. Journal of Asian Natural
Products Research, 2021: 1-44.
6. Hegazy, M. E., Mohamed, T. A., ElShamy, A. I.,
Mohamed, A. E., Mahalel, U. A., Reda, E. H., Shaheen, A. M., Tawfik, W. A.,
Shahat, A. A., Shams, K. A., Abdel-Azim, N. S. and Hammouda, F. M. (2015).
Microbial biotransformation as a tool for drug development based on natural
products from mevalonic acid pathway: A review. Journal of Advanced
Research, 6(1): 17-33.
7. Chattopadhyay,
P., Banerjee, G. and Sen, S. K. (2018). Cleaner production of vanillin through
biotransformation of ferulic acid esters from agroresidue by Streptomyces
sannanensis. Journal of Cleaner Production, 182: 272-279.
8. Wu,
C., Zhu, H., van Wezel, G. P. and Choi, Y. H. (2016). Metabolomics-guided
analysis of isocoumarin production by Streptomyces species MBT76 and
biotransformation of flavonoids and phenylpropanoids. Metabolomics, 12(5):
1-11.
9. Zhang,
D., Tao, X., Gu, G., Wang, Y., Zhao, W., Zhao, W., Ren, Y., Dai, S. and Yu, L.
(2021) Microbial transformation of neo-clerodane diterpenoid, scutebarbatine F,
by Streptomyces sp. CPCC 205437. Frontiers in Microbiology, 12(662321):
1-15.
10. Parshikov,
I.A. and Sutherland, J. B. (2014). The use of Aspergillus niger cultures
for biotransformation of terpenoids. Process Biochemistry, 49(12):
2086-2100.
11. Lima,
M. A. S., de Oliveira, M. C. F., Pimenta, A. T. A. and Uchôa, P. K. S. (2019).
Aspergillus niger: A hundred years
of contribution to the natural products chemistry. Journal of Brazilian
Chemical Society, 30(10): 2029-2059.
12. Arturo,
C.-F. and Guillermo, D. (2017). Sesquiterpene lactones by filamentous fungi.
Cytotoxic evaluations. Chemistry & Biodiversity, 14(1): 1-12.
13. Malek,
N. A., Zainuddin, Z., Chowdhury, A. J. K. and Abidin, Z. Z. A. (2015).
Diversity and antimicrobial activity of mangrove soil Actinomycetes
isolated from Tanjung Lumpur, Kuantan. Jurnal Teknologi. 77 (25): 37-43.
14. Spangenberg, B., Poole, C. F. and Weins, C. (2011).
Quantitative thin-layer chromatography: A partial survey. Heidelberg, Berlin:
Springer.
15. Rahayu, M. D., Kusumaningrum, S. and Hayun, H.
(2020). Synthesis of acetyl and benzoyl esters of xanthorrhizol and its
oxidation products and evaluation of their inhibitory activity against nitric
oxide production. International Journal of Applied Pharmaceutics, 12(1):
135-138.
16. Aguilar,
M. I., Delgado, G. and Villarreal, M. L. (2001). New bioactive derivatives of
xanthorrhizol. Revista De La Sociedad Química De México, 45(2): 56-59.
17. Ramdani, E. D., Marlupi, U. D., Sinambela, J. M. and
Tjandrawinata, R. (2016). A new method of xanthorrhizol isolation from the
rhizome extract of Curcuma xanthorrhiza. Scholars Academic Journal of
Biosciences, 4(9): 732-737.