Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 949 - 958

 

 

 

 

PURIFICATION OF XANTHORRHIZOL AND SCREENING OF SELECTED MICROBES FOR ITS BIOTRANSFORMATION

 

(Penulenan Xantorizol dan Pengesanan Mikrob Terpilih untuk Biotransformasinya)

 

Nurul Iman Aminudin1*, Nadia Farhana Yahya1, Zaima Azira Zainal Abidin2, Deny Susanti1, Muhammad Taher3

 

1Department of Chemistry, Kulliyyah of Science

2 Department of Biotechnology, Kulliyyah of Science

International Islamic University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia

3 Department of Pharmaceutical Technology, Kulliyyah of Pharmacy

International Islamic University Malaysia, P. O. Box 141, 25710 Kuantan, Pahang Darul Makmur, Malaysia

 

*Corresponding author:  nuruliman@iium.edu.my

 

 

Received: 5 September 2021; Accepted: 11 November 2021; Published:  27 December 2021

 

 

Abstract

Xanthorrhizol is a bisabolene-type sesquiterpenoid and is present abundantly in the essential oil of Curcuma xanthorrhiza (temulawak). It was reported to possess various pharmacological activities, including antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, antihypertensive, and antiplatelet activities. To further evaluate its pharmacological potency based on the structure-activity relationship, a large amount of xanthorrhizol needs to be purified and subjected to chemical synthesis to yield xanthorrhizol analogues. Common approaches to synthesise the analogues are through chemical reactions. Biotransformation utilising microbes as biocatalysts is one of the green alternatives to replace chemical synthesis methods for producing xanthorrhizol analogues. In this study, xanthorrhizol was purified from the crude essential oil by utilising repetitive chromatographic separation and two-step chemical synthesis involving acetylation and hydrolysis reactions. The purification successfully yielded xanthorrhizol with a purity of 98.1%, as indicated by gas chromatography-mass spectrometry (GC-MS) analysis. The structure of xanthorrhizol was also characterised using nuclear magnetic resonance spectroscopy (NMR). Four selected microbes (Aspergillus niger, Streptomyces sp. K1-18, K3-20, and K7-11) were screened for the biotransformation of xanthorrhizol. The results from thin layer chromatography (TLC) and GC-MS showed that only A. niger could biotransform xanthorrhizol into its derivatives.

 

Keywords:  xanthorrhizol, biotransformation, Aspergillus niger, Streptomyces sp., sesquiterpene

 

Abstrak

Xantorizol adalah seskuiterpen jenis bisabolen dan hadir dengan banyak di dalam minyak pati Curcuma xanthorrhiza (temulawak). Ia telah dilaporkan mempunyai pelbagai aktiviti farmakologi termasuk antimikrob, anti-radang, antioksidan, anti-hiperglisemik, anti-hipertensi dan antiplatlet. Untuk menilai lebih lanjut potensi farmakologi berdasarkan hubungan struktur-aktiviti, xantorizol dalam jumlah yang banyak perlu ditulenkan dan perlu melalui kaedah sintesis kimia yang membolehkan analog xantorizol dihasilkan. Pendekatan biasa untuk sintesis analog adalah melalui tindak balas kimia. Biotransformasi menggunakan mikrob sebagai biopemangkin merupakan satu alternatif hijau menggantikan kaedah sinstesis kimia yang boleh menghasilkan analog xantorizol. Dalam kajian ini, xantorizol telah ditulenkan daripada minyak pati mentah menggunakan pemisahan kromatografi berulang dan dua langkah sintesis kimia melibatkan tindak balas asetilasi dan hidrolisis. Proses penulenan telah berjaya menghasilkan xantorizol dengan ketulenan 98.1% seperti ditunjukkan oleh analisis gas-kromatografi-jisim spektrometri (GK-JS). Struktur xantorizol juga telah diperincikan menggunakan resonans magnetik nuklear (RMN) spektroskopi. Empat mikrob terpilih, (Aspergillus niger, Streptomyces sp. K1-18, K3-20 dan K7-11) telah disaring untuk biotransformasi xantorizol. Keputusan kromatografi lapisan nipis (KLN) dan JK-MS telah menunjukkan cuma A. niger berupaya melakukan biotransformasi xantorizol kepada terbitannya.

 

Kata kunci:  xantorizol, biotransformasi, Aspergillus niger, Streptomyces sp., seskuiterpen

 

References

1.      Dosoki, N. S. and Setzer, W. N. (2018). Chemical composition and biological activities of essential oils of Curcuma Species. Nutrients, 10(1196): 1-42. 

2.   Jantan, I., Saputri, F. C., Qaisar, M. N. and Buang, F. (2012). Correlation between chemical composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evidence-Based Complementary and Alternative Medicine. 2012: 1-10. 

3.      Shahid, M., Azfaralariff, A., Law, D., Najm, A. A., Sanusi, S. A., Lim, S. J., Cheah, Y. H. and Fazry, S. (2021). Comprehensive computational target fishing approach to identify xanthorrhizol putative targets. Scientific Reports, 11(1594): 1-11.

4.      Hegazy, M.-E. F., Elshamy, A. I., Mohamed, T. A., Hussien, T. A., Helaly, S. E., Abdel-Azim, N. S.  Shams, K. A., Shahat, A. A., Tawfik, W. A., Shahen, A. M., Debbab, A., El Saedi, H. R., Mohamed, A. E.-H. H., Hammouda, F. M., Sakr, M., Paré, P. W. and Efferth, T. (2020). Terpenoid bio-transformations and applications via cell/organ cultures: A systematic review. Critical Reviews in Biotechnology, 40(1): 64-82.

5.      Aminudin, N. I., Ridzuan, M., Darnis, D. S. and Zainal A. Z. A. (2021). Biotransformation of sesquiterpenoids: A recent insight. Journal of Asian Natural Products Research, 2021: 1-44.

6.      Hegazy, M. E., Mohamed, T. A., ElShamy, A. I., Mohamed, A. E., Mahalel, U. A., Reda, E. H., Shaheen, A. M., Tawfik, W. A., Shahat, A. A., Shams, K. A., Abdel-Azim, N. S. and Hammouda, F. M. (2015). Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review.  Journal of Advanced Research, 6(1): 17-33.

7.      Chattopadhyay, P., Banerjee, G. and Sen, S. K. (2018). Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis. Journal of Cleaner Production, 182: 272-279.

8.      Wu, C., Zhu, H., van Wezel, G. P. and Choi, Y. H. (2016). Metabolomics-guided analysis of isocoumarin production by Streptomyces species MBT76 and biotransformation of flavonoids and phenylpropanoids. Metabolomics, 12(5): 1-11. 

9.      Zhang, D., Tao, X., Gu, G., Wang, Y., Zhao, W., Zhao, W., Ren, Y., Dai, S. and Yu, L. (2021) Microbial transformation of neo-clerodane diterpenoid, scutebarbatine F, by Streptomyces sp. CPCC 205437. Frontiers in Microbiology, 12(662321): 1-15.

10.   Parshikov, I.A. and Sutherland, J. B. (2014). The use of Aspergillus niger cultures for biotransformation of terpenoids. Process Biochemistry, 49(12): 2086-2100.

11.   Lima, M. A. S., de Oliveira, M. C. F., Pimenta, A. T. A. and Uchôa, P. K. S. (2019). Aspergillus niger: A    hundred years of contribution to the natural products chemistry. Journal of Brazilian Chemical Society,      30(10): 2029-2059.

12.   Arturo, C.-F. and Guillermo, D. (2017). Sesquiterpene lactones by filamentous fungi. Cytotoxic evaluations. Chemistry & Biodiversity, 14(1): 1-12.

13.   Malek, N. A., Zainuddin, Z., Chowdhury, A. J. K. and Abidin, Z. Z. A. (2015). Diversity and antimicrobial activity of mangrove soil Actinomycetes isolated from Tanjung Lumpur, Kuantan. Jurnal Teknologi. 77 (25): 37-43.

14.   Spangenberg, B., Poole, C. F. and Weins, C. (2011). Quantitative thin-layer chromatography: A partial survey. Heidelberg, Berlin: Springer.

15.   Rahayu, M. D., Kusumaningrum, S. and Hayun, H. (2020). Synthesis of acetyl and benzoyl esters of xanthorrhizol and its oxidation products and evaluation of their inhibitory activity against nitric oxide production. International Journal of Applied Pharmaceutics, 12(1): 135-138.

16.   Aguilar, M. I., Delgado, G. and Villarreal, M. L. (2001). New bioactive derivatives of xanthorrhizol. Revista De La Sociedad Química De México, 45(2): 56-59.

17.   Ramdani, E. D., Marlupi, U. D., Sinambela, J. M. and Tjandrawinata, R. (2016). A new method of xanthorrhizol isolation from the rhizome extract of Curcuma xanthorrhiza. Scholars Academic Journal of Biosciences, 4(9): 732-737.