Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1095 - 1106
OPTIMISATION OF
MICROWAVE-ASSISTED WATER EXTRACTION OF PINEAPPLE PEEL HEMICELLULOSE USING
RESPONSE SURFACE METHODOLOGY
(Pengoptimuman
Pengekstrakan Air Berbantu Gelombang Mikro Bagi Hemiselulosa Kulit Nanas
Menggunakan Kaedah Gerak Balas Permukaan)
Nur
Aza Atiqah Mad Zahir, Noraini Hamzah, Hamizah Mohd Zaki, Shariff Ibrahim, Sabiha
Hanim Saleh*
School of Chemistry
and Environment, Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*corresponding
author: sabihahanim@uitm.edu.my
Received: 17 August 2021; Accepted: 20 October 2021;
Published: 27 December 2021
Abstract
The purpose of this
investigation is to optimise extraction conditions (temperature and time) for
microwave-assisted water extraction of pineapple peel hemicellulose using
response surface methodology (RSM). A series of 14 experimental designs were
conducted to determine the optimal conditions of two key variables (temperature
of 90-150 °C and time of 5-20
min) in order to maximise the extracted hemicellulose yield. Quadratic
models based on central composite design (CCD) were developed to correlate the
extraction process variables with the response (i.e., hemicellulose yield).
These models were analysed using appropriate statistical methods (i.e.,
analysis of variance). The statistical analysis indicated that all the
developed models were adequate for the prediction of the respective responses.
A quadratic model predicted a maximum hemicellulose yield of 15.6% at the
optimal temperature of 125 °C and extraction time of 14 min. From the
validation experiment, a maximum hemicellulose yield of 15.2% was obtained
under the same optimal conditions with the determination coefficient (R2)
of 0.95, indicating close agreement with the model prediction. Chemical
characterisations of hemicellulose and residues were conducted using Fourier
transform infrared (FTIR) and scanning electron microscopy (SEM). The FTIR
analysis revealed the presence of hemicellulose at a specific band of 1261 cm–1
and the band between 1094 and 1000 cm–1, which originated from
xylans. The SEM characterisation indicated that the untreated pineapple peel
had a broken surface and less distortion compared to the treated pineapple
peel, whereas the surface structure of the treated pineapple peel had irregular
crevices and larger cell disruption.
Keywords: pineapple peel,
hemicellulose, microwave-assisted water extraction, response surface
methodology, central composite design
Abstrak
Tujuan
kajian ini adalah untuk menyiasat kesan keadaan pengekstrakan dibantu gelombang
mikro (suhu, masa) ke atas hasil hemiselulosa kulit nanas menggunakan kaedah
gerak balas permukaan (RSM). 14 reka bentuk eksperimen telah dibangunkan untuk
menentukan keadaan optimum dua parameter utama (suhu 90-150 ⁰C dan masa
5-20 min) yang memaksimumkan hasil pengekstrakan hemiselulosa. Berdasarkan reka
bentuk komposit pusat (CCD), model kuadratik dibangunkan untuk mengaitkan
pembolehubah proses pengekstrakan dengan respons seperti hasil hemiselulosa.
Model-model ini dianalisis menggunakan kaedah statistik yang sesuai seperti
analisis varians. Analisis statistik menunjukkan semua model yang dibangunkan
adalah mencukupi untuk ramalan tindak balas masing-masing. Model kuadratik
meramalkan hasil hemiselulosa yang maksimum 15.6% pada suhu optimum 125
⁰C dan masa pengekstrakan selama 14 min. Daripada eksperimen pengesahan,
hasil maksimum hemisellulosa 15.2% diperoleh dalam keadaan optimum yang sama
dengan pekali penentuan (R2) 0.95, menunjukkan persetujuan dekat
dengan ramalan model. Pencirian kimia hemiselulosa dan sisa ditentukan oleh
FTIR dan SEM. Analisis FTIR mendedahkan kehadiran hemiselulosa pada jalur
tertentu 1261 cm-1 dan jalur antara 1094-1000 cm-1 yang
berasal daripada xilan. Pencirian SEM menunjukkan bahawa kulit nanas yang tidak
dirawat mempunyai permukaan pecah dan sedikit gangguan berbanding kulit nanas
yang dirawat sedangkan struktur permukaan kulit nanas yang dirawat mempunyai
celah-celah yang tidak teratur dan kemusnahan sel yang lebih besar.
Kata kunci: kulit
nanas, hemiselulosa, ketuhar gelombang mikro berbantu pengekstrakan air, kaedah
gerak balas permukaan, reka bentuk komposit pusat
References
1.
Dai, H. and Huang, H.
(2016). Modified pineapple peel cellulose hydrogels embedded with sepia ink for
effective removal of methylene blue. Carbohydate Polymers, 148: 1-10.
2.
Kaur, N., Sharma, S.,
Kaur, S. and Khosla, E. (2016). Reverse micellar extraction of acid dyes from
simulated textile effluent. Journal Chemistry Biology Pyhsics Sciences, 6:
180-197.
3.
Schieber, A.,
Stintzing, F. C. and Carle, R. (2001). By-products of plant food processing as
a source of functional compounds—recent developments. Trends in Food Science
& Technology, 12(11): 401-413.
4.
Madureira, A. R.,
Atatoprak, T., Çabuk, D., Sousa, F., Pullar, R. C. and Pintado, M. (2018)
Extraction and characterisation of cellulose nanocrystals from pineapple peel. International
Journal Food Studies, 7: 24-33.
5.
Banerjee, S.,
Ranganathan, V., Patti, A. and Arora, A. (2018). Valorisation of pineapple
wastes for food and therapeutic applications. Trends in Food Science &
Technology, 82: 60-70.
6.
Choquecahua Mamani, D.,
Otero Nole, K. S., Chaparro Montoya, E. E., Mayta Huiza, D. A., Pastrana Alta,
R. Y. and Aguilar Vitorino, H. (2020). Minimizing organic waste generated by
pineapple crown: A simple process to obtain cellulose for the preparation of
recyclable containers. Recycling, 5(4): 24.
7.
Limayem, A. and Ricke,
S. C. (2012). Lignocellulosic biomass for bioethanol production: Current
perspectives, potential issuesand future prospects. Progress Energy
Combustion Sciences, 38(4): 449-467.
8.
Sabiha-Hanim, S. and
Siti-Norsafurah, A. M. (2012). Physical properties of hemicellulose films from
sugarcane bagasse. Procedia Engineering, 42: 1390-1395.
9.
Mihiretu, G. T.,
Brodin, M., Chimphango, A. F., Řyaas, K., Hoff, B. H. and Görgens, J. F.
(2017). Single-step microwave-assisted hot water extraction of hemicelluloses
from selected lignocellulosic materials – a biorefinery approach. Bioresource
Technology, 241: 669-680.
10.
Chen, J., Zhu, Y. and
Liu, S. (2017). Biodegradation and utilization of hemicellulose. Functional
Carbohydrate, 2017: 197-232.
11.
Thomas, E., Amidon, and
Shi, J. L. (2009). Water-based woody biorefinery. Biotechnology Advances,
27: 542-550.
12.
Liu, C. G. and Wyman,
C. E. (2005). Partial flow of compressed-hot water through corn stover to
enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose, Bioresource
Technology, 96(18): 1978-1985.
13.
Tsubaki, S., Onda, A.,
Hiraoka, M., Fujii, S., Azuma, J. I. and Wada, Y. (2017). Microwave-assisted
water extraction of carbohydrates from unutilized biomass. Water Extraction
of Bioactive Compounds, 199-219.
14.
Jeya, M., Zhang, Y. W.,
Kim, I. W. and Lee, J. K. (2009). Enhanced saccharification of alkali-treated
rice straw by cellulase from Trametes hirsuta and statistical optimization of
hydrolysis conditions by RSM. Bioresource Technology, 100(21):
5155-5161.
15.
Oberoi, H. S., Vadlani,
P. V., Nanjundaswamy, A., Bansal, S., Singh, S., Kaur, S. and Babbar, N.
(2011). Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous
saccharification and fermentation process. Bioresource Technology, 102(2):
1593-1601.
16.
Zulyadi, N. H., Saleh,
S. H. and Sarijo, S. H. (2016).
Fractionation of hemicellulose from rice straw by alkaline extraction and
ethanol precipitation. Malaysian Journal of Analytical Sciences, 20(2):
329-334.
17.
Ioelovich, M. (2014).
Structure and physicochemical properties of nitrogenated derivatives of
cellulose. American Journal Biosciences, 2: 6-12.
18.
Browning, B. L. (1967).
Methods of wood chemistry. Volume I & II. John Wiley & Sons.
Interscience, New York.
19.
Teramoto, Y., Lee, S.
H. and Endo, T. (2008). Pretreatment of woody and herbaceous biomass for
enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource
Technology, 99(18): 8856-8863.
20.
Sukkaew, A., Boonsong,
P., Thongpradistha, S. and Intan, M. (2017). Physical and chemical pretreatment
of lignocellulosics in pineapple (Ananus comosus) peels dried for
investment. AIP Conference Proceedings, 1868(1): 090001.
21.
Silveira, R., Stoyanov, S.,
Gusarov, S., Skaf, M. and Kovalenko, A. (2013). Plant biomass recalcitrance:
Effect of hemicellulose composition on nanoscale forces that control cell wall
strength. Journal of the American Chemical Society, 135: 19048-19051.
22.
Santos, T. M., Alonso,
M. V., Oliet, M., Domínguez, J. C., Rigual, V. and Rodriguez, F. (2018). Effect
of autohydrolysis on Pinus radiata
wood for hemicellulose extraction. Carbohydrate Polymers, 194:
285-293.
23.
Yuan, Y., Zou, P.,
Zhou, J., Geng, Y., Fan, J., Clark, J. and Zhang, C. (2019). Microwave-assisted
hydrothermal extraction of non-structural carbohydrates and hemicelluloses from
tobacco biomass. Carbohydrate Polymers, 223: 115043.
24.
Yolmeh, M. and Jafari, S. M. (2017). Applications of response
surface methodology in the food industry processes. Food Bioprocess
Technology, 10: 413-433.
25.
Behera, S. K., Meena,
H., Chakraborty, S. and Meikap, B. C. (2018). Application of response surface
methodology (RSM) for optimization of leaching parameters for ash reduction
from low-grade coal. International Journal of Mining Science and Technology,
28(4): 621-629.
26.
Shafi, J., Sun, Z., Ji, M., Gu, Z.
and Ahmad, W. (2018). ANN and RSM based modeling for optimization of cell dry
mass of Bacillus sp. Strain B67 and its antifungal activity against Botrytis cinerea. Biotechnology &
Biotechnological Equipment, 32: 58-68.
27.
Palaniappan, A.,
Yuvaraj, S., Sonaimuthu, S. and Antony, U. (2017).Characterization of xylan
from rice bran and finger millet seedcoat for functional food applications. Journal
Cereal Sciences, 75: 296-305.
28.
Mandal, A. and
Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse
(SCB) and its characterization. Carbohydrate Polymers, 86(3):
1291-1299.
29.
Dai, H., Ou, S., Huang,
Y. and Huang, H. (2018). Utilization of pineapple peel for production of
nanocellulose and film application. Cellulose, 25(3):
1743-1756.
30.
Liu, H. M., Li, Y. R.,
Wu, M., Yin, H. S. and Wang, X. D. (2018). Two-step isolation of hemicelluloses
from Chinese quince fruit: Effect of hydrothermal treatment on structural
features. Industrial Crops and Products, 111: 615-624.
31.
Sun, S. L., Wen, J. L.,
Ma, M. G. and Sun, R. C. (2013). Successive alkali extraction and structural
characterization of hemicelluloses from sweet sorghum stem. Carbohydrate
Polymers, 92(2): 2224-2231.
32.
Haafiz, M. M., Hassan,
A., Zakaria, Z. and Inuwa, I. M. (2014). Isolation and characterization of
cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate
Polymers, 103: 119-125.
33.
Singh, R. D., Bhuyan,
K., Banerjee, J., Muir, J. and Arora, A. (2017). Hydrothermal and microwave
assisted alkali pretreatment for fractionation of arecanut husk. Industrial
Crops and Products, 102: 65-74.
34.
Buslov, D. K.,
Kaputski, F. N., Sushko, N. I., Torgashev V. I., Solov′eva L. V.,
Tsarenkov V. M., Zubets O. V. and Larchenko L.V. (2009). Infrared spectroscopic
analysis of the structure of xylans. Journal Applied Spectroscopy, 76:
801-805.
35.
Dai, H. and Huang, H.
(2017). Synthesis, characterization and properties of pineapple peel
cellulose-G-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose,
24: 69-84.