Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1095 - 1106

 

 

 

 

OPTIMISATION OF MICROWAVE-ASSISTED WATER EXTRACTION OF PINEAPPLE PEEL HEMICELLULOSE USING RESPONSE SURFACE METHODOLOGY

 

(Pengoptimuman Pengekstrakan Air Berbantu Gelombang Mikro Bagi Hemiselulosa Kulit Nanas Menggunakan Kaedah Gerak Balas Permukaan)

 

Nur Aza Atiqah Mad Zahir, Noraini Hamzah, Hamizah Mohd Zaki, Shariff Ibrahim, Sabiha Hanim Saleh*

 

School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*corresponding author:  sabihahanim@uitm.edu.my

 

 

Received: 17 August 2021; Accepted: 20 October 2021; Published:  27 December 2021

 

 

Abstract

The purpose of this investigation is to optimise extraction conditions (temperature and time) for microwave-assisted water extraction of pineapple peel hemicellulose using response surface methodology (RSM). A series of 14 experimental designs were conducted to determine the optimal conditions of two key variables (temperature of 90-150 °C and time of 5-20 min) in order to maximise the extracted hemicellulose yield. Quadratic models based on central composite design (CCD) were developed to correlate the extraction process variables with the response (i.e., hemicellulose yield). These models were analysed using appropriate statistical methods (i.e., analysis of variance). The statistical analysis indicated that all the developed models were adequate for the prediction of the respective responses. A quadratic model predicted a maximum hemicellulose yield of 15.6% at the optimal temperature of 125 °C and extraction time of 14 min. From the validation experiment, a maximum hemicellulose yield of 15.2% was obtained under the same optimal conditions with the determination coefficient (R2) of 0.95, indicating close agreement with the model prediction. Chemical characterisations of hemicellulose and residues were conducted using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The FTIR analysis revealed the presence of hemicellulose at a specific band of 1261 cm–1 and the band between 1094 and 1000 cm–1, which originated from xylans. The SEM characterisation indicated that the untreated pineapple peel had a broken surface and less distortion compared to the treated pineapple peel, whereas the surface structure of the treated pineapple peel had irregular crevices and larger cell disruption.

 

Keywords:   pineapple peel, hemicellulose, microwave-assisted water extraction, response surface methodology, central composite design

 

Abstrak

Tujuan kajian ini adalah untuk menyiasat kesan keadaan pengekstrakan dibantu gelombang mikro (suhu, masa) ke atas hasil hemiselulosa kulit nanas menggunakan kaedah gerak balas permukaan (RSM). 14 reka bentuk eksperimen telah dibangunkan untuk menentukan keadaan optimum dua parameter utama (suhu 90-150 ⁰C dan masa 5-20 min) yang memaksimumkan hasil pengekstrakan hemiselulosa. Berdasarkan reka bentuk komposit pusat (CCD), model kuadratik dibangunkan untuk mengaitkan pembolehubah proses pengekstrakan dengan respons seperti hasil hemiselulosa. Model-model ini dianalisis menggunakan kaedah statistik yang sesuai seperti analisis varians. Analisis statistik menunjukkan semua model yang dibangunkan adalah mencukupi untuk ramalan tindak balas masing-masing. Model kuadratik meramalkan hasil hemiselulosa yang maksimum 15.6% pada suhu optimum 125 ⁰C dan masa pengekstrakan selama 14 min. Daripada eksperimen pengesahan, hasil maksimum hemisellulosa 15.2% diperoleh dalam keadaan optimum yang sama dengan pekali penentuan (R2) 0.95, menunjukkan persetujuan dekat dengan ramalan model. Pencirian kimia hemiselulosa dan sisa ditentukan oleh FTIR dan SEM. Analisis FTIR mendedahkan kehadiran hemiselulosa pada jalur tertentu 1261 cm-1 dan jalur antara 1094-1000 cm-1 yang berasal daripada xilan. Pencirian SEM menunjukkan bahawa kulit nanas yang tidak dirawat mempunyai permukaan pecah dan sedikit gangguan berbanding kulit nanas yang dirawat sedangkan struktur permukaan kulit nanas yang dirawat mempunyai celah-celah yang tidak teratur dan kemusnahan sel yang lebih besar.

 

Kata kunci:   kulit nanas, hemiselulosa, ketuhar gelombang mikro berbantu pengekstrakan air, kaedah gerak balas permukaan, reka bentuk komposit pusat

 

References

1.      Dai, H. and Huang, H. (2016). Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydate Polymers, 148: 1-10.

2.      Kaur, N., Sharma, S., Kaur, S. and Khosla, E. (2016). Reverse micellar extraction of acid dyes from simulated textile effluent. Journal Chemistry Biology Pyhsics Sciences, 6: 180-197.

3.      Schieber, A., Stintzing, F. C. and Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology, 12(11): 401-413.

4.      Madureira, A. R., Atatoprak, T., Çabuk, D., Sousa, F., Pullar, R. C. and Pintado, M. (2018) Extraction and characterisation of cellulose nanocrystals from pineapple peel. International Journal Food Studies, 7: 24-33.

5.      Banerjee, S., Ranganathan, V., Patti, A. and Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science & Technology, 82: 60-70.

6.     Choquecahua Mamani, D., Otero Nole, K. S., Chaparro Montoya, E. E., Mayta Huiza, D. A., Pastrana Alta, R. Y. and Aguilar Vitorino, H. (2020). Minimizing organic waste generated by pineapple crown: A simple process to obtain cellulose for the preparation of recyclable containers. Recycling, 5(4): 24.

7.      Limayem, A. and Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issuesand future prospects. Progress Energy Combustion Sciences, 38(4): 449-467.

8.      Sabiha-Hanim, S. and Siti-Norsafurah, A. M. (2012). Physical properties of hemicellulose films from sugarcane bagasse. Procedia Engineering, 42: 1390-1395.

9.      Mihiretu, G. T., Brodin, M., Chimphango, A. F., Řyaas, K., Hoff, B. H. and Görgens, J. F. (2017). Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials – a biorefinery approach. Bioresource Technology, 241: 669-680.

10.   Chen, J., Zhu, Y. and Liu, S. (2017). Biodegradation and utilization of hemicellulose. Functional Carbohydrate, 2017: 197-232.

11.   Thomas, E., Amidon, and Shi, J. L. (2009). Water-based woody biorefinery. Biotechnology Advances, 27: 542-550.

12.   Liu, C. G. and Wyman, C. E. (2005). Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose, Bioresource Technology, 96(18): 1978-1985.

13.   Tsubaki, S., Onda, A., Hiraoka, M., Fujii, S., Azuma, J. I. and Wada, Y. (2017). Microwave-assisted water extraction of carbohydrates from unutilized biomass. Water Extraction of Bioactive Compounds, 199-219.

14.   Jeya, M., Zhang, Y. W., Kim, I. W. and Lee, J. K. (2009). Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresource Technology, 100(21): 5155-5161.

15.  Oberoi, H. S., Vadlani, P. V., Nanjundaswamy, A., Bansal, S., Singh, S., Kaur, S. and Babbar, N. (2011). Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresource Technology, 102(2): 1593-1601.

16.   Zulyadi, N. H., Saleh, S. H. and Sarijo, S. H.  (2016). Fractionation of hemicellulose from rice straw by alkaline extraction and ethanol precipitation. Malaysian Journal of Analytical Sciences, 20(2): 329-334.

17.   Ioelovich, M. (2014). Structure and physicochemical properties of nitrogenated derivatives of cellulose. American Journal Biosciences, 2: 6-12.

18.   Browning, B. L. (1967). Methods of wood chemistry. Volume I & II. John Wiley & Sons. Interscience, New York.

19.   Teramoto, Y., Lee, S. H. and Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99(18): 8856-8863.

20.   Sukkaew, A., Boonsong, P., Thongpradistha, S. and Intan, M. (2017). Physical and chemical pretreatment of lignocellulosics in pineapple (Ananus comosus) peels dried for investment. AIP Conference Proceedings, 1868(1): 090001.

21.   Silveira, R., Stoyanov, S., Gusarov, S., Skaf, M. and Kovalenko, A. (2013). Plant biomass recalcitrance: Effect of hemicellulose composition on nanoscale forces that control cell wall strength. Journal of the American Chemical Society, 135: 19048-19051.

22.   Santos, T. M., Alonso, M. V., Oliet, M., Domínguez, J. C., Rigual, V. and Rodriguez, F. (2018). Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydrate Polymers, 194: 285-293.

23.   Yuan, Y., Zou, P., Zhou, J., Geng, Y., Fan, J., Clark, J. and Zhang, C. (2019). Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass. Carbohydrate Polymers, 223: 115043.

24.   Yolmeh, M. and Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food Bioprocess Technology, 10: 413-433.

25.   Behera, S. K., Meena, H., Chakraborty, S. and Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4): 621-629.

26.   Shafi, J., Sun, Z., Ji, M., Gu, Z. and Ahmad, W. (2018). ANN and RSM based modeling for optimization of cell dry mass of Bacillus sp. Strain B67 and its antifungal activity against Botrytis cinerea. Biotechnology & Biotechnological Equipment, 32: 58-68.

27.   Palaniappan, A., Yuvaraj, S., Sonaimuthu, S. and Antony, U. (2017).Characterization of xylan from rice bran and finger millet seedcoat for functional food applications. Journal Cereal Sciences, 75: 296-305.

28.   Mandal, A. and Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3): 1291-1299.

29.   Dai, H., Ou, S., Huang, Y. and Huang, H. (2018). Utilization of pineapple peel for production of nanocellulose and film application. Cellulose, 25(3): 1743-1756.

30.   Liu, H. M., Li, Y. R., Wu, M., Yin, H. S. and Wang, X. D. (2018). Two-step isolation of hemicelluloses from Chinese quince fruit: Effect of hydrothermal treatment on structural features. Industrial Crops and Products, 111: 615-624.

31.   Sun, S. L., Wen, J. L., Ma, M. G. and Sun, R. C. (2013). Successive alkali extraction and structural characterization of hemicelluloses from sweet sorghum stem. Carbohydrate Polymers, 92(2): 2224-2231.

32.   Haafiz, M. M., Hassan, A., Zakaria, Z. and Inuwa, I. M. (2014). Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 103: 119-125.

33.   Singh, R. D., Bhuyan, K., Banerjee, J., Muir, J. and Arora, A. (2017). Hydrothermal and microwave assisted alkali pretreatment for fractionation of arecanut husk. Industrial Crops and Products, 102: 65-74.

34.   Buslov, D. K., Kaputski, F. N., Sushko, N. I., Torgashev V. I., Solov′eva L. V., Tsarenkov V. M., Zubets O. V. and Larchenko L.V. (2009). Infrared spectroscopic analysis of the structure of xylans. Journal Applied Spectroscopy, 76: 801-805.

35.   Dai, H. and Huang, H. (2017). Synthesis, characterization and properties of pineapple peel cellulose-G-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 24: 69-84.