Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1081 - 1094
MODELLING
AND OPTIMIZATION OF MICROWAVE ASSISTED EXTRACTION OF TOTAL PHENOLICS IN
KAKAWATE (Gliricidia sepium) AS
PESTICIDE AGAINST BLACK BEAN APHIDS (Aphis
fabae)
(Pemodelan dan Pengoptimuman Pengekstrakan Berbantu
Gelombang Mikro bagi Jumlah Fenolik dalam Kakawate (Gliricidia sepium)
sebagai Racun Makhluk Perosak Afid Kacang Hitam (Aphis fabae))
Rhonalyn V. Maulion*, John Marco I. Matira,
Kristine May M. Fanoga, Maricar C. Marasigan, Melissa Marie C. Dimaculangan5
Department of Chemical Engineering, College of
Engineering Architecture and Fine Arts,
Batangas State University, Batangas City,
Philippines
*Corresponding author: rhonalyn.maulion@g.batstate-u.edu.ph
Received: 15 July 2021;
Accepted: 28 October 2021; Published: 27
December 2021
Abstract
Pest infestation is one of the serious problems
of the agricultural sector in crop production and may even pose health hazards
to humans. Aphis fabae, normally
known as black bean aphid, is one of the main culprits that predominantly
damage growing crops particularly beans, celery, and peas and may carry
diseases as they multiply. Kakawate (Gliricidia
sepium) leaves extracts was prepared using microwave assisted extraction
and used as pesticide against black bean aphids in string beans (Phaseolus vulgaris). Microwave assisted extraction (MAE) is a rapid method of
extraction of active components of plants which employ microwave energy to heat
sample-solvent mixture at a short period of time. A central composite design
(CCD) was employed to evaluate the effect of irradiation time (1.5 minutes) and
microwave power (210W, 350W) on the phenolic content of the extract. Response
surface methodology (RSM) determined the optimized conditions of MAE of total
phenolics in dried G. sepium leaves.
The optimized conditions were obtained at irradiation time of 2.44 minutes and
microwave power of 275W with total phenolic content of 9.022 mg-GAE/g-dry
sample. The presence of bioactive compounds of alkaloids, flavonoids, tannins
and phenols were confirmed in the extract. The mortality
or average life span of A. fabae upon
application of G. sepium pesticide
and commercially available pesticide are 5.17 seconds and 4.73 seconds, of
which the difference is insignificant with the p-value one tail (0.002) and two
tail (0.005) effect. No
significant effect on the height of plant and number of P. vulgaris leaves at 10 days after the application of G. sepium pesticide (p = 0.022) and commercially available pesticide (p
= 0.026) which make it a great potential biopesticide.
Keywords:
black
bean aphids, botanical pesticides, Gliricidia
sepium, microwave assisted
extraction, total phenolic content
Abstrak
Serangan
makhluk perosak ialah satu masalah serius bagi sektor pertanian terutama hasil
tuaian dan mungkin memberi kesan kesihatan terhadap manusia. Aphis fabae, juga dikenali sebagai afid
kacang hitam, merupakan satu dari pemangsa utama yang merosakkan tanaman
seperti kacang, seleri, kacang pea dan membawa penyakit. Ekstrak daun Kakawate
(Gliricidia sepium) telah disediakan
melalui pengekstrakan berbantu gelombang mikro dan digunakan sebagai racun
mahkluk perosak bagi melawan afid kacang hitam dalam untaian kacang (Phaseolus vulgaris). Pengekstrakan berbantu gelombang mikro
(MAE) ialah satu kaedah pantas bagi pengekstrakan sebatian aktif dari tumbuhan
di mana tenaga gelombang mikro digunakan memanaskan sampel campuran pelarut
dalam tempoh masa yang singkat. Reka bentuk komposit berpusat (CCD) telah
dibangunkan bagi penilaian kesan masa penyinaran (1.5 minit) dan kuasa
gelombang mikro (210W, 350W) terhadap kandungan fenolik bagi hasil ekstrak.
Keadaan optimum MAE bagi jumlah fenolik daun kering G. sepium ditentukan
melalui kaedah gerak balas permukaan (RSM). Keadaan optimum telah diperolehi
pada masa penyinaran 2.44 minit dan kuasa gelombang mikro ialah 275 W bersamaan
jumlah kandungan fenolik 9.022 mg-GAE/g-sampel kering. Kehadiran sebatian bioaktif
seperti alkaloid, flavonoid, tannin dan fenol telah disahkan melalui hasil ekstrak.
Kadar kematian atau purata jangka hayat bagi A. fabae berdasarkan
pengunaan racun makhluk perosak G. sepium dan perbandingan racun
komersial ialah 5.17 saat dan 4.74 saat, di mana perbezaannya tidak signifikan
dengan nilai p kesan satu arah (0.002) dan dua arah (0.005). Tiada kesan
signifikan terhadap ketinggian pokok dan bilangan P. vulgaris selepas 10 hari racun G.sepium
digunapakai (p = 0.022) dan racun komersial (p = 0.026) di mana ia menunjukkan
potensi yang baik sebagai racun mahkluk perosak bio.
Kata kunci: afid
kacang hitam, racun botani, Gliricidia sepium, pengekstrakan berbantu gelombang mikro, jumlah kandungan fenolik
References
1.
Food and Agriculture
Organization (2017). The future of food and agriculture: Trends and challenges.
http://www.fao.org/. [Access online 15 March 2021].
2.
Food and Agriculture
Organization (2019). New standard to curb the global spread of plant pest and
diseases. http://www.fao.org/. [Access online 15 March 2021].
3.
Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C. and Zalom, F.
G. (2011). Spotted wing
drosophila infestation of California strawberries and raspberries: economic
analysis of potential revenue losses and control costs. Pest Management
Science, 67(11): 1396-1402.
4.
Rodriguez, T. (2018).
Managing insect pest on organic vegetable production. https://www. agriculture.com.ph/.
[Access online 28 February 2020].
5.
University of Idaho
(2021). Integrated pest management: Black bean aphids. https://www.uidaho.edu/.
[Access online 15 March 2021].
6.
Shannag H. K. (2007). Effect of black bean aphids, Aphis fabae, on transpiration stomatal conductance and crude
protein content of faba bean. Annals of
Applied Biology, 151: 183-187.
7.
Razmjou, J. and Fallahi,
A. (2009). Effects of sugar beet cultivar on development and reproductive
capacity of Aphis fabae. Bulletin of Insectology. 62(2): 196-201.
8.
Kankolongo A. M. (2018).
Leguminous crops. Food crop production of smallholder farmers in southern
Africa: pp. 173-203
9.
Boulogne, I., Petit, P., Ozier-lafontaine, H., Loranger-Merciris, G.,
Boulogne, I. and Petit, P. (2012). Insecticidal and antifungal chemicals
produced by plants: A review. Environmental Chemistry Letters, 10(4):
325-347.
10.
Okwute, S. K. (2012). Plants as potential sources of pesticidal agents:
A review. Pesticides – Advances in
Chemical and Botanical Pesticides: pp. 207-232.
11.
Saeed, N., Khan, M. R.,
& Shabbir, M. (2012). Antioxidant activity, total phenolic and total
flavonoid contents of whole plant extracts Torilis
leptophylla L. BMC Complementary and Alternative Medicine, 12: 221.
12.
Rabena, A. R. (1996).
Isolation, characterization and identification of the active component of
Kakawate (Gliricidia sepium) (Jacq.) Kunth ex Walp. Leaves against
termites (Microcerotermes losbanosensis).
Thesis of Master Degree, Philippines University Los Banos College, Laguna,
Philippines
13.
Torres, L. M. (2018).
Madre de cacao (Gliricidia sepium)
and sinta (Andrographis paniculata)
leaves extract as botanical animal lice and ticks remover. Journal of
Fundamental and Applied Sciences, 10(3S):
650-664.
14.
Do, Q. D., Angkawijaya,
A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S. and Ju,
Y. H. (2014). Effect of extraction solvent on total phenol content, total
flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis,
22(3): 296-302.
15.
Altemimi, A., Lakhssassi,
N., Baharlouei, A., Watson, D. G. and Lightfoot, D. A. (2017). Phytochemicals:
Extraction, isolation, and identification of bioactive compounds from plant
extracts. Plants, 6(4):
42.
16.
Zhong, L., Yuan, Z.,
Rong, L., Zhang, Y., Xiong, G., Liu, Y. and Li, C. (2019). An optimized method
for extraction and characterization of phenolic compounds in Dendranthema indicum var. aromaticum
flower. Scientific Reports, 9(1):
1-12.
17.
Alara, O. R., Abdurahman,
N. H., and Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from
Vernonia cinerea leaves and its
antioxidant activity. Journal of Applied Research on Medicinal and Aromatic
Plants, 11(6): 12-17.
18.
Ghafoor, K., AL-Juhaimi,
F. Y. and Choi, Y. H. (2012). Supercritical fluid extraction of phenolic
compounds and antioxidants from grape (Vitis
labrusca B.) seeds. Plant Foods for Human Nutrition, 67(4): 407-414.
19.
Farías-Campomanes, A. M., Rostagno, M. A.,
Coaquira-Quispe, J. J. and Meireles, M. A. A. (2015). Supercritical
fluid extraction of polyphenols from lees: Overall extraction curve, kinetic
data and composition of the extracts. Bioresources
and Bioprocessing, 2(1): 45.
20.
Phan, L. T. M., Nguyen,
K. T. P., Vuong, H. T., Tran, D. D., Nguyen, T. X. P., Hoang, M. N. and Nguyen,
H. H. (2020). Supercritical fluid extraction of polyphenols from Vietnamese Callisia fragrans leaves and antioxidant
activity of the extract. Journal of Chemistry, 2020: 9548401.
21.
Gallo, M., Ferracane, R.,
Graziani, G., Ritieni, A. and Fogliano, V. (2010). Microwave assisted
extraction of phenolic compounds from four different spices. Molecules, 15(9): 6365-6374.
22.
Kaur, P., Chaudhary, A.,
Singh, B. and Gopichand. (2012). An efficient microwave assisted extraction of
phenolic compounds and antioxidant potential of Ginkgo biloba. Natural
Product Communications, 7(2):
203-206.
23.
Wong-Paz, J. E.,
Contreras-Esquivel, J. C., Muñiz-Marquez, D., Belmares, R., Rodriguez, R.,
Flores, P., and Aguilar, C. N. (2014). Microwave-assisted extraction of
phenolic antioxidants from semiarid plants. American Journal of Agricultural
and Biological Science, 9(3):
299-310.
24.
Li, Y., Li, S., Lin, S.
J., Zhang, J. J., Zhao, C. N. and Li, H. Bin. (2017). Microwave-assisted
extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of
phenolic compounds. Molecules, 22(9): 1481.
25.
Akhtar, I., Javad, S.,
Yousaf, Z., Iqbal, S. and Jabeen, K. (2019). Microwave assisted extraction of
phytochemicals an efficient and modern approach for botanicals and
pharmaceuticals. Pakistan Journal of Pharmaceutical Sciences, 32(1): 223-230.
26.
Durmaz, E., Sumnu, G. and
Sahin, S. (2015). Microwave-assisted extraction of phenolic compounds from
caper. Separation Science and Technology (Philadelphia), 50(13): 1986-1992.
27.
Mendiola, J. A., Herrero, M., Castro-Puyana, M. and
Ibáñez, E. (2013). Supercritical fluid extraction. RSC Green Chemistry, 1: 196-230.
28.
Lovrić, V., Putnik,
P., Kovačević, D. B., Jukić, M., & Dragović-Uzelac, V.
(2017). Effect of microwave-assisted extraction on the phenolic compounds and
antioxidant capacity of blackthorn flowers. Food Technology and
Biotechnology. 55(2): 243-250.
29.
Kaderides, K.,
Papaoikonomou, L., Serafim, M. and Goula, A. M. (2019). Microwave-assisted
extraction of phenolics from pomegranate peels: Optimization, kinetics, and
comparison with ultrasounds extraction. Chemical
Engineering and Processing - Process Intensification, 137: 1-11.
30.
Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z. and
Liu, H. (2013). Extraction characteristics and
optimal parameters of anthocyanin from blueberry powder under
microwave-assisted extraction conditions. Separation
and Purification Technology, 104: 17-25.
31.
Shirsath, S. R., Sable,
S. S., Gaikwad, S. G., Sonawane, S. H., Saini, D. R. and Gogate, P. R. (2017).
Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of
different operating parameters. Ultrasonics
Sonochemistry, 38: 437-445.
32.
Balanquit, B. J. and
Fuentes, R. (2015). Preliminary phycochemical screening and antioxidant
activity of some brown algae sargassum species from Lawaan, Eastern Samar. Journal of Nature Studies, 14(1): 12-21.
33.
Tree, D. (2016). Forage fact
sheet gliricidia, Inter-American Institute for Cooperation in Agriculture, pp.
5-6.
34.
Farag, R. S., Abdel-Latif, M. S., Abd El Baky, H. H. and Tawfeek, L. S.
(2020). Phytochemical screening
and antioxidant activity of some medicinal plants’ crude juices.
Biotechnology Reports, 28: e00536.
35.
Sreesha, K. S. and Danya,
U. (2021). Evaluation of preliminary phytochemical, antioxidant and in vitro
cytotoxic studies of an ethno therapeutically important tree, Gliricidia sepium (jacq.) Steud. International Journal of Creative Research
Thoughts, 9(3): 5515–5521.
36.
Yashin A., Yahin Y., Xia
X. and Nemzer B. (2017). Antioxidant activity of spices and their impact to
human health: A review. Antioxidants,
6(3): 70.
37.
Peter K. V. and Babu K.
N. (2012). Introduction to herbs and spices: medicinal uses and sustainable
production. Handbook of Herbs and Spices: pp.1-16.
38.
Kolawole, O. M., Joseph, A. K. and George, O. A.
(2018). Antibacterial and phytochemical activity of Gliricidia
sepium against poultry pathogens. Microbiology Research Journal International, 24(4):
1-10.
39.
Akharaiyi, F. C., Boboye,
B. and Adetuyi, F. C. (2012). Antibacterial, phytochemical and antioxidant
activities of the leaf extracts of Gliricidia
sepium and Spathodea campanulata.
World Applied Sciences Journal, 16(4):
523-530.
40.
Maulion R.V. and Madrazo
C. (2019). Synthesis of Fe3O4 nanoparticle via reduction
of Fe+3 using S. polycystum for
methylene blue dye removal in aqueous solution. Thesis of Master’s Degree, De
La Salle University, Manila, Philippines.
41.
Dahmoune, F., Nayak, B.,
Moussi, K., Remini, H. and Madani, K. (2014). Optimization of
microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food
Chemistry, 166: 585-595.
42.
Alara, O. R., Abdurahman,
N. H., Ali, H. A. and Zain, N. M. (2021). Microwave-assisted extraction of
phenolic compounds from Carica papaya
leaves: An optimization study and LC-QTOF-MS analysis. Future Foods, 3: 100035.
43.
Dahmoune, F., Spigno, G.,
Moussi, K., Remini, H., Cherbal, A. and Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds:
Microwave-assisted extraction optimized and compared with ultrasound-assisted
and conventional solvent extraction. Industrial
Crops and Products. 71: 31-40.