Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1081 - 1094

 

 

 

 

MODELLING AND OPTIMIZATION OF MICROWAVE ASSISTED EXTRACTION OF TOTAL PHENOLICS IN KAKAWATE (Gliricidia sepium) AS PESTICIDE AGAINST BLACK BEAN APHIDS (Aphis fabae)

 

(Pemodelan dan Pengoptimuman Pengekstrakan Berbantu Gelombang Mikro bagi Jumlah Fenolik dalam Kakawate (Gliricidia sepium) sebagai Racun Makhluk Perosak Afid Kacang Hitam (Aphis fabae))

 

Rhonalyn V. Maulion*, John Marco I. Matira, Kristine May M. Fanoga, Maricar C. Marasigan, Melissa Marie C. Dimaculangan5

 

 

Department of Chemical Engineering, College of Engineering Architecture and Fine Arts,

Batangas State University, Batangas City, Philippines

 

*Corresponding author:  rhonalyn.maulion@g.batstate-u.edu.ph

 

 

Received: 15 July 2021; Accepted: 28 October 2021; Published:  27 December 2021

 

 

Abstract

Pest infestation is one of the serious problems of the agricultural sector in crop production and may even pose health hazards to humans. Aphis fabae, normally known as black bean aphid, is one of the main culprits that predominantly damage growing crops particularly beans, celery, and peas and may carry diseases as they multiply. Kakawate (Gliricidia sepium) leaves extracts was prepared using microwave assisted extraction and used as pesticide against black bean aphids in string beans (Phaseolus vulgaris). Microwave assisted extraction (MAE) is a rapid method of extraction of active components of plants which employ microwave energy to heat sample-solvent mixture at a short period of time. A central composite design (CCD) was employed to evaluate the effect of irradiation time (1.5 minutes) and microwave power (210W, 350W) on the phenolic content of the extract. Response surface methodology (RSM) determined the optimized conditions of MAE of total phenolics in dried G. sepium leaves. The optimized conditions were obtained at irradiation time of 2.44 minutes and microwave power of 275W with total phenolic content of 9.022 mg-GAE/g-dry sample. The presence of bioactive compounds of alkaloids, flavonoids, tannins and phenols were confirmed in the extract. The mortality or average life span of A. fabae upon application of G. sepium pesticide and commercially available pesticide are 5.17 seconds and 4.73 seconds, of which the difference is insignificant with the p-value one tail (0.002) and two tail (0.005) effect. No significant effect on the height of plant and number of P. vulgaris leaves at 10 days after the application of G. sepium pesticide (p = 0.022) and commercially available pesticide (p = 0.026) which make it a great potential biopesticide. 

 

Keywords: black bean aphids, botanical pesticides, Gliricidia sepium, microwave assisted extraction, total phenolic content

 

Abstrak

Serangan makhluk perosak ialah satu masalah serius bagi sektor pertanian terutama hasil tuaian dan mungkin memberi kesan kesihatan terhadap manusia. Aphis fabae, juga dikenali sebagai afid kacang hitam, merupakan satu dari pemangsa utama yang merosakkan tanaman seperti kacang, seleri, kacang pea dan membawa penyakit. Ekstrak daun Kakawate (Gliricidia sepium) telah disediakan melalui pengekstrakan berbantu gelombang mikro dan digunakan sebagai racun mahkluk perosak bagi melawan afid kacang hitam dalam untaian kacang (Phaseolus vulgaris). Pengekstrakan berbantu gelombang mikro (MAE) ialah satu kaedah pantas bagi pengekstrakan sebatian aktif dari tumbuhan di mana tenaga gelombang mikro digunakan memanaskan sampel campuran pelarut dalam tempoh masa yang singkat. Reka bentuk komposit berpusat (CCD) telah dibangunkan bagi penilaian kesan masa penyinaran (1.5 minit) dan kuasa gelombang mikro (210W, 350W) terhadap kandungan fenolik bagi hasil ekstrak. Keadaan optimum MAE bagi jumlah fenolik daun kering G. sepium ditentukan melalui kaedah gerak balas permukaan (RSM). Keadaan optimum telah diperolehi pada masa penyinaran 2.44 minit dan kuasa gelombang mikro ialah 275 W bersamaan jumlah kandungan fenolik 9.022 mg-GAE/g-sampel kering. Kehadiran sebatian bioaktif seperti alkaloid, flavonoid, tannin dan fenol telah disahkan melalui hasil ekstrak. Kadar kematian atau purata jangka hayat bagi A. fabae berdasarkan pengunaan racun makhluk perosak G. sepium dan perbandingan racun komersial ialah 5.17 saat dan 4.74 saat, di mana perbezaannya tidak signifikan dengan nilai p kesan satu arah (0.002) dan dua arah (0.005). Tiada kesan signifikan terhadap ketinggian pokok dan bilangan  P. vulgaris selepas 10 hari racun G.sepium digunapakai (p = 0.022) dan racun komersial (p = 0.026) di mana ia menunjukkan potensi yang baik sebagai racun mahkluk perosak bio.

 

Kata kunci:   afid kacang hitam, racun botani, Gliricidia sepium, pengekstrakan berbantu gelombang mikro, jumlah kandungan fenolik

 

References

1.      Food and Agriculture Organization (2017). The future of food and agriculture: Trends and challenges. http://www.fao.org/. [Access online 15 March 2021].

2.      Food and Agriculture Organization (2019). New standard to curb the global spread of plant pest and diseases. http://www.fao.org/. [Access online 15 March 2021].

3.     Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C. and Zalom, F. G. (2011). Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Management Science, 67(11): 1396-1402. 

4.      Rodriguez, T. (2018). Managing insect pest on organic vegetable production. https://www. agriculture.com.ph/. [Access online 28 February 2020].

5.      University of Idaho (2021). Integrated pest management: Black bean aphids. https://www.uidaho.edu/. [Access online 15 March 2021].

6.      Shannag H. K. (2007). Effect of black bean aphids, Aphis fabae, on transpiration stomatal conductance and crude protein content of faba bean. Annals of Applied Biology, 151: 183-187.

7.      Razmjou, J. and Fallahi, A. (2009). Effects of sugar beet cultivar on development and reproductive capacity of Aphis fabae. Bulletin of Insectology. 62(2): 196-201.

8.      Kankolongo A. M. (2018). Leguminous crops. Food crop production of smallholder farmers in southern Africa: pp. 173-203

9.      Boulogne, I., Petit, P., Ozier-lafontaine, H., Loranger-Merciris, G., Boulogne, I. and Petit, P. (2012). Insecticidal and antifungal chemicals produced by plants: A review. Environmental Chemistry Letters, 10(4): 325-347.

10.   Okwute, S. K. (2012). Plants as potential sources of pesticidal agents: A review. Pesticides – Advances in Chemical and Botanical Pesticides: pp. 207-232.

11.   Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12: 221.

12.   Rabena, A. R. (1996). Isolation, characterization and identification of the active component of Kakawate (Gliricidia sepium) (Jacq.) Kunth ex Walp. Leaves against termites (Microcerotermes losbanosensis). Thesis of Master Degree, Philippines University Los Banos College, Laguna, Philippines

13.   Torres, L. M. (2018). Madre de cacao (Gliricidia sepium) and sinta (Andrographis paniculata) leaves extract as botanical animal lice and ticks remover. Journal of Fundamental and Applied Sciences, 10(3S): 650-664.

14.   Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S. and Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3): 296-302.

15.   Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G. and Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4): 42.

16.   Zhong, L., Yuan, Z., Rong, L., Zhang, Y., Xiong, G., Liu, Y. and Li, C. (2019). An optimized method for extraction and characterization of phenolic compounds in Dendranthema indicum var. aromaticum flower. Scientific Reports, 9(1): 1-12.

17.   Alara, O. R., Abdurahman, N. H., and Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11(6): 12-17.

18.   Ghafoor, K., AL-Juhaimi, F. Y. and Choi, Y. H. (2012). Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods for Human Nutrition, 67(4): 407-414.

19.  Farías-Campomanes, A. M., Rostagno, M. A., Coaquira-Quispe, J. J. and Meireles, M. A. A. (2015). Supercritical fluid extraction of polyphenols from lees: Overall extraction curve, kinetic data and composition of the extracts. Bioresources and Bioprocessing, 2(1): 45.

20.   Phan, L. T. M., Nguyen, K. T. P., Vuong, H. T., Tran, D. D., Nguyen, T. X. P., Hoang, M. N. and Nguyen, H. H. (2020). Supercritical fluid extraction of polyphenols from Vietnamese Callisia fragrans leaves and antioxidant activity of the extract. Journal of Chemistry, 2020: 9548401.

21.   Gallo, M., Ferracane, R., Graziani, G., Ritieni, A. and Fogliano, V. (2010). Microwave assisted extraction of phenolic compounds from four different spices. Molecules, 15(9): 6365-6374.

22.   Kaur, P., Chaudhary, A., Singh, B. and Gopichand. (2012). An efficient microwave assisted extraction of phenolic compounds and antioxidant potential of Ginkgo biloba. Natural Product Communications, 7(2): 203-206.

23.  Wong-Paz, J. E., Contreras-Esquivel, J. C., Muñiz-Marquez, D., Belmares, R., Rodriguez, R., Flores, P., and Aguilar, C. N. (2014). Microwave-assisted extraction of phenolic antioxidants from semiarid plants. American Journal of Agricultural and Biological Science, 9(3): 299-310.

24.   Li, Y., Li, S., Lin, S. J., Zhang, J. J., Zhao, C. N. and Li, H. Bin. (2017). Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules, 22(9): 1481.

25.   Akhtar, I., Javad, S., Yousaf, Z., Iqbal, S. and Jabeen, K. (2019). Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Pakistan Journal of Pharmaceutical Sciences, 32(1): 223-230.

26.   Durmaz, E., Sumnu, G. and Sahin, S. (2015). Microwave-assisted extraction of phenolic compounds from caper. Separation Science and Technology (Philadelphia), 50(13): 1986-1992.

27.   Mendiola, J. A., Herrero, M., Castro-Puyana, M. and Ibáñez, E. (2013). Supercritical fluid extraction.           RSC Green Chemistry, 1: 196-230.

28.   Lovrić, V., Putnik, P., Kovačević, D. B., Jukić, M., & Dragović-Uzelac, V. (2017). Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technology and Biotechnology. 55(2): 243-250.

29.   Kaderides, K., Papaoikonomou, L., Serafim, M. and Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification, 137: 1-11.

30.   Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z. and Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104: 17-25.

31.   Shirsath, S. R., Sable, S. S., Gaikwad, S. G., Sonawane, S. H., Saini, D. R. and Gogate, P. R. (2017). Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrasonics Sonochemistry, 38: 437-445.

32.   Balanquit, B. J. and Fuentes, R. (2015). Preliminary phycochemical screening and antioxidant activity of some brown algae sargassum species from Lawaan, Eastern Samar. Journal of Nature Studies, 14(1): 12-21.

33.   Tree, D. (2016). Forage fact sheet gliricidia, Inter-American Institute for Cooperation in Agriculture, pp. 5-6.

34.   Farag, R. S., Abdel-Latif, M. S., Abd El Baky, H. H. and Tawfeek, L. S. (2020). Phytochemical screening and antioxidant activity of some medicinal plants’ crude juices. Biotechnology Reports, 28: e00536. 

35.   Sreesha, K. S. and Danya, U. (2021). Evaluation of preliminary phytochemical, antioxidant and in vitro cytotoxic studies of an ethno therapeutically important tree, Gliricidia sepium (jacq.) Steud. International Journal of Creative Research Thoughts, 9(3): 5515–5521.

36.   Yashin A., Yahin Y., Xia X. and Nemzer B. (2017). Antioxidant activity of spices and their impact to human health: A review. Antioxidants, 6(3): 70.

37.   Peter K. V. and Babu K. N. (2012). Introduction to herbs and spices: medicinal uses and sustainable production. Handbook of Herbs and Spices: pp.1-16.

38.   Kolawole, O. M., Joseph, A. K. and George, O. A. (2018). Antibacterial and phytochemical activity of      Gliricidia sepium against poultry pathogens. Microbiology Research Journal International, 24(4): 1-10.

39.   Akharaiyi, F. C., Boboye, B. and Adetuyi, F. C. (2012). Antibacterial, phytochemical and antioxidant activities of the leaf extracts of Gliricidia sepium and Spathodea campanulata. World Applied Sciences Journal, 16(4): 523-530.

40.   Maulion R.V. and Madrazo C. (2019). Synthesis of Fe3O4 nanoparticle via reduction of Fe+3 using S. polycystum for methylene blue dye removal in aqueous solution. Thesis of Master’s Degree, De La Salle University, Manila, Philippines.

41.   Dahmoune, F., Nayak, B., Moussi, K., Remini, H. and Madani, K. (2014). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166: 585-595.

42.   Alara, O. R., Abdurahman, N. H., Ali, H. A. and Zain, N. M. (2021). Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: An optimization study and LC-QTOF-MS analysis. Future Foods, 3: 100035.

43.  Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A. and Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products. 71: 31-40.