Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1068 - 1080

 

 

 

 

CHALLENGES OF ALUM RECOVERY FROM DRINKING WATER TREATMENT SLUDGE USING ELECTROLYSIS METHOD

 

(Cabaran untuk Pemulihan Alum daripada Enapcemar Rawatan Air Minuman Melalui Kaedah Elektrolisis)

 

Rizkiy Amaliyah Barakwan and Yulinah Trihadiningrum*

 

Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering,

Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia

 

*Corresponding author: trihadiningrum@gmail.com

 

 

Received:  4 July 2021; Accepted: 17 October 2021; Published:  27 December 2021

 

 

Abstract

Aluminum sulfate was used as coagulant in the coagulation process in drinking water treatment plant (DWTP) to remove various types of contaminants from the raw water. Acidification was applied for alum recovery from sludge, but it was a nonselective process. It was followed by an electrolysis to separate the aluminum from impurities. This study aims to evaluate the efficiency and challenges of the electrolysis in the alum coagulant recovery from drinking water treatment sludge (DWTS). The dried DWTS was acidified using sulfuric acid at pH 3 and then separated in centrifugation to get the acidified alum sludge solution. The electrolysis was conducted using carbon (C)/silver (Ag), platinum (Pt)/platinum (Pt), and platinum (Pt)/stainless stell (SS A304) electrodes with current density of 25, 29.17, and 12.5 mA/cm2, respectively. The electrolysis was performed in a batch recirculation reactor without membrane, using cation exchange membrane (CEM), and anion exchange membrane (AEM). Chemical oxygen demand (COD) value was measured using titrimetric method. The metals (Al, Fe, Mn, Zn, Pb, Cu, and Cr) in the deposited matter at the cathode were weighed and analyzed by Inductively Coupled Plasma (ICP). The results showed that the use of CEM in the electrolysis with Pt/SS A304 electrodes increased the alum recovery up to 67.56% that was pure of organic contaminants. The challenges in alum coagulant recovery from DWTS using electrolysis method were the differences of the raw water quality during wet and dry seasons, the appropriate electrical current density, the electrode materials, the potential value at the anode and cathode, and the use of the ion exchange membrane in the electrolysis.

 

Keywords:  alum recovery, cation exchange membrane, drinking water treatment sludge, electrolysis.

 

Abstrak

Aluminium sulfat digunakan sebagai penggumpal dalam proses penggumpalan-pengentalan di loji rawatan air minuman untuk menghilangkan pelbagai jenis bahan cemar yang terdapat dalam kandungan air mentah. Pengasidan telah dipilih untuk proses pemulihan penggumpal dari enapcemar alum, tetapi proses ini bersifat tidak selektif. Oleh itu, proses pemulihan ini kemudiannya diikuti dengan proses elektrolisis untuk memisahkan aluminium daripada kekotoran. Kajian ini bertujuan untuk menilai kecekapan dan cabaran kaedah elektrolisis dalam proses pemulihan alum daripada enapcemar rawatan air minuman. Untuk mendapatkan larutan lumpur tepu yang berasid, enap cemar telah ditambah dengan asid sulfurik pada pH 3 dan seterusnya dipisahkan dengan kaedah pengemparan. Elektrolisis dilakukan menggunakan elektrod karbon (C) / perak (Ag), platinum (Pt) / platinum (Pt), dan platinum (Pt) / keluli tahan karat (SS A304) dengan kepadatan arus 25; 29.17; dan 12.5 mA /cm2. Elektrolisis dilakukan dalam reaktor sesekumpul dengan sistem kitaran semula tanpa membran, membran pertukaran kation (CEM), dan juga membran pertukaran anion (AEM). Kepekatan permintaan oksigen kimia (COD) diukur dengan kaedah titrimetrik. Kepekatan logam (Al, Fe, Mn, Zn, Pb, Cu, dan Cr) dalam enapan pulih guna yang menumpuk pada katod ditimbang dan dianalisis menggunakan plasma gandingan aruhan. Hasil kajian ini menunjukkan bahawa penggunaan CEM dalam elektrolisis menggunakan elektrod Pt / SS A304 dapat meningkatkan kecekapan pemulihan alum yang bersih dari bahan cemar organik sehingga 67.56%. Cabaran dalam memulihkan penggumpal alum dari enap cemar rawatan air minuman menggunakan kaedah elektrolisis ini terletak pada perbezaan kualiti air mentah pada musim hujan dan kering, ketumpatan arus elektrik yang sesuai, pemilihan bahan elektrod, nilai potensi pada anod dan katod, serta penggunaan membran pertukaran ion semasa elektrolisis dijalankan.

 

Kata kunci:  pemulihan alum, membran pertukaran kation, enap cemar rawatan air minuman, elektrolisis

 

References

1.      Bhaskoro and Ramadhan. (2018). Evaluation of Karangpilang 1 drinking water treatment plant quantitative performance in Surabaya water treatment supply. Journal of Precipitation: Media and Environmental Engineering Development, 15(2): 62-68.

2.      Saukkoriipi, J. (2010). Theoritical study of the hydrolysis of aluminum complexes. Thesis of Doctoral Degree, Linnanmaa, Faculty of Science, Department of Chemistry, University of Oulu.

3.      Ahmad, T., Ahmad, K. and Alam, M. (2016). Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environmental Sciences, 35: 950-955.

4.      Yonge, D. T. (2011). A comparison of aluminum and iron-based coagulants for treatment of surface water in Sarasota County. Florida. Florida, University of Central Florida.

5.      Cherifi, M., Boutemine, N., Laefer, D. F. and Hazourli, S. (2016). Effect of sludge pH and treatment time on the electrokinetic removal of aluminum from water potabilization treatment sludge. CR Chim, 19: 511-516.

6.      Barakwan, R. A., Hardina, T. T., Trihadiningrum, Y. and Bagastyo, A. Y. (2019). Recovery of alum from Surabaya water treatment sludge using electrolysis with carbon-silver electrodes. Journal of Ecological Engineering, 20(7): 126-133.

7.      US EPA (2011). Drinking water treatment plant residuals management technical report: pp. 192.

8.      Ministry for the Environment of Republic Indonesia (2014). State Ministry for the Environment Decree of Republic Indonesia No. 5/2014 concerning Quality Standard of Wastewater, Jakarta, Indonesia, Ministry for the Environment of Republic Indonesia, 2014.

9.      Evuti, A. M. and Lawal, M. (2011). Recovery of coagulants from water works sludge: A review. Pelagia Research Library, 2(6): 410-417.

10.   Xu, G. R., Yan, Z. C., Wang, Y. C. and Wang, N. (2009). Recycle of alum recovered from water treatment sludge in chemically enhanced primary treatment. Journal of Hazardous Materials, 161: 663-669.

11.   Elicker, C., Filho, P. J. S. and Castagno, K. R. L. (2014). Electroremediation of heavy metals in sewage sludge. Brazilian Journal of Chemical Engineering, 31(2): 365-371.

12.   Widodo, G., Sigit, R. L., and Torowati, N. Y. (2010). Effect of potential, time, and acidification to the electrodialysis of uranil nitrate solution. Jurnal Teknologi Bahan Bakar Nuklir (Batan), 6(1): 1-69.

13.   Huitle, C. A. M., Rodrigo, M. A. and Scialdone, O. (2018). Electrochemical water and wastewater treatment. United States, Elsevier.

14.   Zou, L., Morris, G. and Qi, D. (2008). Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination, 225: 329-340.

15.   Song, K. D., Kim, K. B., Han, S. H. and Lee, H. K. (2003). A study on effect of hydrogen reduction reaction on the initial stage of Ni electrodeposition using EQCM. Electrochemistry Communications, 5: 460-466.

16.   Dahhou M. (2017). Drinking water sludge of the Moroccan capital: Statistical analysis of its environmental aspects. Journal of Taibah University for Science: 749–758.

17.   APHA (2012). Standard methods for examination of water and wastewater 22nd edition, Washington DC.

18.   Bagastyo, A.Y., Ayu, A. P., Barakwan, R. A. and Trihadiningrum, Y. (2020). Recovery of alum sludge by using membrane-based electrochemical process. Journal Ecology Engineering, 21(6): 237-247.

19.   Barakwan, R. A., Pratiwi, W. B., Trihadiningrum, Y. and Bagastyo, A.Y. (2020). Electrolysis using Pt/SS electrodes for aluminum recovery from drinking water treatment sludge. Journal Materials Cycles Waste Management, 22: 2130-2139.

20.   Connor, M. P., Coulthard, R. M. and Plata, D. L. (2017). Electrochemical deposition for the separation and recovery of metals using carbon nanotube-enabled filters. The Royal Society of Chemistry: 1-10.

21.   Kan, C., Huang, C. and Pan, J. R. (2002). Coagulation of high turbidity water: The effects of rapid mixing. Journal of Water Supply: Research and Technology-AQUA, 51(2): 77-85.

22.   BaiChuan, C., BaoYu, G., ChunHua, X., Ying, F. and Xin, L. (2010). Effects of pH on coagulation behavior and floc properties in Yellow River water treatment using ferric based coagulants. Chinese Science Bulletin, 55(14): 1382-1387.

23.   Ernest, E., Onyeka, O., David, N. and Blessing, O. (2017). Effects of pH, dosage, temperature and mixing speed on the efficiency of water melon seed in removing the turbidity and colour of Atabong River, Awka-Ibom State, Nigeria. International Journal of Advanced Engineering, Management and Science, 3(5): 427-434.

24.   Keeley, J., Jarvis, P. and Judd, S. J. (2014). Coagulant recovery from water treatment residuals: A review of applicable technologies. Environmental Science Technology, 44: 2675-2719.

25.   Novitasari, A. K. (2015). Analysis of identification and inventaritation of pollution source in Surabaya River. Thesis of Master Degree, Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember.

26.   Yudo, S. and Said, N. I. (2019). Water quality condition of Surabaya River case study: Improved raw water of PDAM Surabaya. Jurnal Teknologi Lingkungan, 20(1): 19-28.

27.   Personal commend, Mr. Adi, Operational Staff of Surabaya Drinking Water Treatment Plant. (2019). Surabaya.

28.   Fazeli, M., Soltani, and Sarvestani, M. R. (2006). Feasibility of reuse of residuals from water treatment plants in landscapes irrigation and agricultural (Case atudy in 3 and 4 water treatment, Tehran). Second Conference on Water Resources Management: pp. 1-10.

29.   Gibbons, M. K. and Gagnon, G. A. (2011). Understanding removal of phosphate or arsenate onto water treatment residual solids. Journal Hazardous Materials, 186: 1916-1923.

30.   Trollip, D. L., Hughes, J. C. and Titshall, L. W. (2013). Sources of manganese in the residue from a water treatment plant. Water SA, 39(2): 265-270.

31.   Goverment Republic of Indonesia (2001). Decree of the Goverment Regulation of Republic Indonesia No. 82/2001 concerning the management of water quality and the control of water pollution, Jakarta, Indonesia: Goverment Republic of Indonesia.

32.   Razif, M. and Persada, S. F. (2015). The fluctuation impacts of BOD, COD, and TSS in Surabaya Rivers to environmental impact assessment (EIA) sustainability on drinking water treatment plant in Surabaya City. International Journal of Chemtech Research, 8(8): 143-151.

33.   Cheng, W. P., Fu, C. H., Chen, P. H., and Yu, R. F. (2012). Dynamics of aluminum leaching from water purification sludge. Journal of Hazardous Materials, 217 (218): 149-155.

34.   Prakash, P., Hoskins, D. and SenGupta, A. K. (2004). Application of homogeneous and heterogeneous cation-exchange membranes in coagulant recovery from water treatment plant residuals using donnan membrane process. Journal of Membrane Science, 237: 131-144.

35.   Mulchandani, A. and Westerhoff, P. (2016). Recovery opportunities for metals and energy from sewage sludges. Bioresource Technology, 215: 215-226.

36.   Boaventura, R. A. R., Duarte, A. A. S. and Almeida, M. F. (2000). Aluminum recovery from water treatment sludges. IV International Conference Water Supply and Water Quality” Kraków – Poland, September, 11-13.

37.   Li, C. W., Lin, J. L., Kang, S. F. and Liang, C. L. (2005). Acidification and alkalinization of textile chemical sludge: Volume/solid reduction, dewaterability, and Al(III) recovery. Separation and Purification Technology, 42: 31-37.

38.   Xu, H., Ding, M., Shen, K., Cui, J. and Chen, W. (2017). Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology. Chemosphere, 173: 45-60.

39.   Walsh, F. C., and de Leon, C. P. (2018). Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochimica Acta, 280: 121-148.

40.   Barakwan, R. A., Trihadiningrum, Y. and Bagastyo, A. Y. (2019). Characterization of alum sludge from Surabaya water treatment plant, Indonesia. Journal of Ecological Engineering, 20(5): 7-13.

41.   Rajkumar, S. R., Alagar, M., Somasekaran, S. and Ravisankar, S. R. (2015). Significance of limiting current density by influence of the process parameter for the electrodeposition system. International Journal of Information Science and Computing, 2(1): 1-11.

42.   Kumar, S., Pande, S. and Verma, P. (2015). Factor effecting electro-deposition process. International Journal of Current Engineering and Technology, 5(2): 700-703.

43.   Chen, G. and Comninellis, C. (2010). Electrochemistry for the environment, Springer, New York.

44.   Zhou, G., Li, W., and Wang, Z. (2015). Electrosorption for organic pollutants removal and desalination by graphite and activated carbon fiber composite electrodes. International journal of Environmental Science and Technology, 12(12): 1-20.

45.   Molleman, B. and Hiemstra, T. (2017). The pH, time, and size dependency of silver nanoparticle dissolution: the road to equilibrium. The Royal Society of Chemistry: 1-18.

46.   Casey, E. J. and Moroz, W. J. (1964). On the formation of Ag2O3 on silver electrodes. Canadian Journal of Chemistry, 43: 1199-1214.