Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1068 - 1080
CHALLENGES OF ALUM RECOVERY FROM DRINKING WATER TREATMENT SLUDGE USING
ELECTROLYSIS METHOD
(Cabaran untuk Pemulihan Alum daripada Enapcemar Rawatan Air Minuman
Melalui Kaedah Elektrolisis)
Rizkiy Amaliyah Barakwan and Yulinah Trihadiningrum*
Department of Environmental
Engineering, Faculty of Civil, Planning, and Geo Engineering,
Institut Teknologi Sepuluh
Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
*Corresponding author: trihadiningrum@gmail.com
Received: 4 July 2021; Accepted: 17 October 2021;
Published: 27 December 2021
Abstract
Aluminum sulfate was used as
coagulant in the coagulation process in drinking water treatment plant (DWTP)
to remove various types of contaminants from the raw water. Acidification was
applied for alum recovery from sludge, but it was a nonselective process. It
was followed by an electrolysis to separate the aluminum from impurities. This
study aims to evaluate the efficiency and challenges of the electrolysis in the
alum coagulant recovery from drinking water treatment sludge (DWTS). The dried
DWTS was acidified using sulfuric acid at pH 3 and then separated in
centrifugation to get the acidified alum sludge solution. The electrolysis was
conducted using carbon (C)/silver (Ag), platinum (Pt)/platinum (Pt), and
platinum (Pt)/stainless stell (SS A304) electrodes with current density of 25,
29.17, and 12.5 mA/cm2, respectively. The electrolysis was performed
in a batch recirculation reactor without membrane, using cation exchange
membrane (CEM), and anion exchange membrane (AEM). Chemical oxygen demand (COD)
value was measured using titrimetric method. The metals (Al, Fe, Mn, Zn, Pb,
Cu, and Cr) in the deposited matter at the cathode were weighed and analyzed by
Inductively Coupled Plasma (ICP). The results showed that the use of CEM in the
electrolysis with Pt/SS A304 electrodes increased the alum recovery up to
67.56% that was pure of organic contaminants. The challenges in alum coagulant recovery
from DWTS using electrolysis method were the differences of the raw water
quality during wet and dry seasons, the appropriate electrical current density,
the electrode materials, the potential value at the anode and cathode, and the
use of the ion exchange membrane in the electrolysis.
Keywords: alum recovery, cation exchange membrane,
drinking water treatment sludge, electrolysis.
Abstrak
Aluminium sulfat digunakan
sebagai penggumpal dalam proses penggumpalan-pengentalan di loji rawatan air
minuman untuk menghilangkan pelbagai jenis bahan cemar yang terdapat dalam
kandungan air mentah. Pengasidan telah dipilih untuk proses pemulihan
penggumpal dari enapcemar alum, tetapi proses ini bersifat tidak selektif. Oleh
itu, proses pemulihan ini kemudiannya diikuti dengan proses elektrolisis untuk
memisahkan aluminium daripada kekotoran. Kajian ini bertujuan untuk menilai
kecekapan dan cabaran kaedah elektrolisis dalam proses pemulihan alum daripada
enapcemar rawatan air minuman. Untuk mendapatkan larutan lumpur tepu yang
berasid, enap cemar telah ditambah dengan asid sulfurik pada pH 3 dan
seterusnya dipisahkan dengan kaedah pengemparan. Elektrolisis dilakukan
menggunakan elektrod karbon (C) / perak (Ag), platinum (Pt) / platinum (Pt),
dan platinum (Pt) / keluli tahan karat (SS A304) dengan kepadatan arus 25;
29.17; dan 12.5 mA /cm2. Elektrolisis dilakukan dalam reaktor
sesekumpul dengan sistem kitaran semula tanpa membran, membran pertukaran
kation (CEM), dan juga membran pertukaran anion (AEM). Kepekatan permintaan
oksigen kimia (COD) diukur dengan kaedah titrimetrik. Kepekatan logam (Al, Fe,
Mn, Zn, Pb, Cu, dan Cr) dalam enapan pulih guna yang menumpuk pada katod
ditimbang dan dianalisis menggunakan plasma gandingan aruhan. Hasil kajian ini
menunjukkan bahawa penggunaan CEM dalam elektrolisis menggunakan elektrod Pt /
SS A304 dapat meningkatkan kecekapan pemulihan alum yang bersih dari bahan
cemar organik sehingga 67.56%. Cabaran dalam memulihkan penggumpal alum dari
enap cemar rawatan air minuman menggunakan kaedah elektrolisis ini terletak
pada perbezaan kualiti air mentah pada musim hujan dan kering, ketumpatan arus
elektrik yang sesuai, pemilihan bahan elektrod, nilai potensi pada anod dan
katod, serta penggunaan membran pertukaran ion semasa elektrolisis dijalankan.
Kata kunci: pemulihan
alum, membran pertukaran kation, enap cemar rawatan air minuman, elektrolisis
References
1.
Bhaskoro
and Ramadhan. (2018). Evaluation of Karangpilang 1 drinking water treatment
plant quantitative performance in Surabaya water treatment supply. Journal of Precipitation: Media and Environmental Engineering
Development, 15(2): 62-68.
2.
Saukkoriipi,
J. (2010). Theoritical study of the hydrolysis of aluminum complexes. Thesis of
Doctoral Degree, Linnanmaa, Faculty of Science, Department of Chemistry,
University of Oulu.
3.
Ahmad,
T., Ahmad, K. and Alam, M. (2016). Characterization of water treatment plant’s
sludge and its safe disposal options. Procedia
Environmental Sciences, 35: 950-955.
4.
Yonge,
D. T. (2011). A comparison of aluminum and iron-based coagulants for treatment
of surface water in Sarasota County. Florida.
Florida, University of Central Florida.
5.
Cherifi,
M., Boutemine, N., Laefer, D. F. and Hazourli, S. (2016). Effect of sludge pH
and treatment time on the electrokinetic removal of aluminum from water
potabilization treatment sludge. CR Chim,
19: 511-516.
6.
Barakwan,
R. A., Hardina, T. T., Trihadiningrum, Y. and Bagastyo, A. Y. (2019). Recovery
of alum from Surabaya water treatment sludge using electrolysis with
carbon-silver electrodes. Journal of
Ecological Engineering, 20(7): 126-133.
7.
US EPA
(2011). Drinking water treatment plant residuals management technical report:
pp. 192.
8.
Ministry
for the Environment of Republic Indonesia (2014). State Ministry for the
Environment Decree of Republic Indonesia No. 5/2014 concerning Quality Standard
of Wastewater, Jakarta, Indonesia, Ministry for the Environment of Republic
Indonesia, 2014.
9.
Evuti,
A. M. and Lawal, M. (2011). Recovery of coagulants from water works sludge: A
review. Pelagia Research Library,
2(6): 410-417.
10.
Xu, G.
R., Yan, Z. C., Wang, Y. C. and Wang, N. (2009). Recycle of alum recovered from
water treatment sludge in chemically enhanced primary treatment. Journal of Hazardous Materials, 161:
663-669.
11.
Elicker,
C., Filho, P. J. S. and Castagno, K. R. L. (2014). Electroremediation of heavy
metals in sewage sludge. Brazilian
Journal of Chemical Engineering, 31(2): 365-371.
12.
Widodo,
G., Sigit, R. L., and Torowati, N. Y. (2010). Effect of potential, time, and
acidification to the electrodialysis of uranil nitrate solution. Jurnal Teknologi Bahan Bakar Nuklir (Batan),
6(1): 1-69.
13.
Huitle,
C. A. M., Rodrigo, M. A. and Scialdone, O. (2018). Electrochemical water and
wastewater treatment. United States, Elsevier.
14.
Zou, L.,
Morris, G. and Qi, D. (2008). Using activated carbon electrode in
electrosorptive deionisation of brackish water. Desalination, 225: 329-340.
15.
Song, K.
D., Kim, K. B., Han, S. H. and Lee, H. K. (2003). A study on effect of hydrogen
reduction reaction on the initial stage of Ni electrodeposition using EQCM. Electrochemistry Communications, 5:
460-466.
16.
Dahhou
M. (2017). Drinking water sludge of the Moroccan capital: Statistical analysis
of its environmental aspects. Journal of
Taibah University for Science: 749–758.
17.
APHA
(2012). Standard methods for examination of water and wastewater 22nd
edition, Washington DC.
18.
Bagastyo,
A.Y., Ayu, A. P., Barakwan, R. A. and Trihadiningrum, Y. (2020). Recovery of
alum sludge by using membrane-based electrochemical process. Journal Ecology Engineering, 21(6): 237-247.
19.
Barakwan,
R. A., Pratiwi, W. B., Trihadiningrum, Y. and Bagastyo, A.Y. (2020).
Electrolysis using Pt/SS electrodes for aluminum recovery
from drinking water treatment sludge. Journal
Materials Cycles Waste Management, 22: 2130-2139.
20.
Connor,
M. P., Coulthard, R. M. and Plata, D. L. (2017). Electrochemical deposition for
the separation and recovery of metals using carbon nanotube-enabled filters. The Royal Society of Chemistry: 1-10.
21.
Kan, C.,
Huang, C. and Pan, J. R. (2002). Coagulation of high turbidity water: The
effects of rapid mixing. Journal of Water
Supply: Research and Technology-AQUA, 51(2): 77-85.
22.
BaiChuan,
C., BaoYu, G., ChunHua, X., Ying, F. and Xin, L. (2010). Effects of pH on
coagulation behavior and floc properties in Yellow River water treatment using
ferric based coagulants. Chinese Science
Bulletin, 55(14): 1382-1387.
23.
Ernest,
E., Onyeka, O., David, N. and Blessing, O. (2017). Effects of pH, dosage,
temperature and mixing speed on the efficiency of water melon seed in removing
the turbidity and colour of Atabong River, Awka-Ibom State, Nigeria. International Journal of Advanced
Engineering, Management and Science, 3(5): 427-434.
24.
Keeley,
J., Jarvis, P. and Judd, S. J. (2014). Coagulant recovery from water treatment
residuals: A review of applicable technologies. Environmental Science Technology, 44: 2675-2719.
25.
Novitasari,
A. K. (2015). Analysis of identification and inventaritation of pollution
source in Surabaya River. Thesis of Master Degree, Department of Environmental
Engineering, Institut Teknologi Sepuluh Nopember.
26.
Yudo, S.
and Said, N. I. (2019). Water quality condition of Surabaya River case study:
Improved raw water of PDAM Surabaya.
Jurnal Teknologi Lingkungan, 20(1): 19-28.
27.
Personal
commend, Mr. Adi, Operational Staff of Surabaya Drinking Water Treatment Plant.
(2019). Surabaya.
28.
Fazeli,
M., Soltani, and Sarvestani, M. R. (2006). Feasibility of reuse of residuals
from water treatment plants in landscapes irrigation and agricultural (Case
atudy in 3 and 4 water treatment, Tehran). Second
Conference on Water Resources Management: pp. 1-10.
29.
Gibbons,
M. K. and Gagnon, G. A. (2011). Understanding removal of phosphate or arsenate
onto water treatment residual solids. Journal
Hazardous Materials, 186: 1916-1923.
30.
Trollip,
D. L., Hughes, J. C. and Titshall, L. W. (2013). Sources of manganese in the
residue from a water treatment plant. Water
SA, 39(2): 265-270.
31.
Goverment
Republic of Indonesia (2001). Decree of the Goverment Regulation of Republic
Indonesia No. 82/2001 concerning the management of water quality and the
control of water pollution, Jakarta, Indonesia: Goverment Republic of
Indonesia.
32.
Razif,
M. and Persada, S. F. (2015). The fluctuation impacts of BOD, COD, and TSS in
Surabaya Rivers to environmental impact assessment (EIA) sustainability on
drinking water treatment plant in Surabaya City. International Journal of Chemtech Research, 8(8): 143-151.
33.
Cheng,
W. P., Fu, C. H., Chen, P. H., and Yu, R. F. (2012). Dynamics of aluminum
leaching from water purification sludge. Journal
of Hazardous Materials, 217 (218): 149-155.
34.
Prakash,
P., Hoskins, D. and SenGupta, A. K. (2004). Application of homogeneous and heterogeneous
cation-exchange membranes in coagulant recovery from water treatment plant
residuals using donnan membrane process. Journal
of Membrane Science, 237: 131-144.
35.
Mulchandani,
A. and Westerhoff, P. (2016). Recovery opportunities for metals and energy from
sewage sludges. Bioresource Technology,
215: 215-226.
36.
Boaventura,
R. A. R., Duarte, A. A. S. and Almeida, M. F. (2000). Aluminum recovery from
water treatment sludges. IV International Conference Water Supply and Water
Quality” Kraków – Poland, September, 11-13.
37.
Li, C.
W., Lin, J. L., Kang, S. F. and Liang, C. L. (2005). Acidification and
alkalinization of textile chemical sludge: Volume/solid reduction,
dewaterability, and Al(III) recovery. Separation
and Purification Technology, 42: 31-37.
38. Xu, H., Ding, M., Shen, K., Cui, J. and Chen, W. (2017). Removal of aluminum from drinking water
treatment sludge using vacuum electrokinetic technology. Chemosphere, 173: 45-60.
39. Walsh, F. C., and de Leon, C. P. (2018). Progress in
electrochemical flow reactors for laboratory and pilot scale processing. Electrochimica Acta, 280: 121-148.
40.
Barakwan,
R. A., Trihadiningrum, Y. and Bagastyo, A. Y. (2019). Characterization of alum
sludge from Surabaya water treatment plant, Indonesia. Journal of Ecological Engineering, 20(5): 7-13.
41.
Rajkumar,
S. R., Alagar, M., Somasekaran, S. and Ravisankar, S. R. (2015). Significance
of limiting current density by influence of the process parameter for the
electrodeposition system. International
Journal of Information Science and Computing, 2(1): 1-11.
42.
Kumar,
S., Pande, S. and Verma, P. (2015). Factor effecting electro-deposition
process. International Journal of Current
Engineering and Technology, 5(2): 700-703.
43.
Chen, G.
and Comninellis, C. (2010). Electrochemistry for the environment, Springer, New
York.
44.
Zhou,
G., Li, W., and Wang, Z. (2015). Electrosorption for organic pollutants removal
and desalination by graphite and activated carbon fiber composite electrodes. International journal of Environmental
Science and Technology, 12(12): 1-20.
45.
Molleman,
B. and Hiemstra, T. (2017). The pH, time, and size dependency of silver
nanoparticle dissolution: the road to equilibrium. The Royal Society of Chemistry: 1-18.
46.
Casey,
E. J. and Moroz, W. J. (1964). On the formation of Ag2O3
on silver electrodes. Canadian Journal of
Chemistry, 43: 1199-1214.