Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1056 - 1067
BIO-COAL OPTIMIZATION STUDY OF DRY LEAVES VIA LOW-TEMPERATURE MECHANISM
(Kajian Pengoptimuman Terhadap Bio-Arang Batu Mengunakan
Daun Kering Melalui Mekanisme Suhu Rendah)
Siti Solehah Misni1, Nor Hazelah Kasmuri1,2*,
Fuzieah Subari1, Zalizawati Abdullah1,2, Suhaiza Hanim
Hanipah1
1School of Chemical Engineering, College
of Engineering
2Industrial Process Reliability and Sustainability Research Group, College of
Engineering
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: norhazelah@uitm.edu.my
Received: 13 July 2021; Accepted: 17 October 2021;
Published: 27 December 2021
Abstract
The
abundant resources of forestry waste, such as dry leaves, find utility in the
bio-coal production industry. In this study, bio-coal produced via the
low-temperature mechanism of torrefaction was optimized using response surface
method (RSM). The dry torrefaction method was conducted for 60–90 min with
biomass loading of 50–100 g and a temperature range of 200–350 °C.The torrefaction process of dry leaves was executed in a furnace and was
optimized by using RSM’s factorial design. The optimal conditions were reaction
temperature of 200 °C, a reaction time of 60 min, and a
biomass loading of 100 g, which produced maximum bio-coal yield (85.33%).
Bio-coal products were characterized using a thermogravimetric analyzer and
Fourier transform infrared spectrometry to determine the weight loss, thermal
effect profile, and functional groups of phenol, alcohol, ester, ether, and
aromatic groups in bio-coal.
Keywords: bio-coal, dry leaves, optimization, response
surface method, torrefaction
Abstrak
Sumber sisa
hutan yang banyak, seperti daun kering, mempunyai kegunaan yang relevan dalam
industri pengeluaran bio-arang batu. Bio-arang batu yang dihasilkan melalui
mekanisme suhu rendah torefaksi dioptimumkan dengan kaedah gerak balas
permukaan (RSM). Kaedah kering torefaksi dilakukan selama 60-90 min dengan
muatan biojisim 50-100 g dan julat suhu 200-350 °C. Proses torefaksi daun
kering dilakukan di relau pembakaran dan dioptimumkan dengan menggunakan
rekabentuk faktorial RSM. Keadaan optimum ialah suhu reaksi 200°C, masa tindak
balas 60 min, dan muatan biojisim 100 g, yang menghasilkan hasil maksimum
bio-arang batu (85.33%). Produk bio arang batu dicirikan menggunakan
penganalisis termogravimetri dan spektrometri inframerah transformasi Fourier untuk
menentukan penurunan berat, profil kesan terma, dan kumpulan fungsional
kumpulan fenol, alkohol, ester, eter, dan aromatik dalam bio-arang batu.
Kata kunci: bio-arang
batu, daun kering, pengoptimuman, kaedah gerak balas permukaan, torefaksi
References
1.
Medic, D. (2012).
Investigation of torrefaction process parameters and characterization of
torrefied biomass. PhD Dissertation, Iowa State University.
2.
Demirel, Y. (2012).
Energy: Production, conversion, storage, conservation, and coupling. In Energy:
Production, Conversion, Storage, Conservation, and Coupling (Green Energy and
Technology). Springer Verlag, London: pp. 35.
3.
Chew, J. J. and Doshi, V.
(2011). Recent advances in biomass pretreatment - torrefaction fundamentals and
technology. Renewable Sustainable and Energy Reviews,
15(8): 4212-4222.
4.
Asadullah, M. (2014).
Barriers of commercial power generation using biomass gasification gas: A
review. Renewable Sustainable and Energy Reviews, 29: 201-215.
5.
Isa, K. M., Kasim, F. H.,
Ali, U. F. M. and Rashid, R. A. (2017). Characterization, calculation of
calorific values, and bio-oil production via thermochemical processes of
municipal solid waste in Perlis, Malaysia. Malaysian Journal of Analytical
Sciences, 21(4): 801-809.
6.
Bergman, P. C., Boersma,
R., Zwart, R. W. R. and Kiel, J. H. (2005). Torrefaction for biomass co-firing
in existing coal-fired power stations. Energy Research Centre of Netherlands.
7.
Van der Stelt, M. J. C.,
Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J. (2011) Biomass upgrading by
torrefaction for the production of biofuels: A review. Biomass and Bioenergy,
35(9): 3748-3762.
8.
Eseyin, A. E., Steele, P.
H. and Pittman, C. U. (2015). Current trends in the production and applications
of torrefied wood/biomass - A review. BioResources, 10(4): 8812-8858.
9.
Chouchene, A., Jeguirim,
M., Khiari, B., Trouvé, G. and Zagrouba, F. (2010). Study on the energy
mechanism during devolatilization/char oxidation and direct oxidation of olive
solid waste in a fixed bed reactor. Journal of Analytical and Applied
Pyrolysis, 87(1): 168-174.
10.
Stelte, W., Nielsen, N.
P. K., Hansen, H. O., Dahl, J., Shang, L. and Sanadi, A. R. (2013). Reprint of:
Pelletizing properties of torrefied wheat straw. Biomass and Bioenergy,
53: 105-112.
11.
Azócara, L., Hermosillab,
N., Gayb, A., Rochac, S., J. and Jarae, P. (2019). Brown pellet production
using wheat straw from southern cities in Chile. Fuel, 237: 823-832.
12.
Phuang, Y. W., Ng, W. Z.,
Khaw, S. S., Yap, Y. Y., Gan, S., Lee, L. Y. and Thangalazhy-Gopakumar, S.
(2021). Wet torrefaction pre-treatment of yard waste to improve the fuel
properties. Materials Science for Energy
Technologies, 4: 211-223.
13.
Singh, S., Chakraborty,
J. P. and Monoj Kumar Mondal, M. K. (2019). Optimization of process parameters
for torrefaction of Acacia nilotica using response surface methodology
and characteristics of torrefied biomass as upgraded fuel. Energy, 186: 1-14.
14.
Lin, Y., Zheng, N. and
Lin, C. (2021). Repurposing Washingtonia filifera petiole and Sterculia
foetida follicle waste biomass for renewable energy through torrefaction. Energy, 223: 1-10.
15.
Sarker, T. R., Azargohar,
R., Dalai, A. K. and Meda, V. (2021). Enhancement of fuel and physicochemical
properties of canola residues via microwave torrefaction. Energy Reports,
7: 6338-6353.
16.
Angelique, T. C.,
Villahermosa, J. E. R., Cabatingan, L. K. and Alchris, W. G. (2018). Energy
densification of sugarcane leaves through torrefaction under minimized
oxidative atmosphere. Energy for
Sustainable Development, 42: 160-169.
17.
Thani, N. S. M., Ghazi,
R. M. and Ismail, N. (2017). Response surface methodology optimization of oil
removal using banana peel as biosorbent. Malaysian Journal of Analytical
Sciences, 21(5): 1101-1110.
18.
Fisher, R. A. (1936). The
Design of Experiments. Macmillan Publishing, London: pp. 180.
19.
Asadullah, M., Adi, A.
M., Suhada, N., Malek, N. H., Saringat, M. I., and Azdarpour, A. (2014).
Optimization of palm kernel shell torrefaction to produce energy densified
bio-coal. Energy Conversion and Management, 88: 1086-1093.
20.
Naijia H., Bezerra, T.
L., Wu, Q., Ben, H., Sun, Q., Adhikari, S. and Ragauskas, A. J. (2017). Effect
of autohydrolysis pretreatment on biomass structure and the resulting bio-oil
from a pyrolysis process. Fuel, 206:
494-503.
21.
Zhang, C. Y., Yang, L.
J., Rong, F., Fu, D. G. and Gu, Z. Z. (2012). Boron-doped diamond anodic
oxidation of ethidium bromide: Process optimization by response surface
methodology, Electrochimica Acta, 64: 100-109.
22.
Mark J. A. and Patrick J.
W. (2007). DOE simplified: Practical tools for effective experimentation,
second edition. Productivity Press, London: 3-6.
23.
Ayeni, A. O., Banerjee,
S., Omeleye, J. A., Hymore, F. K., Giri, B. S., Deshmukh, S. C., Pandey, R. A.
and Mudliar, S. N. (2013). Optimization of pretreatment conditions using full
factorial design and enzymatic convertibility of shea tree sawdust, Biomass
and Bioenergy, 48: 130-138.
24.
Isa, K. M., Daud, S.,
Hamidin, N., Ismail, K., Saad, S. A. and Kasim, F. H. (2011). Thermogravimetric
analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice
husk using response surface methodology (RSM). Industrial
Crops and Products, 33(2): 481-487.
25.
Zhu, T., Heo, H. J. and
Row, K. H. (2010). Optimization of crude polysaccharides extraction from Hizikia
fusiformis using response surface methodology. Carbohydrate Polymers,
82(1): 106-110.
26.
Zhu, M., Wang, C., Wang,
X., Chen, S., Zhu, H. and Zhu, H. (2011). Extraction of polysaccharides from Morinda
officinalis by response surface methodology and effect of the
polysaccharides on bone-related genes, Carbohydrate Polymers, 85(1):
23-28.
27.
Al-wabel, M. I.,
Al-omran, A. and El-naggar, A. H. (2012). Pyrolysis temperature induced changes
in characteristics and chemical, Bioresource Technology, 131: 374-379.
28.
Barzegar, R.,
Yozgatligil, A., Olgun, H. and Atimtay, A. T. (2020). TGA and kinetic study of
different torrefaction conditions of wood biomass under air and oxy-fuel
combustion atmospheres. Journal of the
Energy Institute, 93(3): 889-898.
29.
Jaramillo, F. E. and
Alvarado, P. N. (2020). Thermogravimetric evaluation of torrefaction parameters
on thermal properties of a colombian woody biomass. Chemical Engineering Transactions, 80: 133-138.
30.
Ververis, C., Georghiou,
K., Christodoulakis, N., Santas, P. and Santas, R. (2004). Fiber dimensions,
lignin and cellulose content of various plant materials and their suitability
for paper production, Industrial Crops and Products, 19(3): 245-254.