Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1056 - 1067

 

 

 

 

BIO-COAL OPTIMIZATION STUDY OF DRY LEAVES VIA LOW-TEMPERATURE MECHANISM

 

(Kajian Pengoptimuman Terhadap Bio-Arang Batu Mengunakan Daun Kering Melalui Mekanisme Suhu Rendah)

 

Siti Solehah Misni1, Nor Hazelah Kasmuri1,2*, Fuzieah Subari1, Zalizawati Abdullah1,2, Suhaiza Hanim Hanipah1

 

1School of Chemical Engineering, College of Engineering

2Industrial Process Reliability and Sustainability Research Group, College of Engineering

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  norhazelah@uitm.edu.my

 

 

Received:  13 July 2021; Accepted: 17 October 2021; Published:  27 December 2021

 

 

Abstract

The abundant resources of forestry waste, such as dry leaves, find utility in the bio-coal production industry. In this study, bio-coal produced via the low-temperature mechanism of torrefaction was optimized using response surface method (RSM). The dry torrefaction method was conducted for 60–90 min with biomass loading of 50–100 g and a temperature range of 200–350 °C.The torrefaction process of dry leaves was executed in a furnace and was optimized by using RSM’s factorial design. The optimal conditions were reaction temperature of 200 °C, a reaction time of 60 min, and a biomass loading of 100 g, which produced maximum bio-coal yield (85.33%). Bio-coal products were characterized using a thermogravimetric analyzer and Fourier transform infrared spectrometry to determine the weight loss, thermal effect profile, and functional groups of phenol, alcohol, ester, ether, and aromatic groups in bio-coal.

 

Keywords:  bio-coal, dry leaves, optimization, response surface method, torrefaction

 

Abstrak

Sumber sisa hutan yang banyak, seperti daun kering, mempunyai kegunaan yang relevan dalam industri pengeluaran bio-arang batu. Bio-arang batu yang dihasilkan melalui mekanisme suhu rendah torefaksi dioptimumkan dengan kaedah gerak balas permukaan (RSM). Kaedah kering torefaksi dilakukan selama 60-90 min dengan muatan biojisim 50-100 g dan julat suhu 200-350 °C. Proses torefaksi daun kering dilakukan di relau pembakaran dan dioptimumkan dengan menggunakan rekabentuk faktorial RSM. Keadaan optimum ialah suhu reaksi 200°C, masa tindak balas 60 min, dan muatan biojisim 100 g, yang menghasilkan hasil maksimum bio-arang batu (85.33%). Produk bio arang batu dicirikan menggunakan penganalisis termogravimetri dan spektrometri inframerah transformasi Fourier untuk menentukan penurunan berat, profil kesan terma, dan kumpulan fungsional kumpulan fenol, alkohol, ester, eter, dan aromatik dalam bio-arang batu.

 

Kata kunci:  bio-arang batu, daun kering, pengoptimuman, kaedah gerak balas permukaan, torefaksi

 

References

1.      Medic, D. (2012). Investigation of torrefaction process parameters and characterization of torrefied biomass. PhD Dissertation, Iowa State University.

2.      Demirel, Y. (2012). Energy: Production, conversion, storage, conservation, and coupling. In Energy: Production, Conversion, Storage, Conservation, and Coupling (Green Energy and Technology). Springer Verlag, London: pp. 35.

3.      Chew, J. J. and Doshi, V. (2011). Recent advances in biomass pretreatment - torrefaction fundamentals and technology. Renewable Sustainable and Energy Reviews, 15(8): 4212-4222.

4.      Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable Sustainable and Energy Reviews, 29: 201-215.

5.      Isa, K. M., Kasim, F. H., Ali, U. F. M. and Rashid, R. A. (2017). Characterization, calculation of calorific values, and bio-oil production via thermochemical processes of municipal solid waste in Perlis, Malaysia. Malaysian Journal of Analytical Sciences, 21(4): 801-809.

6.      Bergman, P. C., Boersma, R., Zwart, R. W. R. and Kiel, J. H. (2005). Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of Netherlands.

7.      Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J. (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9): 3748-3762.

8.      Eseyin, A. E., Steele, P. H. and Pittman, C. U. (2015). Current trends in the production and applications of torrefied wood/biomass - A review. BioResources, 10(4): 8812-8858.

9.    Chouchene, A., Jeguirim, M., Khiari, B., Trouvé, G. and Zagrouba, F. (2010). Study on the energy mechanism during devolatilization/char oxidation and direct oxidation of olive solid waste in a fixed bed reactor. Journal of Analytical and Applied Pyrolysis, 87(1): 168-174.

10.   Stelte, W., Nielsen, N. P. K., Hansen, H. O., Dahl, J., Shang, L. and Sanadi, A. R. (2013). Reprint of: Pelletizing properties of torrefied wheat straw. Biomass and Bioenergy, 53: 105-112.

11.   Azócara, L., Hermosillab, N., Gayb, A., Rochac, S., J. and Jarae, P. (2019). Brown pellet production using wheat straw from southern cities in Chile. Fuel, 237: 823-832.

12.   Phuang, Y. W., Ng, W. Z., Khaw, S. S., Yap, Y. Y., Gan, S., Lee, L. Y. and Thangalazhy-Gopakumar, S. (2021). Wet torrefaction pre-treatment of yard waste to improve the fuel properties. Materials Science for Energy Technologies, 4: 211-223.

13.   Singh, S., Chakraborty, J. P. and Monoj Kumar Mondal, M. K. (2019). Optimization of process parameters for torrefaction of Acacia nilotica using response surface methodology and characteristics of torrefied biomass as upgraded fuel. Energy, 186: 1-14.

14.   Lin, Y., Zheng, N. and Lin, C. (2021). Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction. Energy, 223: 1-10.

15.   Sarker, T. R., Azargohar, R., Dalai, A. K. and Meda, V. (2021). Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction. Energy Reports, 7: 6338-6353.

16.   Angelique, T. C., Villahermosa, J. E. R., Cabatingan, L. K. and Alchris, W. G. (2018). Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy for Sustainable Development, 42: 160-169.

17.   Thani, N. S. M., Ghazi, R. M. and Ismail, N. (2017). Response surface methodology optimization of oil removal using banana peel as biosorbent. Malaysian Journal of Analytical Sciences, 21(5): 1101-1110.

18.   Fisher, R. A. (1936). The Design of Experiments. Macmillan Publishing, London: pp. 180.

19.   Asadullah, M., Adi, A. M., Suhada, N., Malek, N. H., Saringat, M. I., and Azdarpour, A. (2014). Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Conversion and Management, 88: 1086-1093.

20.   Naijia H., Bezerra, T. L., Wu, Q., Ben, H., Sun, Q., Adhikari, S. and Ragauskas, A. J. (2017). Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. Fuel, 206: 494-503.

21.   Zhang, C. Y., Yang, L. J., Rong, F., Fu, D. G. and Gu, Z. Z. (2012). Boron-doped diamond anodic oxidation of ethidium bromide: Process optimization by response surface methodology, Electrochimica Acta, 64: 100-109.

22.   Mark J. A. and Patrick J. W. (2007). DOE simplified: Practical tools for effective experimentation, second edition. Productivity Press, London: 3-6.

23.   Ayeni, A. O., Banerjee, S., Omeleye, J. A., Hymore, F. K., Giri, B. S., Deshmukh, S. C., Pandey, R. A. and Mudliar, S. N. (2013). Optimization of pretreatment conditions using full factorial design and enzymatic convertibility of shea tree sawdust, Biomass and Bioenergy, 48: 130-138.

24.   Isa, K. M., Daud, S., Hamidin, N., Ismail, K., Saad, S. A. and Kasim, F. H. (2011). Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Industrial Crops and Products, 33(2): 481-487.

25.   Zhu, T., Heo, H. J. and Row, K. H. (2010). Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology. Carbohydrate Polymers, 82(1): 106-110.

26.   Zhu, M., Wang, C., Wang, X., Chen, S., Zhu, H. and Zhu, H. (2011). Extraction of polysaccharides from Morinda officinalis by response surface methodology and effect of the polysaccharides on bone-related genes, Carbohydrate Polymers, 85(1): 23-28.

27.   Al-wabel, M. I., Al-omran, A. and El-naggar, A. H. (2012). Pyrolysis temperature induced changes in characteristics and chemical, Bioresource Technology, 131: 374-379.

28.   Barzegar, R., Yozgatligil, A., Olgun, H. and Atimtay, A. T. (2020). TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute, 93(3): 889-898.

29.   Jaramillo, F. E. and Alvarado, P. N. (2020). Thermogravimetric evaluation of torrefaction parameters on thermal properties of a colombian woody biomass. Chemical Engineering Transactions, 80: 133-138.

30.   Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P. and Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production, Industrial Crops and Products, 19(3): 245-254.