Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1042 - 1055

 

 

 

 

OPTIMIZATION AND DETERMINATION OF INORGANIC ARSENIC BY LIQUID EXTRACTION AND INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY IN FOOD MATRIX

 

(Pengoptimuman dan Penentuan Arsenik Tak Organik Melalui Pengekstrakan Cecair dan Spektrometri Jisim-Plasma Gadingan Aruhan dalam Sampel Makanan)

 

Le Nhon-Duc1, Nguyen Thanh-Nho2, Le-Thi Anh-Dao2, Nguyen Cong-Hau2*, Nguyen Van-Dong3

 

1Warrantek Joint Stock Company-Testing Center,

Can Tho City, Vietnam

2Faculty of Environmental and Food Engineering,

Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

3Department of Analytical Chemistry, Faculty of Chemistry,

University of Science, Vietnam National University Ho Chi Minh City (US-VNU HCMC), Vietnam

 

*Corresponding author:  nchau@ntt.edu.vn

 

 

Received:  28 August 2021; Accepted: 28 October 2021; Published:  27 December 2021

 

 

Abstract

Various kinds of food are at risk of arsenic exposure and this can lead to potential influences on human health. However, the toxicity of arsenic depends on its different forms, i.e., inorganic arsenic species (i.e., arsenite and arsenate) are more toxic than organic compounds (i.e., monomethylarsonic acid, dimethylarsinic acid, etc.), and total arsenic contents may provide limited information. In this study, a low-cost analytical method for analyzing inorganic arsenic (iAs) in various food matrices was optimized and validated. The sample preparation was conducted by acidic hydrolysis, arsenic reduction, extraction to the organic phase, then back-extraction to the aqueous phase to obtain the solutions prior to measurement on the inductively coupled plasma mass spectrometry (ICP-MS). The food matrices were hydrolyzed by 30% (v/v) HCl at 90 oC within 120 minutes to obtain the sample liquid containing iAs. The inorganic species in the sample liquid were reduced by N2H4/HBr, then extracted by CHCl3 to organic phase, back-extracted into 2% HNO3 solution, and quantified by ICP-MS with He as the collision gas. Various parameters related to the sample preparation were investigated and evaluated by different food matrices as well as the rice proficiency testing scheme 07273 provided by Fapas. The results showed no significant interconversion between inorganic and organic arsenic species when HCl was utilized as the hydrolysis agent. The limit of detection (LOD) and limit of quantification (LOQ) values were estimated as 1.7 and 5.0 µg kg–1, respectively. The repeatability and reproducibility were assessed by calculating RSDr (below 4.4%) and RSDR (below 10%), favorable with Appendix F. AOAC (2016). The recoveries for all spiked samples ranged from 88 to 115%. The analytical method was applied to determine and assess the variations of iAs contents in anchovy, herring, white rice, brown rice, and fish sauce. All available samples met the requirements performed in Codex Stan 1993-1995, Amended in 2015, Commission Regulation (EU) 2015/1006, and Vietnam National technical regulation 8-2:2011.

 

Keywords: inorganic arsenic, inductively coupled plasma mass spectrometry, food matrices, extraction

 

Abstrak

Pelbagai jenis makanan boleh berisiko terhadap kehadiran arsenik dan ia akan membawa kesan terhadap kesihatan manusia. Namun, ketoksikan arsenik bergantung kepada spesies yang berbeza seperti spesies arsenik tak organik (i.e. arsenit dan arsenat) lebih toksik berbanding sebatian organik (i.e. asid monometilarsonik, asid dimetilarsinik dan lain-lain), dan kandungan jumlah arsenik juga mempunyai maklumat yang terhad. Melalui kajian ini, kaedah analisis kos rendah bagi analisa arsenik tak organik (iAs) di dalam pelbagai matriks makanan telah di optimum dan di tentusahkan. Penyediaan sampel dijalankan melalui hidrolisis berasid, penurunan arsenik, pengekstrakan pada fasa organik, kemudian pengekstrakan semula pada fasa akues untuk mendapatkan larutan sebelum pengukuran menggunakan spektrometri jisim plasma gandingan aruhan (ICP-MS). Matriks makanan telah di hidrolisis menggunakan 30% (v/v) HCl pada 90 oC selama 120 minit untuk mendapatkan sampel cecair mengandungi iAs. Spesies tak organik di dalam sampel cecair kemudian diturunkan oleh N2H4/HBr, dan diekstrak mengunakan CHCl3 pada fasa organik, kemudian pengekstrakan semula ke dalam larutan 2% HNO3, dan pengkuantitian oleh ICP-MS bersama He sebagai gas pelanggaran. Pelbagai parameter yang berkaitan penyediaan sampel dikaji dan dinilai mengunakan matriks makanan berbeza dan skim 07273 ujian kemahiran terhadap beras oleh Fapas. Hasil kajian menunjukkan tiada perbezaan diantara spesies organik dan tak organik apabila HCl digunakan sebagai agen hidrolisis. Nilai had pengesanan (LOD) dan pengkuantitian (LOQ) masing-masing ialah 1.7 dan 5.0 µg kg–1. Kebolehulangan dan penghasilan semula dinilai melalui pengiraan RSDr (di bawah 4.4%) dan RSDR (di bawah 10%), sesuai berdasarkan Apendiks F. AOAC (2016). Perolehan semula bagi semua sampel dipaku pada julat 88 hingga 115%. Kaedah analisis kemudian digunapakai bagi penentuan dan penilaian variasi kandungan iAs di dalam ikan bilis, hering, beras putih, beras perang dan sos ikan. Semua sampel mematuhi keperluan di bawah Codex Stan 1993-1995, Pindaan 2015, Peraturan Suruhanjaya (EU) 2015/1006, dan peraturan teknikal Kebangsaan Vietnam 8-2: 2011.

 

Kata kunci: arsenik tak organik, spektrometri jisim plasma gandingan aruhan, matriks makanan, pengekstrakan

 

References

1.      Hite, A. H. (2013). Arsenic and rice: A call for regulation. Nutrition, 29: 353-354.

2.      Srivastava, S., Suprasanna, P. and D’Souza, S. F. (2011). Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma, 248(4): 805-815.

3.      Mandal, B. K. and Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1): 201-235.

4.      Ma, J. F., Yamaji, N., Mitani, N., Xu, X.-Y., Su, Y.-H., McGrath, S. P. and Zhao, F.-J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29): 9931-9935.

5.      Zhao, F. J., Ma, J. F., Meharg, A. and McGrath, S. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181(4): 777-794.

6.      Flora, S. J. S. (2014). Handbook of arsenic toxicology. Academic Press.

7.      ARC Monographs on the Evaluation of Carcinogenic Risks to Humans (2012). Arsenic, Metals, Fibres and Dusts, Lyon, France.

8.      Aposhian, H. V., Zheng, B., Aposhian, M. M., Le, X. C., Cebrian, M. E., Cullen, W., Zakharyan, R. A., Ma, M., Dart, R. C. and Chen, Z. (2000). DMPS–arsenic challenge test: II. Modulation of arsenic species, including monomethylarsonous acid (MMAIII), excreted in human urine. Toxicology and Applied Pharmacology, 165: 74-83.

9.      Commission Regulation EU 2015/1006 (2015). Amending regulation EC No. 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs.

10.   FSC 96 Amendment No. 154 (2015). Commonwealth of Australia Gazette. Australia New Zealand food standards code – schedule 19 – maximum levels of contaminants and natural toxicants.

11.   dos Santos, G. M., Pozebon, D., Cerveira, C. and de Moraes, D. P. (2017). Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS). Microchemical Journal, 133: 265-271.

12.   Schoof, R., Yost, L., Eickhoff, J., Crecelius, E., Cragin, D., Meacher, D. and Menzel, D. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8): 839-846.

13.   Queirolo, F., Stegen, S., Restovic, M., Paz, M., Ostapczuk, P., Schwuger, M. and Munoz, L. (2000). Total arsenic, lead, and cadmium levels in vegetables cultivated at the andean villages of Northern Chile. Science of The Total Environment, 255(1-3): 75-84.

14.   Muñoz, O., Diaz, O. P., Leyton, I., Nuñez, N., Devesa, V., Súñer, M. A., Vélez, D. and Montoro, R. (2002). Vegetables collected in the cultivated Andean area of Northern Chile: Total and inorganic arsenic contents in raw vegetables. Journal of Agricultural and Food Chemistry, 50(3): 642-647.

15.   Norton, G., Deacon, C., Mestrot, A., Feldmann, J., Jenkins, P., Baskaran, C. and Meharg, A. A. (2013). Arsenic speciation and localization in horticultural produce grown in a historically impacted mining region. Environmental Science & Technology, 47(12): 6164-6172.

16.   Jackson, B. P., Taylor, V. F., Karagas, M. R., Punshon, T. and Cottingham, K. L. (2012). Arsenic, organic foods, and brown rice syrup. Environmental Health Perspectives, 120(5): 623-626.

17.   Roberge, J., Abalos, A. T., Skinner, J. M., Kopplin, M. and Harris, R. B. (2009). Presence of arsenic in commercial beverages. American Journal of Environmental Sciences, 5(6): 688-694.

18.   Díaz, O., Pastene, R., Recabarren, E., Núñez, N., Vélez, D. and Montoro, R. (2008). Arsenic contamination from geological sources in environmental compartments in pre-andean area of Northern Chile. Natural arsenic in groundwater of Latin America. Arsenic in the Environment, 1: 335-344.

19.   Nookabkaew, S., Rangkadilok, N., Mahidol, C., Promsuk, G. and Satayavivad, J. (2013). Determination of arsenic species in rice from Thailand and other asian countries using simple extraction and HPLC-ICP-MS analysis. Journal of Agricultural and Food Chemistry, 61(28): 6991-6998.

20.   Zhao, F.-J. and Meharg A. A. (2013). Arsenic and rice. Springer, Netherlands: 171.

21.   Hassan, F. I., Niaz, K., Khan, F., Maqbool, F. and Abdollahi, M. (2017). The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI Journal, 16: 1132.

22.   Wang, H.-S., Sthiannopkao, S., Chen, Z.-J., Man, Y.-B., Du, J., Xing, G.-H., Kim, K.-W., Yasin, M. S. M., Hashim, J. H. and Wong, M.-H. (2013). Arsenic concentration in rice, fish, meat and vegetables in Cambodia: A preliminary risk assessment. Environmental Geochemistry and Health, 35(6): 745-755.

23.   Rasheed, H., Slack, R. and Kay, P. (2016). Human health risk assessment for arsenic: A critical review. Critical Reviews in Environmental Science and Technology, 46(19-20): 1529-1583.

24.   Jain, C. and Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34(17): 4304-4312.

25.   Huang, J.-H., Ilgen, G. and Fecher, P. (2010). Quantitative chemical extraction for arsenic speciation in rice grains. Journal of Analytical Atomic Spectrometry, 25(6): 800-802.

26.   Muñoz, O., Vélez, D. and Montoro, R. (1999). Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III) + As(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry. Analyst, 124(4): 601-607.

27.   CXS 193-1995 (Amended, 2019) Codex alimentarius international food standard, general standard for contaminants and toxins in food and feed.

28.   Hata, A., Endo, Y., Nakajima, Y., Ikebe, M., Ogawa, M., Fujitani, N. and Endo, G. (2007). HPLC‐ICP‐MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure. Journal of Occupational Health, 49(3), 217-223.

29.   Suzuki, Y., Shimoda, Y., Endo, Y., Hata, A., Yamanaka, K. and Endo, G. (2009). Rapid and effective speciation analysis of arsenic compounds in human urine using anion-exchange columns in HPLC-ICP-MS. Journal of Occupational Health, 0906150084-0906150084.

30.   Jung, M. Y., Kang, J. H., Jung, H. J. and Ma, S. Y. (2018). Inorganic arsenic contents in ready-to-eat rice products and various korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry. Food Chemistry, 240: 1179-1183.

31.   QCVN 8-2:2011/BYT (2011) Vietnam national technical regulation on the limits of heavy metals contamination in food.

32.   Decision No. 46/2007/QD-BYT (2007). Decision of the Minister of Health of Vietnam dated 19 December 2007 on the maximum acceptable limits of chemical and biological contamination in food. Hanoi, Vietnam Ministry of Health.

33.   Briscoe, M. (2015) Determination of heavy metals in food by inductively coupled plasma–mass spectrometry: first action 2015.01. Journal of AOAC International, 98(4): 1113-1120.

34.   NMKL (2015). A glimpse of the AOAC Europe-NMKL-NordVal international symposium: Food labs in a crystal ball-future challenges in food analysis. Nordic Committee on Food Analysis: PA 1123.

35.   ISO 5725-2 (1994). Accuracy (trueness and precision) of Measurement Methods and Results-Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method.

36.   Reichenbächer, M. and Einax, J. W. (2011). Challenges in analytical quality assurance. Springer Science & Business Media, Verlag Berlin Heidelberg.

37.   Shen, S., Li, X.-F., Cullen, W. R., Weinfeld, M. and Le, X. C. (2013) Arsenic binding to proteins, Chemical Reviews, 113(10): 7769-7792.

38.   Kang, J. H., Jung, H. J. and Jung, M. Y. (2016). One step derivatization with British anti-lewsite in combination with gas chromatography coupled to triple-quadrupole tandem mass spectrometry for the fast and selective analysis of inorganic arsenic in rice. Analytica Chimica Acta, 934: 231-238.

39.   Fiamegkos, I., Cordeiro, F., Devesa, V., Vélez, D., Robouch, P., Emteborg, H., Leys, H., Cizek-Stroh, A. and De La Calle, B. (2015). IMEP-41: Determination of inorganic As in food. Collaborative trial report, JRC94325. Geel, Belgium: Joint Research Center, Institute for Reference Materials and Measurements.

40.   Suzuki, N., Satoh, K., Shoji, H. and Imura, H. (1986). Liquid-liquid extraction behavior of arsenic (III), arsenic (V), methylarsonate and dimethylarsinate in various systems, Analytica Chimica acta, 185: 239- 248.

41.   Milazzo, G., Caroli, S. and Braun, R. D. (1978). Tables of standard electrode potentials. Journal of The Electrochemical Society, 125(6): 261C.

42.   Huber, C. S., Vale, M. G. R., Dessuy, M. B., Svoboda, M., Musil, S. and Dědina, J. (2017). Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta, 175: 406-412.

43.   Lehmann, E., Fostier, A. and Arruda, M. (2013). Hydride generation using a metallic atomizer after microwave-assisted extraction for inorganic arsenic speciation in biological samples, Talanta, 104: 187- 192.

44.   Karaffa, L. S. (2013). The Merck Index: An encyclopedia of chemicals, drugs, and biologicals. RSC Publishing.

45.   Chappell, J., Chiswell, B. and Olszowy, H. (1995). Speciation of arsenic in a contaminated soil by solvent extraction. Talanta, 42(3): 323-329.

46.   Maria, B., Devesa, V., Fiamegos, Y. and Vélez, D. (2017). Determination of inorganic arsenic in a wide range of food matrices using hydride generation-atomic absorption spectrometry. Journal of Visualized Experiments, 127: e55953.

47.   Appendix F AOAC (2016). Guidelines for standard method performance requirements.

48.   Decision C 657/EC (2002). Implementing council directive 96/23/EC concerning the performances of analytical methods and the interpretation of results. Official Journal of the European Communities.

49.   Hassan, F. I., Niaz, K., Khan, F., Maqbool, F. and Abdollahi, M. (2017). The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI Journal, 16: 1132.