Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1042 - 1055
OPTIMIZATION
AND DETERMINATION OF INORGANIC ARSENIC BY LIQUID EXTRACTION AND INDUCTIVELY
COUPLED PLASMA MASS SPECTROMETRY IN FOOD MATRIX
(Pengoptimuman dan Penentuan Arsenik Tak Organik
Melalui Pengekstrakan Cecair dan Spektrometri Jisim-Plasma Gadingan Aruhan
dalam Sampel Makanan)
Le Nhon-Duc1,
Nguyen Thanh-Nho2, Le-Thi Anh-Dao2, Nguyen Cong-Hau2*,
Nguyen Van-Dong3
1Warrantek Joint Stock
Company-Testing Center,
Can Tho City, Vietnam
2Faculty of Environmental
and Food Engineering,
Nguyen Tat Thanh University, Ho Chi Minh City,
Vietnam
3Department of
Analytical Chemistry, Faculty of Chemistry,
University of Science, Vietnam National
University Ho Chi Minh City (US-VNU HCMC), Vietnam
*Corresponding author: nchau@ntt.edu.vn
Received: 28 August 2021; Accepted: 28 October 2021;
Published: 27 December 2021
Abstract
Various kinds of food are at risk of arsenic
exposure and this can lead to potential influences on human health. However, the toxicity of
arsenic depends on its different forms, i.e., inorganic arsenic species (i.e.,
arsenite and arsenate) are more toxic than organic compounds (i.e.,
monomethylarsonic acid, dimethylarsinic acid, etc.), and total arsenic
contents may provide limited information. In this study, a
low-cost analytical method for analyzing inorganic arsenic (iAs) in various
food matrices was optimized and validated. The sample preparation was conducted
by acidic hydrolysis, arsenic reduction, extraction to the organic phase, then
back-extraction to the aqueous phase to obtain the solutions prior to
measurement on the inductively coupled plasma mass spectrometry (ICP-MS). The
food matrices were hydrolyzed by 30% (v/v) HCl at 90 oC within 120 minutes
to obtain the sample liquid containing iAs. The inorganic species in the sample
liquid were reduced by N2H4/HBr, then extracted by CHCl3
to organic phase, back-extracted into 2% HNO3 solution, and
quantified by ICP-MS with He as the collision gas. Various parameters related
to the sample preparation were investigated and evaluated by different food
matrices as well as the rice proficiency testing scheme 07273 provided by
Fapas. The results showed no significant interconversion between inorganic and
organic arsenic species when HCl was utilized as the hydrolysis agent. The
limit of detection (LOD) and limit of quantification (LOQ) values were
estimated as 1.7 and 5.0 µg kg–1, respectively. The repeatability
and reproducibility were assessed by calculating RSDr (below 4.4%)
and RSDR (below 10%), favorable with Appendix F. AOAC (2016). The
recoveries for all spiked samples ranged from 88 to 115%. The analytical method
was applied to determine and assess the variations of iAs contents in anchovy,
herring, white rice, brown rice, and fish sauce. All available samples met the
requirements performed in Codex Stan 1993-1995, Amended in 2015, Commission
Regulation (EU) 2015/1006, and Vietnam National technical regulation 8-2:2011.
Keywords:
inorganic arsenic, inductively coupled plasma mass spectrometry, food matrices, extraction
Abstrak
Pelbagai
jenis makanan boleh berisiko terhadap kehadiran arsenik dan ia akan membawa
kesan terhadap kesihatan manusia. Namun, ketoksikan arsenik bergantung kepada
spesies yang berbeza seperti spesies arsenik tak organik (i.e. arsenit dan
arsenat) lebih toksik berbanding sebatian organik (i.e. asid monometilarsonik,
asid dimetilarsinik dan lain-lain), dan kandungan jumlah arsenik juga mempunyai
maklumat yang terhad. Melalui kajian ini, kaedah analisis kos rendah bagi
analisa arsenik tak organik (iAs) di dalam pelbagai matriks makanan telah di
optimum dan di tentusahkan. Penyediaan sampel dijalankan melalui hidrolisis
berasid, penurunan arsenik, pengekstrakan pada fasa organik, kemudian
pengekstrakan semula pada fasa akues untuk mendapatkan larutan sebelum
pengukuran menggunakan spektrometri jisim plasma gandingan aruhan (ICP-MS).
Matriks makanan telah di hidrolisis menggunakan 30% (v/v) HCl pada 90 oC
selama 120 minit untuk mendapatkan sampel cecair mengandungi iAs. Spesies tak
organik di dalam sampel cecair kemudian diturunkan oleh N2H4/HBr,
dan diekstrak mengunakan CHCl3 pada fasa organik, kemudian
pengekstrakan semula ke dalam larutan 2% HNO3, dan pengkuantitian
oleh ICP-MS bersama He sebagai gas pelanggaran. Pelbagai parameter yang
berkaitan penyediaan sampel dikaji dan dinilai mengunakan matriks makanan
berbeza dan skim 07273 ujian kemahiran terhadap beras oleh Fapas. Hasil kajian
menunjukkan tiada perbezaan diantara spesies organik dan tak organik apabila
HCl digunakan sebagai agen hidrolisis. Nilai had pengesanan (LOD) dan
pengkuantitian (LOQ) masing-masing ialah 1.7 dan 5.0 µg kg–1.
Kebolehulangan dan penghasilan semula dinilai melalui pengiraan RSDr (di bawah
4.4%) dan RSDR (di bawah 10%), sesuai berdasarkan Apendiks F. AOAC
(2016). Perolehan semula bagi semua sampel dipaku pada julat 88 hingga 115%.
Kaedah analisis kemudian digunapakai bagi penentuan dan penilaian variasi
kandungan iAs di dalam ikan bilis, hering, beras putih, beras perang dan sos
ikan. Semua sampel mematuhi keperluan di bawah Codex Stan 1993-1995, Pindaan
2015, Peraturan Suruhanjaya (EU) 2015/1006, dan peraturan teknikal Kebangsaan
Vietnam 8-2: 2011.
Kata kunci: arsenik
tak organik, spektrometri jisim plasma gandingan aruhan, matriks makanan,
pengekstrakan
References
1.
Hite, A. H. (2013). Arsenic and rice: A call
for regulation. Nutrition,
29:
353-354.
2.
Srivastava, S.,
Suprasanna, P. and D’Souza, S. F. (2011). Redox state and energetic equilibrium
determine the magnitude of stress in Hydrilla verticillata upon exposure
to arsenate.
Protoplasma,
248(4):
805-815.
3.
Mandal, B. K. and Suzuki,
K. T. (2002).
Arsenic round the world: A review. Talanta,
58(1):
201-235.
4.
Ma, J. F., Yamaji, N.,
Mitani, N., Xu, X.-Y., Su, Y.-H., McGrath, S. P. and Zhao, F.-J. (2008).
Transporters of arsenite in rice and their role in arsenic accumulation in rice
grain. Proceedings of the National
Academy of Sciences, 105(29):
9931-9935.
5.
Zhao, F. J., Ma, J. F.,
Meharg, A. and
McGrath, S. (2009).
Arsenic uptake and metabolism in plants. New
Phytologist, 181(4):
777-794.
6.
Flora, S. J. S. (2014).
Handbook of arsenic toxicology. Academic Press.
7.
ARC Monographs on the Evaluation of
Carcinogenic Risks to Humans (2012). Arsenic, Metals, Fibres
and Dusts, Lyon, France.
8.
Aposhian, H. V., Zheng,
B., Aposhian, M. M., Le, X. C., Cebrian, M. E., Cullen, W., Zakharyan, R. A., Ma, M., Dart, R. C. and Chen, Z. (2000). DMPS–arsenic challenge
test: II. Modulation of arsenic species, including monomethylarsonous acid
(MMAIII), excreted in human urine. Toxicology
and Applied Pharmacology, 165:
74-83.
9.
Commission
Regulation EU 2015/1006 (2015).
Amending regulation EC No.
1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs.
10.
FSC
96 Amendment No. 154 (2015). Commonwealth of Australia Gazette. Australia
New Zealand food standards code – schedule 19 – maximum levels of contaminants
and natural toxicants.
11.
dos Santos, G. M.,
Pozebon, D., Cerveira, C. and
de Moraes, D. P. (2017). Inorganic arsenic speciation in rice products using
selective hydride generation and atomic absorption spectrometry (AAS). Microchemical Journal, 133: 265-271.
12.
Schoof, R., Yost, L.,
Eickhoff, J., Crecelius, E., Cragin, D., Meacher, D. and Menzel, D. (1999). A
market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8): 839-846.
13.
Queirolo, F., Stegen, S.,
Restovic, M., Paz, M., Ostapczuk, P., Schwuger, M. and Munoz, L. (2000). Total
arsenic, lead, and cadmium levels in vegetables cultivated at the andean
villages of Northern Chile. Science of
The Total Environment, 255(1-3):
75-84.
14.
Muñoz, O., Diaz, O. P.,
Leyton, I., Nuñez, N., Devesa, V., Súñer, M. A., Vélez, D. and Montoro, R. (2002).
Vegetables collected in the cultivated Andean area of Northern Chile: Total and
inorganic arsenic contents in raw vegetables. Journal of Agricultural and Food Chemistry, 50(3): 642-647.
15.
Norton, G., Deacon, C.,
Mestrot, A., Feldmann, J., Jenkins, P., Baskaran, C. and Meharg, A. A. (2013).
Arsenic speciation and localization in horticultural produce grown in a
historically impacted mining region. Environmental
Science & Technology, 47(12):
6164-6172.
16.
Jackson, B. P., Taylor,
V. F., Karagas, M. R., Punshon, T. and
Cottingham, K. L. (2012). Arsenic, organic foods, and brown rice syrup. Environmental Health Perspectives,
120(5):
623-626.
17.
Roberge, J., Abalos, A.
T., Skinner, J. M., Kopplin, M. and
Harris, R. B. (2009). Presence of arsenic in commercial beverages. American Journal of Environmental Sciences,
5(6):
688-694.
18.
Díaz, O., Pastene, R.,
Recabarren, E., Núñez, N., Vélez, D. and
Montoro, R. (2008). Arsenic contamination from geological sources in
environmental compartments in pre-andean area of Northern Chile. Natural
arsenic in groundwater of Latin America. Arsenic
in the Environment, 1:
335-344.
19.
Nookabkaew, S.,
Rangkadilok, N., Mahidol, C., Promsuk, G. and Satayavivad, J. (2013). Determination of arsenic
species in rice from Thailand and other asian countries using simple extraction
and HPLC-ICP-MS analysis.
Journal of
Agricultural and Food Chemistry, 61(28): 6991-6998.
20.
Zhao, F.-J. and Meharg A. A. (2013). Arsenic and rice.
Springer, Netherlands: 171.
21.
Hassan, F. I., Niaz, K.,
Khan, F., Maqbool, F. and
Abdollahi, M. (2017). The relation between rice consumption, arsenic
contamination, and prevalence of diabetes in South Asia. EXCLI Journal, 16:
1132.
22.
Wang, H.-S.,
Sthiannopkao, S., Chen, Z.-J., Man, Y.-B., Du, J., Xing, G.-H., Kim, K.-W.,
Yasin, M. S. M., Hashim, J. H. and
Wong, M.-H. (2013). Arsenic concentration in rice, fish, meat and vegetables in
Cambodia: A preliminary risk assessment. Environmental
Geochemistry and Health, 35(6):
745-755.
23.
Rasheed, H., Slack, R.
and Kay, P. (2016). Human
health risk assessment for arsenic: A critical review. Critical Reviews in Environmental Science and Technology, 46(19-20): 1529-1583.
24.
Jain, C. and Ali, I.
(2000).
Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34(17):
4304-4312.
25.
Huang, J.-H., Ilgen, G.
and Fecher, P. (2010).
Quantitative chemical extraction for arsenic speciation in rice grains. Journal of Analytical Atomic Spectrometry,
25(6):
800-802.
26.
Muñoz, O., Vélez, D. and
Montoro, R. (1999).
Optimization of the solubilization, extraction and determination of inorganic
arsenic [As(III) +
As(V)] in seafood products by acid digestion, solvent extraction and hydride
generation atomic absorption spectrometry. Analyst,
124(4):
601-607.
27.
CXS 193-1995 (Amended, 2019) Codex alimentarius international food standard,
general standard for contaminants and toxins in food and feed.
28.
Hata, A., Endo, Y.,
Nakajima, Y., Ikebe, M., Ogawa, M., Fujitani, N. and Endo, G. (2007).
HPLC‐ICP‐MS speciation analysis of arsenic in urine of Japanese
subjects without occupational exposure. Journal of Occupational Health,
49(3), 217-223.
29.
Suzuki, Y., Shimoda, Y.,
Endo, Y., Hata, A., Yamanaka, K. and
Endo, G. (2009). Rapid and effective speciation analysis of arsenic compounds
in human urine using anion-exchange columns in HPLC-ICP-MS. Journal of Occupational Health,
0906150084-0906150084.
30.
Jung, M. Y., Kang, J. H.,
Jung, H. J. and
Ma, S. Y. (2018). Inorganic arsenic contents in ready-to-eat rice products and
various korean rice determined by a highly sensitive gas chromatography-tandem
mass spectrometry. Food Chemistry,
240:
1179-1183.
31.
QCVN 8-2:2011/BYT (2011)
Vietnam national technical regulation on the limits of heavy metals
contamination in food.
32.
Decision No.
46/2007/QD-BYT (2007). Decision of the Minister of Health of Vietnam dated 19
December 2007 on the maximum acceptable limits of chemical and biological
contamination in food. Hanoi, Vietnam Ministry of Health.
33.
Briscoe, M. (2015)
Determination of heavy metals in food by inductively coupled plasma–mass
spectrometry: first action 2015.01.
Journal of AOAC
International, 98(4): 1113-1120.
34.
NMKL (2015). A glimpse of the AOAC Europe-NMKL-NordVal
international symposium: Food labs in a crystal ball-future challenges in food
analysis.
Nordic Committee on Food Analysis: PA
1123.
35.
ISO 5725-2 (1994). Accuracy (trueness and
precision) of Measurement Methods and Results-Part 2: Basic method for the determination of
repeatability and reproducibility of a standard measurement method.
36.
Reichenbächer, M. and Einax, J. W. (2011).
Challenges in analytical quality assurance. Springer Science & Business
Media, Verlag Berlin Heidelberg.
37.
Shen, S., Li, X.-F.,
Cullen, W. R., Weinfeld, M. and Le, X. C. (2013) Arsenic binding to proteins, Chemical Reviews, 113(10): 7769-7792.
38.
Kang, J. H., Jung, H. J. and Jung, M. Y. (2016). One
step derivatization with British anti-lewsite in combination with gas
chromatography coupled to triple-quadrupole tandem mass spectrometry for the
fast and selective analysis of inorganic arsenic in rice. Analytica Chimica Acta, 934: 231-238.
39.
Fiamegkos, I., Cordeiro,
F., Devesa, V., Vélez, D., Robouch, P., Emteborg, H., Leys, H., Cizek-Stroh, A. and De La Calle, B. (2015).
IMEP-41: Determination of inorganic As in food. Collaborative trial report, JRC94325. Geel, Belgium: Joint Research Center,
Institute for Reference Materials and Measurements.
40.
Suzuki, N., Satoh, K., Shoji,
H. and Imura, H. (1986).
Liquid-liquid extraction behavior of arsenic (III), arsenic (V), methylarsonate
and dimethylarsinate in various systems, Analytica
Chimica acta, 185:
239- 248.
41.
Milazzo, G., Caroli, S.
and Braun, R. D. (1978).
Tables of standard electrode potentials. Journal
of The Electrochemical Society, 125(6): 261C.
42.
Huber, C. S., Vale, M. G.
R., Dessuy, M. B., Svoboda, M., Musil, S. and Dědina, J. (2017). Sample
preparation for arsenic speciation analysis in baby food by generation of substituted
arsines with atomic absorption spectrometry detection. Talanta, 175:
406-412.
43.
Lehmann, E., Fostier, A.
and Arruda, M. (2013).
Hydride generation using a metallic atomizer after microwave-assisted
extraction for inorganic arsenic speciation in biological samples, Talanta, 104: 187- 192.
44.
Karaffa,
L. S. (2013). The Merck Index: An encyclopedia of chemicals, drugs, and
biologicals. RSC Publishing.
45.
Chappell, J., Chiswell,
B. and
Olszowy, H. (1995). Speciation of arsenic in a contaminated soil by solvent
extraction. Talanta, 42(3): 323-329.
46.
Maria, B., Devesa, V.,
Fiamegos, Y. and
Vélez, D. (2017). Determination of inorganic arsenic in a wide range of food
matrices using hydride generation-atomic absorption spectrometry. Journal of Visualized Experiments, 127: e55953.
47.
Appendix F AOAC (2016). Guidelines for standard method performance requirements.
48.
Decision
C 657/EC (2002). Implementing council directive 96/23/EC concerning
the performances of analytical methods and the interpretation of results.
Official Journal of the European Communities.
49.
Hassan, F. I., Niaz, K.,
Khan, F., Maqbool, F. and Abdollahi, M. (2017). The relation between rice
consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI Journal, 16: 1132.