Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1032 - 1041
IDENTIFICATION AND QUANTIFICATION OF LYCOPENE
AND β-CAROTENE IN WATERMELON JUICE USING HIGH-PERFORMANCE LIQUID
CHROMATOGRAPHY
(Pengenalan
dan Pengkuantitian Likopena dan Β-Karotena di dalam Jus Tembikai
Menggunakan Kromatografi Cecair Berprestasi Tinggi)
Nur
Shafinaz Mohamad Salin1, Fatimah Salim2,3, Hairil
Rashmizal Abdul Razak4, Wan Mazlina Md Saad1*
1Centre of
Medical Laboratory Technology, Faculty of Health Sciences
2Atta-ur-Rahman Institute for Natural
Product Discovery (AuRIns)
Universiti Teknologi MARA Selangor
Branch, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia.
3Centre of Foundation Studies,
Universiti Teknologi MARA Selangor
Branch, Dengkil Campus, 43800 Dengkil, Selangor, Malaysia.
4Department
of Radiology, Faculty of Medicine and Health Sciences,
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
*Corresponding
author: wanmaz755@uitm.edu.my
Received: 18 October 2021; Accepted: 21 November 2021;
Published: 27 December 2021
Watermelon
(Citrullus lanatus) is a nutritional fruit with appealing flesh colour.
The flesh colour is reflected by the presence of carotenoid compounds, lycopene
and β-carotene. Lycopene is responsible for the deep red fruit colour
while β-carotene provides the orange-yellow pigment. In addition, these
carotenoid components can scavenge free radicals and protect one from harmful
diseases. In this study, isocratic mode high-performance liquid chromatography
(HPLC) was performed to separate and quantify lycopene and β-carotene in
watermelon juice. Twenty microliter sample injection was passed through C-18
column maintained at 45 °C coupled with diode array detector (DAD) at 470 nm.
Mobile phase of acetonitrile and water (95:5, v/v) were at the flow rate of 1
mL/min. Excellent chromatographic separation of lycopene and β-carotene
were achieved at elution time of 4.568 and 6.831 min, respectively. The amount
of quantified lycopene (1662 µg/mL) and β-carotene (180 µg/mL) indicated
that lycopene is the major carotenoid present in watermelon juice. This study
described the ability of isocratic mode HPLC to separate and quantify
carotenoid in watermelon juice. The analytical method had been validated, with the
results showing precision, accuracy, and linearity.
Keywords: watermelon,
carotenoid, lycopene, β-carotene, high-performance liquid chromatography
Abstrak
Tembikai
(Citrullus lanatus) ialah buah bernutrisi yang mempunyai warna isi yang
menarik. Warna isi buah tembikai ini dicerminkan oleh kandungan sebatian
karotenoid; likopena dan β-karotena. Sebatian karotenoid ini
bertanggungjawab sebagai pigment warna pada buah. Tambahan pula, komponen
karotenoid ini dapat menghalang serangan radikal bebas serta melindung kita
daripada pelbagai jenis penyakit berbahaya. Dalam kajian ini, kaedah isokratik
kromatografi cecair berprestasi tinggi (KCPT) dilakukan untuk memisahkan dan
mengkuantitikan kandungan likopena dan β-karotena di dalam jus tembikai.
Muatan sampel 20 µL dilalukan kedalam turus C-18 pada suhu dikekalkan 45 °C
ditambah dengan pengesan susan diod (PSD) pada 470 nm. Gabungan pelarut
asetonitril dan air (95:5, v/v) dengan kadar aliran 1 mL/min telah digunakan.
Pemisahan kromatografi likopena dan β-karotena yang sangat baik telah
dicapai pada masa elusi 4.568 dan 6.831 minit. Jumlah pengkuantitian likopena
ialah 1662 µg/mL dan β-karotena 180 µg/mL, menunjukkan bahawa likopena ialah
karotenoid utama diikuti dengan β-karotena di dalam jus tembikai. Dapatan
kajian ini menerangkan kemampuan KCPT mod isokratik untuk mengenalpasti dan
mengkuantitikan profil karotenoid di dalam jus tembikai. Kaedah analitikal yang
digunakan bagi kajian ini telah divalidasi dan dapatan kajian menunjukkan
kejituan, ketepatan dan kelinearan.
Kata
kunci: tembikai,
karotenoid, likopene, β-karoten, kromatografi cecair berprestasi tinggi
References
1.
Ridwan, R., Abdul Razak, H. R., Adenan, M. I. and
Md Saad, W. M. (2018). Development of isocratic RP-HPLC method for separation
and quantification of L-citrulline and L-arginine in watermelons. International
Journal of Analytical Chemistry, 2018: 4798530.<
2.
Saad, W. M. M., Salin, N. S. M., Ramzi, A. S. and
Salim, F. (2020). Identification and quantification of fructose, glucose and
sucrose in watermelon peel juice. Malaysian Journal of Analytical
Sciences, 24(3): 382-389.
3.
Maoto, M. M., Beswa, D. and Jideani, A. I. (2019).
Watermelon as a potential fruit snack. International Journal of Food
Properties, 22(1): 355-370.
4.
Noh, J. J., Hur, O. S., Ro, N. Y., Lee, J. E.,
Hwang, A. J., Kim, B. S., Rhe, J. S., Yi, J. Y., Kim, J. H., Lee, H. S., Sung,
J. S., Kim, M. K. and Assefa, A. D. (2020). Lycopene content and fruit
morphology of red, pink, orange, and yellow fleshed watermelon (Citrullus
lanatus) germplasm collections. Korean Journal of Plant Resources, 33(6):
624-637.
<5.
Tamburini, E., Costa, S., Rugiero, I., Pedrini, P.
and Marchetti, M. G. (2017). Quantification of lycopene, β-carotene, and
total soluble solids in intact red-flesh watermelon (Citrullus lanatus)
using on-line near-infrared spectroscopy. Sensors, 17(4):
746.
6.
Kyriacou, M. C.,
Leskovar, D. I., Colla, G. and Rouphael, Y. (2018). Watermelon and melon fruit
quality: The genotypic and agro-environmental factors implicated. Scientia
Horticulturae, 234: 393-408.
7.
Zhang, L., Wang, S., Yang, R., Mao, J., Jiang, J.,
Wang, X., Zhang, W., Zhang, Q. and Li, P. (2019). Simultaneous determination of
tocopherols, carotenoids and phytosterols in edible vegetable oil by
ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chemistry, 289:
313-319.
8.
Prakash, D. and Gupta, C. (2014). 12 Carotenoids:
chemistry and health benefits. Phytochemicals of Nutraceutical Importance, CABI
International Publishers, Wallingford (2014), pp. 181-195.
9.
Thakur, N. (2016). Lycopene quantification of
tomato by SPE and HPLC. Bulgarian Journal of Agricultural Science, 22(1):
84-90.
10.
Zhang, J., Sun, H., Guo, S., Ren, Y., Li, M.,
Wang, J., Zhang, H., Gong, G. and Xu, Y. (2020). Decreased protein abundance of
lycopene β-cyclase contributes to red flesh in domesticated
watermelon. Plant Physiology, 183(3): 1171-1183.
11.
Bogacz-Radomska,
L. and Harasym, J. (2018). β-Carotene-properties and production methods. Food
Quality and Safety, 2(2): 69-74.
12.
Karahan, F., Dede, S. and Ceylan, E. (2018). The
effect of lycopene treatment on oxidative DNA damage of experimental diabetic
rats. The Open Clinical Biochemistry Journal, 8(1):1-6.
13.
Milani,
A., Basirnejad, M., Shahbazi, S. and Bolhassani, A. (2017). Carotenoids:
biochemistry, pharmacology and treatment. British Journal of Pharmacology,
174(11): 1290-1324.
14.
Cucu, T., Huvaere, K., Van Den Bergh, M. A.,
Vinkx, C. and Van Loco, J. (2012). A simple and fast HPLC method to determine
lycopene in foods. Food Analytical Methods, 5(5): 1221-1228.
15.
Adadi, P., Barakova, N. V. and Krivoshapkina, E.
F. (2018). Selected methods of extracting carotenoids, characterization, and
health concerns: A review. Journal of Agricultural and Food Chemistry, 66(24):
5925-5947.
16.
Huang, J. and Hui, B. (2020). The determination of
lycopene Z‐isomer absorption coefficient on C30‐HPLC. Food
Science & Nutrition, 8(11): 5943-5952.
17.
Sirikhet, J., Chanmahasathien, W., Raiwa, A. and
Kiattisin, K. (2021). Stability enhancement of lycopene in Citrullus lanatus
extract via nanostructured lipid carriers. Food Science & Nutrition, 9(3):
1750-1760.
18.
Petyaev, I. M., Pristensky, D. V., Morgunova, E.
Y., Zigangirova, N. A., Tsibezov, V. V., Chalyk, N. E. and Bashmakov, Y. K.
(2019). Lycopene presence in facial skin corneocytes and sebum and its
association with circulating lycopene isomer profile: Effects of age and
dietary supplementation. Food Science & Nutrition, 7(4):
1157-1165.
19.
International Conference
on Harmonization (2003). Technical requirements for the registration of
pharmaceuticals for human use, validation of analytical procedures:
Methodology. The 6th International Conference on Harmonization,
Geneva, 2003
20.
Pataro, G., Carullo, D., Siddique, M. A. B.,
Falcone, M., Donsì, F. and Ferrari, G. (2018). Improved extractability of
carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit
for more energy-efficient steam-assisted peeling. Journal of Food
Engineering, 233: 65-73.
21.
Jin, H., Lao, Y. M., Zhou, J., Zhang, H. J. and
Cai, Z. H. (2017). Simultaneous determination of 13 carotenoids by a simple C18
column-based ultra-high-pressure liquid chromatography method for carotenoid
profiling in the astaxanthin-accumulating Haematococcus pluvialis. Journal
of Chromatography A, 1488: 93-103.
22.
Kehili, M., Kammlott, M., Choura, S., Zammel, A.,
Zetzl, C., Smirnova, I. and Sayadi, S. (2017). Supercritical CO2 extraction
and antioxidant activity of lycopene and β-carotene-enriched oleoresin
from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian
industry. Food and Bioproducts Processing, 102: 340-349.
23.
Zhang, C-R., Aldosari, S.
A., Vidyasagar, P. S., Shukla, P. and Nair, M. G. (2016). Determination of the
variability of sugars in date fruit varieties. Journal of Plantation Crops,
43(1): 53-61.
24.
Gebregziabher, B. S., Zhang, S., Qi, J., Azam, M.,
Ghosh, S., Feng, Y. and Sun, J. (2021). Simultaneous determination of
carotenoids and chlorophylls by the HPLC-UV-Vis method in soybean seeds. Agronomy, 11(4):
758.
25.
United States Department
of Agriculture (USDA). (2002). Watermelon packs a powerful lycopene punch. Retrieved
from https://agresearchmag.ars.usda.gov/2002/jun/.
26. Zhao, W., Lv, P. and Gu,
H. (2013). Studies on carotenoids in watermelon flesh. Agricultural Science,
4(7): 8.
27.
Przybylska, S. (2020). Lycopene a bioactive
carotenoid offering multiple health benefits: A review. International
Journal of Food Science & Technology, 55(1), 11-32.
28.
Mozos, I., Stoian, D., Caraba, A., Malainer, C.,
Horbańczuk, J. O. and Atanasov, A. G. (2018). Lycopene and vascular
health. Frontiers in Pharmacology, 9: 521.
29.
Ghadage, S. R., Mane, K. A., Agrawal, R. S. and
Pawar, V. N. (2019). Tomato lycopene: Potential health benefits. The
Pharma Innovation Journal, 8(6): 1245-1248.