Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1020 - 1031
CYTOTOXICITY EFFECT OF NATURAL AND SYNTHETIC GIRINIMBINES AND THEIR
DERIVATIVES AGAINST HUMAN LUNG CANCER CELL LINES A549
(Kesan Sitotoksik Girinimbin Semula Jadi dan Sintetik dan
Terbitannya Terhadap Sel Garis Kanser Paru-Paru Manusia A549)
Fatin Nurul Atiqah Osman1,
Siti Mariam Mohd Nor1*, Mohd Azlan Nafiah2
1Department
of Chemistry, Faculty of Science,
Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department
of Chemistry, Faculty of Science and Mathematics,
Universiti
Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
*Corresponding
author: smariam@upm.edu.my
Received: 8 September 2021; Accepted: 18 November 2021;
Published: 27 December 2021
Abstract
The present study was
designed to evaluate the anticancer properties of girinimbine and its
derivatives. Two different routes for the synthesis of girinimbine involving a
two-step reaction or a one-pot reaction were studied. Girinimbine was
synthesised through metal-catalysed heterocoupling, indole ring closure, ether
formation, and Claisen cyclisation. Girinimbine derivatives were prepared by
the semi-synthesis of isolated girinimbine from Murraya koenigii through alkylation or acylation reactions. Natural
and synthetic girinimbines, five derivatives of N-substituted girinimbine, and three intermediates from the
synthesis of girinimbine were evaluated for cytotoxicity activity against human
lung cancer (A549) and normal lung (MRC-5) cell lines. The structures of all
the synthesised compounds were confirmed by spectroscopic analysis and
comparison with published data. The cytotoxicity assay showed that the natural
girinimbine and nitrobiphenyl intermediate exhibited high toxicity (IC50
6.2 and 17.0 μg/mL, respectively), whereas other compounds displayed
moderate toxicity activity (IC50 24.0–40.6 μg/mL) on A549
cells. All of the compounds demonstrated selectivity to A549 cancer cell lines
with the SI values ranging from 2.70 to 4.68 (SI > 2), except for two N-alkylated girinimbines with the SI
values of 0.93 and 1.70.
Keywords:
girinimbine, derivative, N-alkylated,
N-acylated, A549
Abstrak
Kajian
ini telah dibentuk untuk menilai sifat antikanser girinimbin dan terbitannya.
Dua laluan berbeza untuk mensintesis girinimbin melibatkan tindak balas
dua-langkah atau tindak balas satu-bekas telah dikaji. Sintesis girinimbin
telah dicapai melalui penggandingan hetero bermangkin logam, penutupan gelang
indol, pembentukan eter dan pensiklikan Claisen. Terbitan girinimbin telah
disediakan melalui sintesis-semi girinimbin terpencil daripada Murraya koenigii melalui tindak balas
pengalkilan atau pengasilan. Girinimbin semula jadi dan sintetik, lima terbitan
girinimbin tertukar ganti-N dan tiga
bahan perantara daripada kerja sintesis telah dinilai untuk aktiviti sitotoksik
terhadap sel garis kanser paru-paru manusia (A459) dan paru-paru normal
(MRC-5). Kesemua struktur sebatian yang disintesis telah disahkan melalui
analisis spektroskopik dan perbandingan dengan data yang telah diterbitkan.
Assai kesitotoksikan menunjukkan girinimbin semula jadi dan bahan perantara
bifenilnitro telah memaparkan ketoksikan tinggi (IC50 6.2 and 17.0
μg/mL) manakala sebatian yang lain menunjukkan aktiviti ketoksikan
sederhana (IC50 24.0-40.6 μg/mL) ke atas sel A549. Kesemua
sebatian menunjukkan kepilihan kepada sel garis kanser A459 dengan nilai SI
dalam julat daripada 2.70-4.68 (SI > 2) kecuali dua girinimbin teralkil-N dengan nilai SI 0.93 dan 1.70.
Kata kunci: girinimbin, terbitan, teralkil-N, terasil-N, A549
References
1.
International Agency for Research on
Cancer (2020). The global cancer observatory (Globocan 2020). Access from https://gco.iarc.fr/today/home. [Access online 15 February 2021].
2.
Ministry of Health Malaysia (2017).
National Strategic Plan for Cancer Control Programme 2016-2020. Access from https://www.moh.gov.my/index.php/dl/554756755a584a6961585268626938794d
4445334c314a31616e567259573476546d 46306157397559577866553352795958526c5a326c6a5831427359573566516d39766131396d61573568624541794e564e46554651794d4445334c6e426b5a673d3d. [Access online 23 January 2021].
3.
Ministry of Health Malaysia (2018).
Malaysian study on cancer survival (MyScan). Access from https://www.moh.gov.my/moh/resources/Penerbitan/Laporan/Umum/Malaysian_Study_on_Cancer_Survival_MySCan_2018.pdf. [Access online 23 January 2021].
4.
Shah, A. S., Wakade, A. S.
and Juvekar, A. R. (2008). Immunomodulatory activity of methanolic extract
of Murraya koenigii (L) Spreng leaves. Indian Journal of Experimental
Biology, 46(7): 505-509.
5.
Mohan, S., Abdelwahab, S. I., Cheah, S.
C., Sukari, M. A., Syam, S., Shamsuddin, N. and Rais Mustafa, M. (2013).
Apoptosis effect of girinimbine isolated from Murraya koenigii on lung cancer cells in vitro. Evidence-Based
Complementary and Alternative Medicine: eCAM, 2013: 689865.
6.
Iman, V., Mohan, S., Abdelwahab, S. I.,
Karimian, H., Nordin, N., Fadaeinasab, M., Noordin, M. I. and Noor, S. M.
(2016). Anticancer and anti-inflammatory activities of girinimbine isolated
from Murraya koenigii. Drug Design, Development and Therapy,
11: 103-121.
7. Syam
S., Abdul, A. B., Sukari, M. A., Mohan, S., Abdelwahab, S. I. and Wah, T. S.
(2011). The growth suppressing effects of girinimbine on Hepg2 involve
induction of apoptosis and cell cycle arrest. Molecules, 16(8): 7155-7170.
8.
Mahamadhanif, S. S., Neeta, T., Rajshekhar, K., Rajesh, A. R., Mahes, B. P., Faya, A. M., Harun,
M. P., Wesam, S. A., Kavita, J. and Girish, A. H. (2015). Current perspective of natural alkaloid carbazole and
its derivatives as antitumor agents. Anti-Cancer Agents in Medicinal Chemistry, 15(8): 1049-1065.
9.
Wang, S. L., Cai, B., Cui, C. B., Yan, S.
Y. and Wu, C. F. (2007). Induction of apoptosis by girinimbine in K562 cell. Chinese
Traditional and Herbal Drugs, 38(11): 1677-1681.
10.
Ko, F. N., Lee, Y. S., Wu, T. S. and Teng, C. M. (1994). Inhibition of cyclooxygenase activity and
increase in platelet cyclic AMP by girinimbine, isolated from Murraya euchrestifolia. Biochemical Pharmacology, 48(2): 353-360.
11.
Kok, Y. Y., Mooi, L. Y., Ahmad, K.,
Sukari, M. A., Mat, N., Rahmani, M. and Ali, A. M. (2012). Anti-tumour promoting activity and antioxidant properties of girinimbine
isolated from the stem bark of Murraya
koenigii S. Molecules, 17(4): 4651-4660.
12.
Sukari, M. A., Noor, H. M., Bakar, N. A.,
Ismail, I. S., Rahmani, M. and Abdul, A. B. (2013). Larvicidal carbazole alkaloids
from Murraya koenigii against dengue fever mosquito Aedes
aegypti Linnaeus. Asian
Journal of Chemistry, 25(14): 7719-7721.
13.
Joshi, B. S., Kamat, V. N. and Gawad, D.
H. (1970). On the structures of girinimbine, mahanimbine, isomahanimbine,
koenimbidine and murrayacine. Tetrahedron,
26(5): 1475-1482.
14.
Bergman, J. and Carlss, R. (1978).
Conversion of diindolyl methanes to 3-vinylindoles. A simple synthesis of the
indole alkaloid olivacine. Tetrahedron
Letters, 19(42): 4055-4058.
15.
Knölker, H. J. and Hofmann, C. (1996). Transition-metal complexes in organic-synthesis. 33. Molybdenum-mediated
total synthesis of girinimbine, murrayacine and dihydroxygirinimbine. Tetrahedron Letters, 37(44): 7947-7950.
17.
Knölker, H. J. (2009). Synthesis of
biologically active carbazole alkaloids using selective
transition-metal-catalyzed coupling reactions. Chemistry Letters, 38(1): 8-13.
19.
Dai, J., Ma, D., Fu, C. and Ma, S. (2015).
Gram scale total synthesis of 2-hydroxy-3-methylcarbazole,
pyrano[3,2-a]carbazole and prenylcarbazole alkaloids. European Journal of Organic Chemistry, 2015 (25): 5655-5662.
20.
Mandal, T., Chakraborti, G., Karmakar, S.
and Dash, J. (2018). Divergent and orthogonal approach to carbazoles and
pyridoindoles from oxindoles via
indole intermediates. Organic Letters,
20(16): 4759-4763.
21.
Nor, S. M. M., Osman, F. N. A., Ahmad, K.
and Nafiah, M. A. (2017). Synthesis of N-alkylated and
N-acylated derivatives of girinimbine. Asian
Journal of Chemistry, 29
(4): 801-804.
22.
Bhattacharyya, P., Jash, S. S. and
Chowdhury, B. K. (1986). A biogenetically important carbazole alkaloid from Murraya koenigii Spreng. Chemistry and Industry, 7: 246.
23.
Abu Bakar, N. H., Sukari, M. A., Rahmani, M., Md. Sharif, A.,
Khalid, K. and Yusuf, U. K. (2007). Chemical
constituents from stem barks and roots of Murraya
koenigii (Rutaceae). Malaysian Journal of Analytical
Sciences, 11(1): 173-176.
24.
Nguyen, N. H., Ta, Q. T. H., Pham, Q. T., Luong, T. N. H.,
Phung, V. T., Duong, T. H. and Vo, V. G. (2020). Anticancer activity of novel
plant extracts and compounds from Adenosma bracteosum (Bonati)
in human lung and liver cancer cells. Molecules,
25(12): 2912-2928. i>
25.
Kuete,
V., Ango, P. Y., Yeboah, S. O., Mbaveng, A. T., Mapitse, R., Kapche, G. D.,
Ngadjui, B. T. and Efferth, T. (2014). Cytotoxicity of four Aframomum species (A. arundinaceum, A. alboviolaceum, A.
kayserianum and A. polyanthum)
towards multi-factorial drug resistant cancer cell lines. BMC
Complementary and Alternative Medicine,
14: 340.
26.
Goldin, A., Venditti, J. M., Macdonald, J.
S., Muggia, F. M., Henney, J. E. and Devita Jr, V. T. (1981). Current results
of the screening program at the Division of Cancer Treatment, National Cancer
Institute. European Journal of Cancer,
17 (2): 129-142.
27.
Geran, R. I., Greenberg, N. H., Macdonald,
M. M., Shumacher, A. M. and Abbott, B. J. (1972). Protocols for screening
chemical agents and natural products against animal tumors and other biological
systems. Cancer Chemotherapy Reports, Part III, 3: 1-103.
28.
Nepali, K., Lee, H. Y. and Liou, J. P. (2019).
Nitro-group-containing drugs. Journal Medicine Chemistry, 62: 2851-2893.
29.
Bashir,
M., Bano, A., Ijaz, A. S. and Chaudhary, B. A. (2015). Recent developments and
biological activities of N-substituted carbazole derivatives: a review. Molecules, 20 (8): 13496-13517.
30.
Liu,
K., Zang, Y., Shen, C., Li, C., Ma, J., Yang, J., Sun, X., Chen, X., Wang, N.
and Zhang, D. (2021). Synthesis and biological evaluation of pyranocarbazole
derivatives as anti-tumor agents. Bioorganic
and Medicinal Chemistry Letters, 33: 127739.
31.
Kolli,
S. K., Prasad, B., Babu, P. V., Ashfaq, M. A., Ehtesham, N. Z., Raju, R. R. and
Pal, M. (2014). TFAA/H3PO4 mediated unprecedented N-acylation of carbazoles leading to
small molecules possessing anti-proliferative activities against cancer cells. Organic and Bimolecular Chemistry, 12
(32): 6080-6084.
32.
Kaushik,
K., Kumar, N. and Pathak, D. (2012). Synthesis of some newer carbazole
derivatives and evaluation for their pharmacological activity. Der Pharmacia Sinica, 3(4): 470-478.
33.
He, Y., Zhu, Q., Chen, M., Huang, Q., Wang, W., Li,
Q., Huang, Y. and Di, W. (2016). The changing 50% inhibitory concentration (IC50)
of cisplatin: a pilot study on the artifacts of the MTT assay and the precise
measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget, 7(43):
70803-70821.
34.
Badisa,
R. B., Darling-reed, S. F., Joseph, P., Cooperwood, J. S., Latinwo, L. M. and
Goodman, C. B. (2009). Selective cytotoxic activities of two novel synthetic
drugs on human breast carcinoma MCF-7 Cells. Anticancer Research, 29(8): 2993-2996.
35.
Chipoline, I. C., da Fonseca, A.C.C., da Costa,
G. R. M., de Souza, M. P., Rabelo, V. W. H., de Queiroz, L. N., de Souza, T. L.
F., de Almeida, E. C. P., Abreu, P. A., Pontes, B., Ferreira, V. F., de
Carvalho da Silva, F. and Robbs, B. K. (2020). Molecular mechanism of action of
new 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles with cytotoxic and
selective effect against oral squamous cell carcinoma. Bioorganic Chemistry, 101: 103984.