Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1020 - 1031

 

 

 

 

CYTOTOXICITY EFFECT OF NATURAL AND SYNTHETIC GIRINIMBINES AND THEIR DERIVATIVES AGAINST HUMAN LUNG CANCER CELL LINES A549

 

(Kesan Sitotoksik Girinimbin Semula Jadi dan Sintetik dan Terbitannya Terhadap Sel Garis Kanser Paru-Paru Manusia A549)

 

Fatin Nurul Atiqah Osman1, Siti Mariam Mohd Nor1*, Mohd Azlan Nafiah2

 

1Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Department of Chemistry, Faculty of Science and Mathematics,

Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia

 

*Corresponding author:  smariam@upm.edu.my

 

 

Received:  8 September 2021; Accepted: 18 November 2021; Published:  27 December 2021

 

 

Abstract

The present study was designed to evaluate the anticancer properties of girinimbine and its derivatives. Two different routes for the synthesis of girinimbine involving a two-step reaction or a one-pot reaction were studied. Girinimbine was synthesised through metal-catalysed heterocoupling, indole ring closure, ether formation, and Claisen cyclisation. Girinimbine derivatives were prepared by the semi-synthesis of isolated girinimbine from Murraya koenigii through alkylation or acylation reactions. Natural and synthetic girinimbines, five derivatives of N-substituted girinimbine, and three intermediates from the synthesis of girinimbine were evaluated for cytotoxicity activity against human lung cancer (A549) and normal lung (MRC-5) cell lines. The structures of all the synthesised compounds were confirmed by spectroscopic analysis and comparison with published data. The cytotoxicity assay showed that the natural girinimbine and nitrobiphenyl intermediate exhibited high toxicity (IC50 6.2 and 17.0 μg/mL, respectively), whereas other compounds displayed moderate toxicity activity (IC50 24.0–40.6 μg/mL) on A549 cells. All of the compounds demonstrated selectivity to A549 cancer cell lines with the SI values ranging from 2.70 to 4.68 (SI > 2), except for two N-alkylated girinimbines with the SI values of 0.93 and 1.70.

 

Keywords:  girinimbine, derivative, N-alkylated, N-acylated, A549

 

Abstrak

Kajian ini telah dibentuk untuk menilai sifat antikanser girinimbin dan terbitannya. Dua laluan berbeza untuk mensintesis girinimbin melibatkan tindak balas dua-langkah atau tindak balas satu-bekas telah dikaji. Sintesis girinimbin telah dicapai melalui penggandingan hetero bermangkin logam, penutupan gelang indol, pembentukan eter dan pensiklikan Claisen. Terbitan girinimbin telah disediakan melalui sintesis-semi girinimbin terpencil daripada Murraya koenigii melalui tindak balas pengalkilan atau pengasilan. Girinimbin semula jadi dan sintetik, lima terbitan girinimbin tertukar ganti-N dan tiga bahan perantara daripada kerja sintesis telah dinilai untuk aktiviti sitotoksik terhadap sel garis kanser paru-paru manusia (A459) dan paru-paru normal (MRC-5). Kesemua struktur sebatian yang disintesis telah disahkan melalui analisis spektroskopik dan perbandingan dengan data yang telah diterbitkan. Assai kesitotoksikan menunjukkan girinimbin semula jadi dan bahan perantara bifenilnitro telah memaparkan ketoksikan tinggi (IC50 6.2 and 17.0 μg/mL) manakala sebatian yang lain menunjukkan aktiviti ketoksikan sederhana (IC50 24.0-40.6 μg/mL) ke atas sel A549. Kesemua sebatian menunjukkan kepilihan kepada sel garis kanser A459 dengan nilai SI dalam julat daripada 2.70-4.68 (SI > 2) kecuali dua girinimbin teralkil-N dengan nilai SI 0.93 dan 1.70.

 

Kata kunci:  girinimbin, terbitan, teralkil-N, terasil-N, A549

 

References

1.      International Agency for Research on Cancer (2020). The global cancer observatory (Globocan 2020). Access from https://gco.iarc.fr/today/home. [Access online 15 February 2021].

2.   Ministry of Health Malaysia (2017). National Strategic Plan for Cancer Control Programme 2016-2020. Access from https://www.moh.gov.my/index.php/dl/554756755a584a6961585268626938794d 4445334c314a31616e567259573476546d 46306157397559577866553352795958526c5a326c6a5831427359573566516d39766131396d61573568624541794e564e46554651794d4445334c6e426b5a673d3d. [Access online 23 January 2021].

3.   Ministry of Health Malaysia (2018). Malaysian study on cancer survival (MyScan). Access from https://www.moh.gov.my/moh/resources/Penerbitan/Laporan/Umum/Malaysian_Study_on_Cancer_Survival_MySCan_2018.pdf. [Access online 23 January 2021].

4.      Shah, A. S., Wakade, A. S. and Juvekar, A. R. (2008). Immunomodulatory activity of methanolic extract of Murraya koenigii (L) Spreng leaves. Indian Journal of Experimental Biology, 46(7): 505-509.

5.    Mohan, S., Abdelwahab, S. I., Cheah, S. C., Sukari, M. A., Syam, S., Shamsuddin, N. and Rais Mustafa, M. (2013). Apoptosis effect of girinimbine isolated from Murraya koenigii on lung cancer cells in vitro. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013: 689865.

6.      Iman, V., Mohan, S., Abdelwahab, S. I., Karimian, H., Nordin, N., Fadaeinasab, M., Noordin, M. I. and Noor, S. M. (2016). Anticancer and anti-inflammatory activities of girinimbine isolated from Murraya koenigii. Drug Design, Development and Therapy, 11: 103-121.

7.      Syam S., Abdul, A. B., Sukari, M. A., Mohan, S., Abdelwahab, S. I. and Wah, T. S. (2011). The growth suppressing effects of girinimbine on Hepg2 involve induction of apoptosis and cell cycle arrest. Molecules, 16(8): 7155-7170.

8.      Mahamadhanif, S. S., Neeta, T., Rajshekhar, K., Rajesh, A. R., Mahes, B. P., Faya, A. M., Harun, M. P., Wesam, S. A., Kavita, J. and Girish, A. H. (2015). Current perspective of natural alkaloid carbazole and its derivatives as antitumor agents. Anti-Cancer Agents in Medicinal Chemistry, 15(8): 1049-1065.

9.      Wang, S. L., Cai, B., Cui, C. B., Yan, S. Y. and Wu, C. F. (2007). Induction of apoptosis by girinimbine in K562 cell. Chinese Traditional and Herbal Drugs, 38(11): 1677-1681.

10.   Ko, F. N., Lee, Y. S., Wu, T. S. and Teng, C. M. (1994). Inhibition of cyclooxygenase activity and increase in platelet cyclic AMP by girinimbine, isolated from Murraya euchrestifolia. Biochemical Pharmacology, 48(2): 353-360.

11.   Kok, Y. Y., Mooi, L. Y., Ahmad, K., Sukari, M. A., Mat, N., Rahmani, M. and Ali, A. M. (2012). Anti-tumour promoting activity and antioxidant properties of girinimbine isolated from the stem bark of Murraya koenigii S. Molecules, 17(4): 4651-4660. 

12.   Sukari, M. A., Noor, H. M., Bakar, N. A., Ismail, I. S., Rahmani, M. and Abdul, A. B. (2013). Larvicidal carbazole alkaloids from Murraya koenigii against dengue fever mosquito Aedes aegypti Linnaeus. Asian Journal of Chemistry, 25(14): 7719-7721.

13.   Joshi, B. S., Kamat, V. N. and Gawad, D. H. (1970). On the structures of girinimbine, mahanimbine, isomahanimbine, koenimbidine and murrayacine. Tetrahedron, 26(5): 1475-1482.

14.   Bergman, J. and Carlss, R. (1978). Conversion of diindolyl methanes to 3-vinylindoles. A simple synthesis of the indole alkaloid olivacine. Tetrahedron Letters, 19(42): 4055-4058.

15.   Knölker, H. J. and Hofmann, C. (1996). Transition-metal complexes in organic-synthesis. 33. Molybdenum-mediated total synthesis of girinimbine, murrayacine and dihydroxygirinimbine. Tetrahedron Letters, 37(44): 7947-7950.

16.   Gruner, K. K., Hopfmann, T., Natsumoto, K., Jager, A., Katsuki, T. and Knölker, H. J. (2011). Efficient iron-mediated approach to pyrano[3,2-a]carbazole alkaloids - first total syntheses of O-methylmurrayamine A and 7-methoxymurrayacine, first asymmetric synthesis and assignment of the absolute configuration of (-)-trans-dihydroxygirinimbine. Organic and Biomolecular Chemistry, 9(7): 2057-2061.

17.   Knölker, H. J. (2009). Synthesis of biologically active carbazole alkaloids using selective transition-metal-catalyzed coupling reactions. Chemistry Letters, 38(1): 8-13.

18.   Hesse, R., Gruner, K. K., Kataeva, O., Schmidt, A. W. and Knölker, H. J. (2013). Efficient construction of pyrano[3,2a]carbazoles: application to a biomimetic total synthesis of cyclized monoterpenoid pyrano[3,2a]carbazole alkaloids. Chemistry (Weinheim an der Bergstrasse, Germany), 19(42): 14098-14111.

19.   Dai, J., Ma, D., Fu, C. and Ma, S. (2015). Gram scale total synthesis of 2-hydroxy-3-methylcarbazole, pyrano[3,2-a]carbazole and prenylcarbazole alkaloids. European Journal of Organic Chemistry, 2015 (25): 5655-5662.

20.   Mandal, T., Chakraborti, G., Karmakar, S. and Dash, J. (2018). Divergent and orthogonal approach to carbazoles and pyridoindoles from oxindoles via indole intermediates. Organic Letters, 20(16): 4759-4763.

21.   Nor, S. M. M., Osman, F. N. A., Ahmad, K. and Nafiah, M. A. (2017). Synthesis of N-alkylated and N-acylated derivatives of girinimbine. Asian Journal of Chemistry, 29 (4): 801-804.

22.   Bhattacharyya, P., Jash, S. S. and Chowdhury, B. K. (1986). A biogenetically important carbazole alkaloid from Murraya koenigii Spreng. Chemistry and Industry, 7: 246.

23.   Abu Bakar, N. H., Sukari, M. A., Rahmani, M., Md. Sharif, A., Khalid, K. and Yusuf, U. K. (2007). Chemical constituents from stem barks and roots of Murraya koenigii (Rutaceae). Malaysian Journal of Analytical Sciences, 11(1): 173-176.

24.   Nguyen, N. H., Ta, Q. T. H., Pham, Q. T., Luong, T. N. H., Phung, V. T., Duong, T. H. and Vo, V. G. (2020). Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules, 25(12): 2912-2928.

25.   Kuete, V., Ango, P. Y., Yeboah, S. O., Mbaveng, A. T., Mapitse, R., Kapche, G. D., Ngadjui, B. T. and Efferth, T. (2014). Cytotoxicity of four Aframomum species (A. arundinaceum, A. alboviolaceum, A. kayserianum and A. polyanthum) towards multi-factorial drug resistant cancer cell lines. BMC Complementary and Alternative Medicine, 14: 340.

26.   Goldin, A., Venditti, J. M., Macdonald, J. S., Muggia, F. M., Henney, J. E. and Devita Jr, V. T. (1981). Current results of the screening program at the Division of Cancer Treatment, National Cancer Institute. European Journal of Cancer, 17 (2): 129-142.  

27.   Geran, R. I., Greenberg, N. H., Macdonald, M. M., Shumacher, A. M. and Abbott, B. J. (1972). Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemotherapy Reports, Part III, 3: 1-103.

28.   Nepali, K., Lee, H. Y. and Liou, J. P. (2019). Nitro-group-containing drugs. Journal Medicine Chemistry, 62: 2851-2893.

29.   Bashir, M., Bano, A., Ijaz, A. S. and Chaudhary, B. A. (2015). Recent developments and biological activities of N-substituted carbazole derivatives: a review. Molecules, 20 (8): 13496-13517.

30.   Liu, K., Zang, Y., Shen, C., Li, C., Ma, J., Yang, J., Sun, X., Chen, X., Wang, N. and Zhang, D. (2021). Synthesis and biological evaluation of pyranocarbazole derivatives as anti-tumor agents. Bioorganic and Medicinal Chemistry Letters, 33: 127739.

31.   Kolli, S. K., Prasad, B., Babu, P. V., Ashfaq, M. A., Ehtesham, N. Z., Raju, R. R. and Pal, M. (2014). TFAA/H3PO4 mediated unprecedented N-acylation of carbazoles leading to small molecules possessing anti-proliferative activities against cancer cells. Organic and Bimolecular Chemistry, 12 (32): 6080-6084.

32.   Kaushik, K., Kumar, N. and Pathak, D. (2012). Synthesis of some newer carbazole derivatives and evaluation for their pharmacological activity. Der Pharmacia Sinica, 3(4): 470-478.

33.   He, Y., Zhu, Q., Chen, M., Huang, Q., Wang, W., Li, Q., Huang, Y. and Di, W. (2016). The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget, 7(43): 70803-70821.

34.   Badisa, R. B., Darling-reed, S. F., Joseph, P., Cooperwood, J. S., Latinwo, L. M. and Goodman, C. B. (2009). Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 Cells. Anticancer Research, 29(8): 2993-2996.

35.   Chipoline, I. C., da Fonseca, A.C.C., da Costa, G. R. M., de Souza, M. P., Rabelo, V. W. H., de Queiroz, L. N., de Souza, T. L. F., de Almeida, E. C. P., Abreu, P. A., Pontes, B., Ferreira, V. F., de Carvalho da Silva, F. and Robbs, B. K. (2020). Molecular mechanism of action of new 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles with cytotoxic and selective effect against oral squamous cell carcinoma. Bioorganic Chemistry, 101: 103984.