Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 1007 - 1019
OPTIMIZATION
OF DIFFERENT PARAMETERS IN THE SYNTHESIS OF BISPHENOL A IMPRINTED POLYMER VIA
PRECIPITATION POLYMERIZATION FOR BISPHENOL A ADSORPTION
(Pengoptimuman Parameter yang Berbeza dalam
Sintesis Polimer Tercetak Bisfenol A Melalui Pempolimeran Pemendakan bagi
Penjerapan Bisfenol A)
Tan Nee Nee, Noorhidayah Ishak*, Azalina Mohamed Nasir,
Nur Zatul ‘Iffah Zakaria, Nor Munirah Rohaizad
Faculty
of Chemical Engineering Technology,
Universiti
Malaysia Perlis, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
*Corresponding
author: noorhidayah@unimap.edu.my
Received: 27 September 2021;
Accepted: 12 November 2021; Published: 27
December 2021
Abstract
Molecularly imprinted polymer (MIP) is used to synthesize
receptors and is highly recognized against target molecules. The purpose of the
study is to prepare bisphenol A (BPA) imprinted polymer that can be used to
adsorb BPA molecules. The MIP was prepared by precipitation polymerization
using BPA as a template, methacrylic acid (MAA) as a functional monomer,
ethylene glycol dimethacrylate (EGDMA) as a crosslinker, acetonitrile as a
solvent, and 1,1'-azobis(cyclohexanecarbonitrile) (AIBN) as an initiator by
heating in an oil bath at 60 °C for 20 hours. The influence of several
parameters (i.e., the ratio of monomer-template, the amount of crosslinker, and
the amount of solvent) on the recognition capability of BPA MIP was
investigated using response surface methodology (RSM). The optimal conditions
of BPA synthesis are 3 mmol of monomer, 30 mmol of crosslinker, and 35 mL of
solvent, which achieved an adsorption capacity of 78.111 mg/g. The MIP and
non-imprinted polymer (NIP) were characterized using Fourier transform infrared
(FTIR) spectroscopy and scanning electron microscopy (SEM). The MIP shows
higher selectivity towards BPA compared to other analogs. In conclusion, the
particles of imprinted polymer have a great potential in the adsorption of BPA.
Keywords:
bisphenol imprinted polymer, response
surface methodology, imprinted polymer characterization
Abstrak
Polimer molekul tercetak
(MIP) digunakan untuk mensintesis reseptor dan mempunyai pengecaman yang sangat
tinggi terhadap molekul sasaran. Tujuan kajian ini adalah untuk menyediakan polimer
yang dicetak bisfenol A (BPA) yang boleh digunakan untuk menentukan keupayaan
penjerapan terhadap molekul BPA. MIP disediakan dengan pempolimeran pemendakan
menggunakan BPA sebagai templat, asid metakrilik (MAA) sebagai monomer
berfungsi, etilena glikol dimetakrilat (EGDMA) sebagai agen penyilangan,
asetonitril sebagai pelarut, dan 1,1 azobis (sikloheksanakarbonitril) (AIBN)
sebagai pemula. Pempolimeran pemendakan dilakukan dengan pemanasan dalam
rendaman minyak pada 60 °C selama 20 jam. Pengaruh parameter berikut telah
disiasat (nisbah monomer-templat, jumlah agen penyilangan, dan jumlah pelarut
yang digunakan). Kaedah matematik iaitu kaedah tindak balas permukaan (RSM)
mengoptimumkan parameter ini untuk meningkatkan keupayaan pengesanan BPA MIP. Hasil
yang diperoleh daripada RSM menunjukkan keadaan optimum 3 mmol jumlah monomer,
30 mmol jumlah agen penyilangan, dan 35 mL jumlah pelarut yang digunakan dengan
kapasiti penjerapan sebanyak 78.111 mg/g. MIP juga mempunyai pemilihan yang
lebih tinggi terhadap BPA berbanding dengan analog lain. Kesimpulannya, zarah
polimer tercetak menunjukkan potensi yang baik terhadap penjerapan cecair BPA.
Kata kunci: polimer
bisfenol tercetak, kaedah tindak balas permukaan, pencirian polimer tercetak
References
1.
Ya,
M. Haohao, L. Jinxia, W. Le, Y. Yueqin, W. Xingde D. Rui, W. Phelisters, W. M.
Pavankumar, P. Xinghai, C. and Huizhen, Z. (2019). The adverse health effects
of bisphenol A and related toxicity mechanisms. Environmental Research,
176: 108575.
2.
Bayramoglu, G. Arica, M.
Y. Liman, G. Celikbicak O. and Salih, B. (2016). Removal of bisphenol A from
aqueous medium using molecularly surface imprinted microbeads. Chemosphere,
150: 275-84.
3.
Metz, C. M. (2016).
Bisphenol A: Understanding the controversy. Workplace Health and Safety
l, 64: 28-36
4.
Posada A. L. L (2016).
Removal of endocrine disrupting compounds from water and wastewater using
ecofriendly materials. Thesis of Master Degree, The University of Texas at El
Paso.
5.
Bhatnagar, A. and
Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous
solution: A review. Chemosphere, 168: 885-902.
6.
Tehila S. Noam, T. and
Daniel, M. (2016). Molecularly imprinted polymer particles: Formation,
characterization and application. Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 495: 11-19.
7.
Sajini T. and Beena M.
(2021). A brief overview of molecularly imprinted polymers: Highlighting
computational design, nano and photo-responsive imprinting. Talanta Open,
4: 100072.
8.
Ahmed, S. A. D., Alaa, M.
A. and Ibrahim, M. E. (2020). Surface-imprinted polymers (SIPs): Advanced
materials for bio-recognition. Journal of Nanotechnology & Advanced
Materials, 8(1): 1-19.
9.
Owolabi, R. U. Usman, M.
A. and Kehinde, A. J. (2018). Modelling and optimization of process variables
for the solution polymerization of styrene using response surface methodology. Journal
of King Saud University - Engineering Sciences, 30(1): 22-30.
10.
Kelvin, F. P. Maretty, E.
R. M. Driyanti, R. and Aliya, N. H. (2020). Effect of the molecularly imprinted
polymer component ratio on analytical performance. Chemical Pharmaceutical
Bulletin, 68: 1013-1024.
11.
Yemiş, F., Alkan,
P., Yenigül, B. and Yenigül, M. (2013). Molecularly imprinted polymers and
their synthesis by different methods. Polymers and Polymer Composites,
21(3): 145-150.
12.
Zhao, L., Hu, X., Zi, F.,
Liu, Y., Hu, D., Li, P. and Cheng, H. (2021). Preparation and adsorption
properties of Ni(II) ion-imprinted polymers based on synthesized novel
functional monomer. e-Polymers, 21(1): 590-605.
13.
Lu, Y., Zhu, Y., Zhang,
Y. and Wang, K. (2019). Synthesizing vitamin E molecularly imprinted polymers
via precipitation polymerization. Journal of Chemical & Engineering Data,
64(3): 1045-1050.
14.
Shahaidah, S. Che K. M.
F. and Shareena, M. S. (2014). Characterization of bisphenol A MIP (BPA-MIP)
synthesizing. Applied Sciences, 14(13): 1455-1459.
15.
Jin, X. Wang, Y. Bai, W.
Zhao, D. Song, X. and Xu, X. (2015). Synthesis and characterization of
fomesafen imprinted polymers. Journal of Macromolecular Science, Part A:
Pure and Applied Chemistry, 52(4): 316-321.
16.
Amin, S. Damayanti, S.
and Ibrahim, S. (2019). Synthesis and characterization molecularly imprinted
polymers for analysis of dimethylamylamine using acrylamide as monomer
functional. Jurnal Kefarmasian Indonesia, 8: 76-84.
17.
Das, B. (2017). Response surface
modeling of copper (II) adsorption from aqueous solution onto neem (Azadirachta
indica) bark powder: Central composite design approach. Journal of
Materials and Environmental Science, 8(7): 2442-2454.
18.
Arabzadeh, N. Mohammadi,
A. Darwish, M. and Abuzerr, S. (2018). Construction of a TiO2–Fe3O4-decorated
molecularly imprinted polymer nanocomposite for tartrazine degradation:
Response surface methodology modeling and optimization. Journal of the
Chinese Chemical Society, 8: 1-10.
19.
Gholami, H., Arabi, M.,
Ghaedi, M., Ostovan, A. and Bagheri, A. R. (2019). Column packing elimination
in matrix solid phase dispersion by using water compatible magnetic molecularly
imprinted polymer for recognition of melamine from milk samples. Journal of
Chromatography A, 1594: 13-22.
20.
Zhou, J. Chen, X. H. Pan,
S. D. Wang, J. L. Zheng, Y. B. Xu, J. J. Zhao, Y. G. Cai, Z. X. and Jin, M. C.
(2019) Contamination status of bisphenol A and its analogues (bisphenol S, F
and B) in foodstuffs and the implications for dietary exposure on adult
residents in Zhejiang Province. Food Chemistry, 294:160-170.
21.
Priya, M. Sarveishwhary,
R. Saw, H. L. Marinah, M. A. and Khalik, W. M. A. W. M. (2021). CO2-effervescent
tablet-assisted dispersive liquid-liquid microextraction with central composite
design for pre-concentration of acetaminophen drug: Method development,
validation and green assessment profile.
Malaysian Journal of Analytical Sciences, 25(3): 432-445.
22.
Talib, N. A. A. Salam, F.
Yusof, N. A. Alang, A. S. A. and Sulaiman, Y. (2017). Optimization of peak
current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using
response surface methodology/central composite design. RSC Advances,
7(18): 11101-11110.
23.
Liu, Y. Liu, F. Ni, L.
Meng, M. Meng, X. Zhong, G. and Qiu, J. (2016). A modeling study by response
surface methodology (RSM) on Sr(II) ion dynamic adsorption optimization using a
novel magnetic ion imprinted polymer. RSC Advances, 6(60): 54679-54692.
24.
Li, G. and Row, K. H.
(2018). Recent applications of molecularly imprinted polymers (MIPs) on
micro-extraction techniques. Separation and Purification Reviews, 47(1):
1-18.
25.
Lei, X. N. X. Lu, L.
Xinan, X. and Yan, L. (2020). Theoretical insight into the interaction between
chloramphenicol and functional monomer (methacrylic acid) in molecularly
imprinted polymers. International Journal of Molecular Science, 21(11):
4139.
26.
Kia, S. Fazilati, M.
Salavati, H. and Bohlooli, S. (2016). Preparation of a novel molecularly
imprinted polymer by the sol-gel process for solid phase extraction of vitamin
D3. RSC Advances, 6(38): 31906-31914.
27.
Ishak, N. Ahmad, M. N.
Nasir, A. M. and Islam, A. K. M. S. (2015). Computational modelling and
synthesis of molecular imprinted polymer for recognition of nitrate ion. Malaysian
Journal of Analytical Sciences, 19(4): 866-873.
28.
Xie, X. Ma, X. Guo, L.
Fan, Y. Zeng, G. Zhang, M. and Li, J. (2019). Novel magnetic multi-templates
molecularly imprinted polymer for selective and rapid removal and detection. Chemical
Engineering Journal. 357: 56-65.
29.
Yixuan, Z. Yuxiao, C.
Ningning, C. Yuyan, Z. Bingyu L. Wei G. Xinhao, S. and Yuezhong, X. (2014).
Recyclable removal of bisphenol A from aqueous solution by reduced graphene
oxide-magnetic nanoparticles: Adsorption and desorption. Journal of Colloid
and Interface Science, 421: 85-92.