Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 1007 - 1019

 

 

 

 

OPTIMIZATION OF DIFFERENT PARAMETERS IN THE SYNTHESIS OF BISPHENOL A IMPRINTED POLYMER VIA PRECIPITATION POLYMERIZATION FOR BISPHENOL A ADSORPTION

 

(Pengoptimuman Parameter yang Berbeza dalam Sintesis Polimer Tercetak Bisfenol A Melalui Pempolimeran Pemendakan bagi Penjerapan Bisfenol A)

 

Tan Nee Nee, Noorhidayah Ishak*, Azalina Mohamed Nasir, Nur Zatul ‘Iffah Zakaria, Nor Munirah Rohaizad

 

Faculty of Chemical Engineering Technology,

Universiti Malaysia Perlis, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia

 

*Corresponding author:  noorhidayah@unimap.edu.my

 

 

Received: 27 September 2021; Accepted: 12 November 2021; Published:  27 December 2021

 

 

Abstract

Molecularly imprinted polymer (MIP) is used to synthesize receptors and is highly recognized against target molecules. The purpose of the study is to prepare bisphenol A (BPA) imprinted polymer that can be used to adsorb BPA molecules. The MIP was prepared by precipitation polymerization using BPA as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, acetonitrile as a solvent, and 1,1'-azobis(cyclohexanecarbonitrile) (AIBN) as an initiator by heating in an oil bath at 60 °C for 20 hours. The influence of several parameters (i.e., the ratio of monomer-template, the amount of crosslinker, and the amount of solvent) on the recognition capability of BPA MIP was investigated using response surface methodology (RSM). The optimal conditions of BPA synthesis are 3 mmol of monomer, 30 mmol of crosslinker, and 35 mL of solvent, which achieved an adsorption capacity of 78.111 mg/g. The MIP and non-imprinted polymer (NIP) were characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The MIP shows higher selectivity towards BPA compared to other analogs. In conclusion, the particles of imprinted polymer have a great potential in the adsorption of BPA.

 

Keywords:  bisphenol imprinted polymer, response surface methodology, imprinted polymer characterization

 

Abstrak

Polimer molekul tercetak (MIP) digunakan untuk mensintesis reseptor dan mempunyai pengecaman yang sangat tinggi terhadap molekul sasaran. Tujuan kajian ini adalah untuk menyediakan polimer yang dicetak bisfenol A (BPA) yang boleh digunakan untuk menentukan keupayaan penjerapan terhadap molekul BPA. MIP disediakan dengan pempolimeran pemendakan menggunakan BPA sebagai templat, asid metakrilik (MAA) sebagai monomer berfungsi, etilena glikol dimetakrilat (EGDMA) sebagai agen penyilangan, asetonitril sebagai pelarut, dan 1,1 azobis (sikloheksanakarbonitril) (AIBN) sebagai pemula. Pempolimeran pemendakan dilakukan dengan pemanasan dalam rendaman minyak pada 60 °C selama 20 jam. Pengaruh parameter berikut telah disiasat (nisbah monomer-templat, jumlah agen penyilangan, dan jumlah pelarut yang digunakan). Kaedah matematik iaitu kaedah tindak balas permukaan (RSM) mengoptimumkan parameter ini untuk meningkatkan keupayaan pengesanan BPA MIP. Hasil yang diperoleh daripada RSM menunjukkan keadaan optimum 3 mmol jumlah monomer, 30 mmol jumlah agen penyilangan, dan 35 mL jumlah pelarut yang digunakan dengan kapasiti penjerapan sebanyak 78.111 mg/g. MIP juga mempunyai pemilihan yang lebih tinggi terhadap BPA berbanding dengan analog lain. Kesimpulannya, zarah polimer tercetak menunjukkan potensi yang baik terhadap penjerapan cecair BPA.

 

Kata kunci:  polimer bisfenol tercetak, kaedah tindak balas permukaan, pencirian polimer tercetak

 

References

1.      Ya, M. Haohao, L. Jinxia, W. Le, Y. Yueqin, W. Xingde D. Rui, W. Phelisters, W. M. Pavankumar, P. Xinghai, C. and Huizhen, Z. (2019). The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 176: 108575.

2.      Bayramoglu, G. Arica, M. Y. Liman, G. Celikbicak O. and Salih, B. (2016). Removal of bisphenol A from aqueous medium using molecularly surface imprinted microbeads. Chemosphere, 150: 275-84.

3.      Metz, C. M. (2016). Bisphenol A: Understanding the controversy. Workplace Health and Safety l, 64: 28-36

4.      Posada A. L. L (2016). Removal of endocrine disrupting compounds from water and wastewater using ecofriendly materials. Thesis of Master Degree, The University of Texas at El Paso.

5.      Bhatnagar, A. and Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere, 168: 885-902.

6.      Tehila S. Noam, T. and Daniel, M. (2016). Molecularly imprinted polymer particles: Formation, characterization and application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 495: 11-19.

7.      Sajini T. and Beena M. (2021). A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open, 4: 100072.

8.      Ahmed, S. A. D., Alaa, M. A. and Ibrahim, M. E. (2020). Surface-imprinted polymers (SIPs): Advanced materials for bio-recognition. Journal of Nanotechnology & Advanced Materials, 8(1): 1-19.

9.      Owolabi, R. U. Usman, M. A. and Kehinde, A. J. (2018). Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. Journal of King Saud University - Engineering Sciences, 30(1): 22-30.

10.   Kelvin, F. P. Maretty, E. R. M. Driyanti, R. and Aliya, N. H. (2020). Effect of the molecularly imprinted polymer component ratio on analytical performance. Chemical Pharmaceutical Bulletin, 68: 1013-1024.

11.   Yemiş, F., Alkan, P., Yenigül, B. and Yenigül, M. (2013). Molecularly imprinted polymers and their synthesis by different methods. Polymers and Polymer Composites, 21(3): 145-150.

12.   Zhao, L., Hu, X., Zi, F., Liu, Y., Hu, D., Li, P. and Cheng, H. (2021). Preparation and adsorption properties of Ni(II) ion-imprinted polymers based on synthesized novel functional monomer. e-Polymers, 21(1): 590-605.

13.   Lu, Y., Zhu, Y., Zhang, Y. and Wang, K. (2019). Synthesizing vitamin E molecularly imprinted polymers via precipitation polymerization. Journal of Chemical & Engineering Data, 64(3): 1045-1050.

14.   Shahaidah, S. Che K. M. F. and Shareena, M. S. (2014). Characterization of bisphenol A MIP (BPA-MIP) synthesizing. Applied Sciences, 14(13): 1455-1459.

15.   Jin, X. Wang, Y. Bai, W. Zhao, D. Song, X. and Xu, X. (2015). Synthesis and characterization of fomesafen imprinted polymers. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52(4): 316-321.

16.   Amin, S. Damayanti, S. and Ibrahim, S. (2019). Synthesis and characterization molecularly imprinted polymers for analysis of dimethylamylamine using acrylamide as monomer functional. Jurnal Kefarmasian Indonesia, 8: 76-84.

17.   Das, B. (2017). Response surface modeling of copper (II) adsorption from aqueous solution onto neem (Azadirachta indica) bark powder: Central composite design approach. Journal of Materials and Environmental Science, 8(7): 2442-2454.

18.   Arabzadeh, N. Mohammadi, A. Darwish, M. and Abuzerr, S. (2018). Construction of a TiO2–Fe3O4-decorated molecularly imprinted polymer nanocomposite for tartrazine degradation: Response surface methodology modeling and optimization. Journal of the Chinese Chemical Society, 8: 1-10.

19.   Gholami, H., Arabi, M., Ghaedi, M., Ostovan, A. and Bagheri, A. R. (2019). Column packing elimination in matrix solid phase dispersion by using water compatible magnetic molecularly imprinted polymer for recognition of melamine from milk samples. Journal of Chromatography A, 1594: 13-22.

20.   Zhou, J. Chen, X. H. Pan, S. D. Wang, J. L. Zheng, Y. B. Xu, J. J. Zhao, Y. G. Cai, Z. X. and Jin, M. C. (2019) Contamination status of bisphenol A and its analogues (bisphenol S, F and B) in foodstuffs and the implications for dietary exposure on adult residents in Zhejiang Province. Food Chemistry, 294:160-170.

21.   Priya, M. Sarveishwhary, R. Saw, H. L. Marinah, M. A. and Khalik, W. M. A. W. M. (2021). CO2-effervescent tablet-assisted dispersive liquid-liquid microextraction with central composite design for pre-concentration of acetaminophen drug: Method development, validation and green assessment profile.  Malaysian Journal of Analytical Sciences, 25(3): 432-445.

22.   Talib, N. A. A. Salam, F. Yusof, N. A. Alang, A. S. A. and Sulaiman, Y. (2017). Optimization of peak current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design. RSC Advances, 7(18): 11101-11110.

23.   Liu, Y. Liu, F. Ni, L. Meng, M. Meng, X. Zhong, G. and Qiu, J. (2016). A modeling study by response surface methodology (RSM) on Sr(II) ion dynamic adsorption optimization using a novel magnetic ion imprinted polymer. RSC Advances, 6(60): 54679-54692.

24.   Li, G. and Row, K. H. (2018). Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques. Separation and Purification Reviews, 47(1): 1-18.

25.   Lei, X. N. X. Lu, L. Xinan, X. and Yan, L. (2020). Theoretical insight into the interaction between chloramphenicol and functional monomer (methacrylic acid) in molecularly imprinted polymers. International Journal of Molecular Science, 21(11): 4139.

26.   Kia, S. Fazilati, M. Salavati, H. and Bohlooli, S. (2016). Preparation of a novel molecularly imprinted polymer by the sol-gel process for solid phase extraction of vitamin D3. RSC Advances, 6(38): 31906-31914.

27.   Ishak, N. Ahmad, M. N. Nasir, A. M. and Islam, A. K. M. S. (2015). Computational modelling and synthesis of molecular imprinted polymer for recognition of nitrate ion. Malaysian Journal of Analytical Sciences, 19(4): 866-873.

28.   Xie, X. Ma, X. Guo, L. Fan, Y. Zeng, G. Zhang, M. and Li, J. (2019). Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection. Chemical Engineering Journal. 357: 56-65.

29.   Yixuan, Z. Yuxiao, C. Ningning, C. Yuyan, Z. Bingyu L. Wei G. Xinhao, S. and Yuezhong, X. (2014). Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: Adsorption and desorption. Journal of Colloid and Interface Science, 421: 85-92.