Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 808 - 820
CHROMATOGRAPHIC PROFILING OF Syzygium
cumini LEAVES USING HIGH-PERFORMANCE THIN LAYER CHROMATOGRAPHY AND GAS
CHROMATOGRAPHY-MASS SPECTROMETRY TECHNIQUES
(Profil Kromatografi bagi daun
Syzygium cumini mengunakan Teknik Kromatografi Lapisan Nipis Prestasi
Tinggi dan Kromatografi Gas-Spektrometri Jisim)
Joshi Vivek1*,
Mer Sagar1, Bhagat Keyuri1, Savalia Vaibhavi1,
Dhalani Jayesh2, Pandya Mayank2, Pandya Devang1
1School of Pharmacy
2Department of Chemistry,
School of Science
RK University,
Rajkot - 360020, Gujarat, India
*Corresponding
author: vjoshi850@rku.ac.in
Received: 15 June 2021; Accepted: 16 September 2021;
Published: 25 October 2021
Abstract
Global use of traditional medicinal plants has increased logarithmically
in the past few decades. Leaves of Syzygium cumini (S. cumini)
contain important classes of pharmacologically active phytoconstituents like alkaloids,
flavonoids, saponins, tannins, glycosides, phenols, fixed oils, monoterpenoids,
steroids, and triterpenoids. Since community health is at risk due to improper knowledge
and unenforced standardization parameters for herbal formulations, the focus of
the study was to develop high-performance thin layer chromatography (HPTLC)
fingerprinting and to identify phytoconstituents through gas chromatography and
mass spectrometry (GC-MS). HPTLC fingerprinting of the methanolic extract of
the leaves of S. cumini was performed using the mobile phase chloroform: methanol: ethyl acetate (6:4:6)
after several pilot thin layer chromatography (TLC) analyses, which revealed
14 peaks at 254 nm and 10 peaks at 366 nm. Also, qualitative analysis of the same was performed
using GC-MS, which revealed 9 phytoconstituents, some of them possessing known
pharmacological activity. Such fingerprint analysis using sophisticated
chromatographic and spectral techniques can contribute to the quality control
in herbal industries; help in assuring purity, efficacy, and safety of the
formulations by detection of adulteration; as well as broaden the horizon of
phytochemical research, including the isolation of a marker therefrom.
Keywords: Syzygium cumini, adulteration, fingerprinting, gas chromatography
mass spectrometry, high-performance
thin layer chromatography,
standardization
Abstrak
Pengunaan tumbuhan bagi perubatan traditional secara global telah
meningkat bagi tempoh beberapa dekad yang lepas. Daun Syzygium cumini (S. cumini)
mengandungi jujukan fito aktif secara farmakologi merupakan kelas utama seperti
alkaloid, flavonoid, saponin, tannin, glikosida, fenol,
minyak, monoterpenoids, steroids, dan triterpenoids. Semenjak kesihatan komuniti berada
pada keadaan berisiko disebabkan oleh maklumat yang kurang tepat dan tidak
peguatkuasaan piawaian parameter bagi formulasi herbal, maka fokus kajian ini
untuk membangunkan pencapjarian kromatografi lapisan nipis prestasi tinggi
(HPTLC) dan mengenalpasti jujukan fito melalui kromatografi gas dan
spektrometri jisim (GC-MS). Pencapjarian HPTLC terhadap ekstrak metanol bagi
daun S. cumini telah dijalankan mengunakan fasa bergerak klorofom:
metanol: etil asetat (6:4:6) selepas beberapa analisis pilot kromatografi
lapisan nipis (TLC), ia menjelaskan terdapat 14 puncak pada 254 nm dan 10
puncak pada 366 nm. Juga, analisis kualitatif telah dijalankan mengunakan
GC-MS, dimana ia menjelaskan 9 jujukan fito, sebahagian dikenalpasti mempunyai
aktiviti farmakologi. Analisis capjari mengunakan teknik kromatografi dan
spekta boleh menyumbang kepada kawalan kualiti dalam industri herba; membantu
dalam jaminan ketulenan, kejituan dan keselamatan dalam formulasi dengan cara
mengenal pemalsuan; juga pengembangan bidang kajian fitokimia, termasuklah
pemencilan penanda kimia.
Kata kunci: Syzygium
cumini, pemalsuan, pencapjarian, kromatografi gas dan spektrometri jisim, kromatografi lapisan nipis prestasi
tinggi, pemiawaian
References
1.
Khare, C. P. (2007). Indian medicinal plants. Springer, Berlin: pp. 637.
2.
Kirtikar, K. R. and
Basu, B. D. (1935). Indian medicinal plants (2nd
Edition). Lalit Mohan Basu, Allahabad, 2: pp. 1052-1054.
3.
Bandiola, T. M. B.,
Ignacio, G. B., Yunson, E. G. A. and Bandiola, P. D. B. (2017).Syzygium cumini (L.) Skeels: a review of its phytochemical
constituents, toxicity studies, and traditional and pharmacological uses.International Journal of Applied
Pharmaceutical and Biological Research, 2(6): 15-23.
4.
Ayyanar, M. and
Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: A review of
its phytochemical constituents and traditional uses.Asian Pacific Journal of
Tropical Biomedicine, 2(9):
240-246.
5.
Ramos, I. L. and
Bandiola, T. M. B. (2017).
Phytochemical screening of Syzygium
cumini (Myrtaceae) leaf extracts using different solvents of extraction.Der
Pharmacia Lettre, 9(2):
74-78.
6.
Ramya, S.,
Neethirajan, K. and Jayakumararaj, R. (2012).
Profile of bioactive compounds in Syzygium
cumini - a review.Journal of Pharmacy Research, 5(8): 4548-4553.
7.
Kumar, A.,
Ilavarasan, R., Jayachandran, T., Deecaraman, M., Aravindan, P., Padmanabhan,
N. and Krishan, M. R. V. (2013).Anti-diabetic
activity of Syzygium cumini and its
isolated compound against streptozotocin-induced diabetic rats.Journal
of Medicinal Plants Research, 2(9):
246-249.
8.
Veeram, A., Sindhu,
G. and Girish, C. (2017). A
review on pharmacology and phytochemistry of Syzygium cumini. Indian
Journal of Pharmaceutical and Biological Research, 5(4): 24-28.
9.
Katiyar, D., Singh,
V. and Ali, M. (2016). Recent
advances in the pharmacological potential of Syzygium cumini: A review. Advances in Applied Science Research,
7(3): 1-12.
10.
Brito, F. A., Lima,
L. A., Ramos, M. F. S., Nakamura, M. J., Cavalher-Machado, S. C., Siani, A. C.,
Henriques, M. G. M. O. and Sampio, A. L. F. (2007). Pharmacological study of the anti-allergic activity of Syzygium cumini (L.) Skeels. Brazilian
Journal of Medical and Biological Research, 40(1): 105-115.
11.
Gowri, S. S. and
Vasantha, K. (2010).
Phytochemical screening and antibacterial activity of Syzygium cumini (L.) (Myrtaceae) leaves extracts. International
Journal of PharmTech Research, 2(2):
1569- 1573.
12.
Dhalani, J., Dubal,
G., Rathod, C. and Nariya, P. (2020).
Evaluation of non-polar composition in Plumbago zeylanica leaves by gas
chromatography and mass spectrometry.Folia Medica, 62(2): 308-313.
13.
Dhalani, J.,
Kapadiya, K., Pandya, M., Dubal, G., Imbraj, P. and Nariya, P. (2018). An approach to identify sterol
entities from Abrus Pretorius's seeds by GC-MS.Journal of Scientific
and Industrial Research, 77:
297-300.
14.
Dhalani, J., Parmar,
R., Rajpara, R. and Nariya, P. (2020).
Rapid identification of fatty acids from Leptadenia reticulata areal
parts by GC-MS.Journal of Scientific and Industrial Research, 79(8): 709- 711.
15.
Dhalani, J.,
Chandegara, B. and Pathak, V. (2019).
Rapid investigation of sterols from Plumbago zeylanica stem. International
Research Conference and summit on Innovations, Startups& Investments:
69-72.
16.
Dhalani, J., Dubal,
G., Patel, A. and Nariya, P. (2019).
Isolation and identification of non-polar chemical entity from Leptadenia
reticulata aerial parts.Asian Journal of Pharmaceutical and Clinical
Research, 12(2): 226-229.
17.
Kim, D. S., Lee, H.
J., Jeon, Y. D., Han, Y. H., Kee, J. Y., Kim, H. J., Shin, H. J., Kang, J. W.,
Lee, B. S., Kim, S. H., Kim., S. J., Park, S. H., Choi, B. M., Park, S. J., Um,
J. Y. and Hong, S. H. (2015). Alpha
pinene exhibits anti-inflammatory activity through the suppression of MAPKs
and the NF-κB pathway in mouse peritoneal macrophages.American Journal
of Chinese Medicines, 43(4):
731-742.
18.
Him, A., Ozbek, H.,
Turel, I. and Oner, A. C. (2008).
Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline 3:
363-369.
19.
Chen, W. Q., Xu, B.,
Mao, J. W., Wei., F. X., Li, M., Liu, T., Jin, X. B. and Zhang, L. R. (2014). Inhibitory effects of
α-pinene on hepatoma carcinoma cell proliferation.Asian Pacific Journal
of Cancer Prevention, 15(7):
3293-9297.
20.
Hassan, S. B., Hala,
G. M., Goransson, H. and Larsson, R. (2010). Alpha terpineol: a potent
anticancer agent which acts through suppressing NF-κB signaling.Anticancer
Research,30(6): 1911 – 1919.
21.
Noguiera, M. N. M.,
Aquino, S. G., Rossa Junior, C. and Spolidorio, D. M. P. (2014). Terpinen-4-ol
and alpha-terpineol (tea tree oil components) inhibit the production of
IL-1β, IL-6, and IL-10 on human macrophages.Inflammation Research, 63(9): 769-778.
22.
Park, S. N., Lim, Y.
K., Freire, M. O., Cho, E., Jin, D. and Kook, J. K. (2012). Antimicrobial
effect of linalool and α-terpineol against periodontopathic and cariogenic
bacteria. Anaerobe,18(3):
369-372.
23.
Costa, J. P.,
Ferreira, P. B., De Sousa, D. P., Jordan, J. and Freitas, R. M. (2012).
Anticonvulsant effect of phytol in a pilocarpine model in mice.Neuroscience
Letters, 523(2): 115-118.
24.
Santos, C. C. D. M.
P., Salvadori, M. S., Mota, V. G., Costa, L. M., De Almeida, A. A. C., De
Oliveira, G. A. L., Costa, J. P., De Sousa, D. P., De Freitas, R. M. and De
Almeida, R. N. (2013). Antinociceptive and Antioxidant activities of Phytol In
vivo and In vitro models.Neuroscience Journal, 2013: 1-9.
25.
Singab, A. N. B.,
Mostafa, N. M., Eldahshan, O. A., Ashour, M. L. and Wink, M. (2014). Profile of
volatile components of Hydrodistilled and extracted leaves of Jacaranda
acutifolia and their antimicrobial activity against foodborne pathogens. Natural
Product Communications, 9(7):
1007-1010.
26.
Ko, G. A., Shrestha,
S. and Kim Cho, S. (2018). Sageretia thea
fruit extracts rich in methyl linoleate and methyl linolenate downregulate
melanogenesis via the Akt/GSK3β signaling pathway. Nutrition research and practice, 12(1): 3-12.
27.
Brigelius-Flohe, R.
and Traber, M. G. (1999). Vitamin E: function and metabolism. FASEB Journal, 13(10): 1145-1155.
28.
Balamurugan, R.,
Duraipandiyan, V. and Ignacimuthu, S. (2011). Antidiabetic activity of
γ-sitosterol isolated from Lippia nodiflora L. in streptozocin
induced diabetic rats. European Journal of Pharmacology, 667(1‒3): 410-418.
29.
Jaleel, A. A. H.,
Mahdi, J. F., Farooqui, M. and Shaikh, Y. H. (2019). Gas chromatography-mass
spectroscopic analysis of black plum seed (Syzygium cumini) extract in
hexane. Asian Journal of Pharmaceutical and Clinical Research, 12(2): 219-222.
30.
Sharma, R. J.,
Gupta, R. C., Bansal, A. K. and Singh, I. P. (2015). Metabolite fingerprinting
of Eugenia jambolana fruit pulp extracts using NMR, HPLC-PDA-MS, GC-MS,
MALDI-TOF-MS and ESI-MS/MS spectrometry. Natural Product Communications, 10(6): 969-976.
31.
Chitnis, K. S.,
Palekar, S. B., Koppar, D. R. and Mestry, D. Y. (2012). Evaluation of Syzygium
cumini Linn. seed formulations available in the market using
spectrophotometric and chromatographic techniques. International Journal of
Pharmaceutical Sciences and Research,
3(2): 556-560.
32.
Kharat, S. N.,
Ansari, N. and Mendhulkar, V. D. (2020). HPTLC screening for flavonoids content
in leaf extracts of Syzygium cumini (Linn.) and its antimicrobial
activity. Research Journal of Pharmacy and Technology, 13(6): 2720-2726.