Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 808 - 820

 

 

 

 

CHROMATOGRAPHIC PROFILING OF Syzygium cumini LEAVES USING HIGH-PERFORMANCE THIN LAYER CHROMATOGRAPHY AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY TECHNIQUES

 

(Profil Kromatografi bagi daun Syzygium cumini mengunakan Teknik Kromatografi Lapisan Nipis Prestasi Tinggi dan Kromatografi Gas-Spektrometri Jisim)

 

Joshi Vivek1*, Mer Sagar1, Bhagat Keyuri1, Savalia Vaibhavi1, Dhalani Jayesh2, Pandya Mayank2, Pandya Devang1

 

1School of Pharmacy

2Department of Chemistry, School of Science

RK University, Rajkot - 360020, Gujarat, India

 

*Corresponding author:  vjoshi850@rku.ac.in

 

 

Received:  15 June 2021; Accepted: 16 September 2021; Published:  25 October 2021

 

 

Abstract

Global use of traditional medicinal plants has increased logarithmically in the past few decades. Leaves of Syzygium cumini (S. cumini) contain important classes of pharmacologically active phytoconstituents like alkaloids, flavonoids, saponins, tannins, glycosides, phenols, fixed oils, monoterpenoids, steroids, and triterpenoids. Since community health is at risk due to improper knowledge and unenforced standardization parameters for herbal formulations, the focus of the study was to develop high-performance thin layer chromatography (HPTLC) fingerprinting and to identify phytoconstituents through gas chromatography and mass spectrometry (GC-MS). HPTLC fingerprinting of the methanolic extract of the leaves of S. cumini was performed using the mobile phase chloroform: methanol: ethyl acetate (6:4:6) after several pilot thin layer chromatography (TLC) analyses, which revealed 14 peaks at 254 nm and 10 peaks at 366 nm. Also, qualitative analysis of the same was performed using GC-MS, which revealed 9 phytoconstituents, some of them possessing known pharmacological activity. Such fingerprint analysis using sophisticated chromatographic and spectral techniques can contribute to the quality control in herbal industries; help in assuring purity, efficacy, and safety of the formulations by detection of adulteration; as well as broaden the horizon of phytochemical research, including the isolation of a marker therefrom.

 

KeywordsSyzygium cumini, adulteration, fingerprinting, gas chromatography mass spectrometry, high-performance thin layer chromatography, standardization

 

Abstrak

Pengunaan tumbuhan bagi perubatan traditional secara global telah meningkat bagi tempoh beberapa dekad yang lepas. Daun Syzygium cumini (S. cumini) mengandungi jujukan fito aktif secara farmakologi merupakan kelas utama seperti alkaloid, flavonoid, saponin, tannin, glikosida, fenol, minyak, monoterpenoids, steroids, dan triterpenoids. Semenjak kesihatan komuniti berada pada keadaan berisiko disebabkan oleh maklumat yang kurang tepat dan tidak peguatkuasaan piawaian parameter bagi formulasi herbal, maka fokus kajian ini untuk membangunkan pencapjarian kromatografi lapisan nipis prestasi tinggi (HPTLC) dan mengenalpasti jujukan fito melalui kromatografi gas dan spektrometri jisim (GC-MS). Pencapjarian HPTLC terhadap ekstrak metanol bagi daun S. cumini telah dijalankan mengunakan fasa bergerak klorofom: metanol: etil asetat (6:4:6) selepas beberapa analisis pilot kromatografi lapisan nipis (TLC), ia menjelaskan terdapat 14 puncak pada 254 nm dan 10 puncak pada 366 nm. Juga, analisis kualitatif telah dijalankan mengunakan GC-MS, dimana ia menjelaskan 9 jujukan fito, sebahagian dikenalpasti mempunyai aktiviti farmakologi. Analisis capjari mengunakan teknik kromatografi dan spekta boleh menyumbang kepada kawalan kualiti dalam industri herba; membantu dalam jaminan ketulenan, kejituan dan keselamatan dalam formulasi dengan cara mengenal pemalsuan; juga pengembangan bidang kajian fitokimia, termasuklah pemencilan penanda kimia.

 

Kata kunci Syzygium cumini, pemalsuan, pencapjarian, kromatografi gas dan spektrometri jisim, kromatografi lapisan nipis prestasi tinggi, pemiawaian

 

References

1.      Khare, C. P. (2007). Indian medicinal plants. Springer, Berlin: pp. 637.

2.      Kirtikar, K. R. and Basu, B. D. (1935). Indian medicinal plants (2nd Edition). Lalit Mohan Basu, Allahabad, 2: pp. 1052-1054.

3.      Bandiola, T. M. B., Ignacio, G. B., Yunson, E. G. A. and Bandiola, P. D. B. (2017).Syzygium cumini (L.) Skeels: a review of its phytochemical constituents, toxicity studies, and traditional and pharmacological uses.International Journal of Applied Pharmaceutical and Biological Research, 2(6): 15-23.

4.      Ayyanar, M. and Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses.Asian Pacific Journal of Tropical Biomedicine, 2(9): 240-246.

5.      Ramos, I. L. and Bandiola, T. M. B. (2017). Phytochemical screening of Syzygium cumini (Myrtaceae) leaf extracts using different solvents of extraction.Der Pharmacia Lettre, 9(2): 74-78.

6.      Ramya, S., Neethirajan, K. and Jayakumararaj, R. (2012). Profile of bioactive compounds in Syzygium cumini - a review.Journal of Pharmacy Research, 5(8): 4548-4553.

7.      Kumar, A., Ilavarasan, R., Jayachandran, T., Deecaraman, M., Aravindan, P., Padmanabhan, N. and Krishan, M. R. V. (2013).Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats.Journal of Medicinal Plants Research, 2(9): 246-249.

8.      Veeram, A., Sindhu, G. and Girish, C. (2017). A review on pharmacology and phytochemistry of Syzygium cumini. Indian Journal of Pharmaceutical and Biological Research, 5(4): 24-28.

9.      Katiyar, D., Singh, V. and Ali, M. (2016). Recent advances in the pharmacological potential of Syzygium cumini: A review. Advances in Applied Science Research, 7(3): 1-12.

10.   Brito, F. A., Lima, L. A., Ramos, M. F. S., Nakamura, M. J., Cavalher-Machado, S. C., Siani, A. C., Henriques, M. G. M. O. and Sampio, A. L. F. (2007). Pharmacological study of the anti-allergic activity of Syzygium cumini (L.) Skeels. Brazilian Journal of Medical and Biological Research, 40(1): 105-115.

11.   Gowri, S. S. and Vasantha, K. (2010). Phytochemical screening and antibacterial activity of Syzygium cumini (L.) (Myrtaceae) leaves extracts. International Journal of PharmTech Research, 2(2): 1569- 1573.

12.   Dhalani, J., Dubal, G., Rathod, C. and Nariya, P. (2020). Evaluation of non-polar composition in Plumbago zeylanica leaves by gas chro­matography and mass spectrometry.Folia Medica, 62(2): 308-313.

13.   Dhalani, J., Kapadiya, K., Pandya, M., Dubal, G., Imbraj, P. and Nariya, P. (2018). An approach to identify sterol entities from Abrus Pretorius's seeds by GC-MS.Journal of Scientific and Industrial Research, 77: 297-300.

14.   Dhalani, J., Parmar, R., Rajpara, R. and Nariya, P. (2020). Rapid identification of fatty acids from Leptadenia reticulata areal parts by GC-MS.Journal of Scientific and Industrial Research, 79(8): 709- 711.

15.   Dhalani, J., Chandegara, B. and Pathak, V. (2019). Rapid investigation of sterols from Plumbago zeylanica stem. International Research Conference and summit on Innovations, Startups& Investments: 69-72.

16.   Dhalani, J., Dubal, G., Patel, A. and Nariya, P. (2019). Isolation and identification of non-polar chemical entity from Leptadenia reticulata aerial parts.Asian Journal of Pharmaceutical and Clinical Research, 12(2): 226-229.

17.   Kim, D. S., Lee, H. J., Jeon, Y. D., Han, Y. H., Kee, J. Y., Kim, H. J., Shin, H. J., Kang, J. W., Lee, B. S., Kim, S. H., Kim., S. J., Park, S. H., Choi, B. M., Park, S. J., Um, J. Y. and Hong, S. H. (2015). Alpha pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages.American Journal of Chinese Medicines, 43(4): 731-742.

18.   Him, A., Ozbek, H., Turel, I. and Oner, A. C. (2008). Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline 3: 363-369.

19.   Chen, W. Q., Xu, B., Mao, J. W., Wei., F. X., Li, M., Liu, T., Jin, X. B. and Zhang, L. R. (2014). Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation.Asian Pacific Journal of Cancer Prevention, 15(7): 3293-9297.

20.   Hassan, S. B., Hala, G. M., Goransson, H. and Larsson, R. (2010). Alpha terpineol: a potent anticancer agent which acts through suppressing NF-κB signaling.Anticancer Research,30(6): 1911 – 1919.

21.   Noguiera, M. N. M., Aquino, S. G., Rossa Junior, C. and Spolidorio, D. M. P. (2014). Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6, and IL-10 on human macrophages.Inflammation Research, 63(9): 769-778.

22.   Park, S. N., Lim, Y. K., Freire, M. O., Cho, E., Jin, D. and Kook, J. K. (2012). Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe,18(3): 369-372.

23.   Costa, J. P., Ferreira, P. B., De Sousa, D. P., Jordan, J. and Freitas, R. M. (2012). Anticonvulsant effect of phytol in a pilocarpine model in mice.Neuroscience Letters, 523(2): 115-118.

24.   Santos, C. C. D. M. P., Salvadori, M. S., Mota, V. G., Costa, L. M., De Almeida, A. A. C., De Oliveira, G. A. L., Costa, J. P., De Sousa, D. P., De Freitas, R. M. and De Almeida, R. N. (2013). Antinociceptive and Antioxidant activities of Phytol In vivo and In vitro models.Neuroscience Journal, 2013: 1-9.

25.   Singab, A. N. B., Mostafa, N. M., Eldahshan, O. A., Ashour, M. L. and Wink, M. (2014). Profile of volatile components of Hydrodistilled and extracted leaves of Jacaranda acutifolia and their antimicrobial activity against foodborne pathogens. Natural Product Communications, 9(7): 1007-1010.

26.   Ko, G. A., Shrestha, S. and Kim Cho, S. (2018). Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway. Nutrition research and practice, 12(1): 3-12.

27.   Brigelius-Flohe, R. and Traber, M. G. (1999). Vitamin E: function and metabolism. FASEB Journal, 13(10): 1145-1155.

28.   Balamurugan, R., Duraipandiyan, V. and Ignacimuthu, S. (2011). Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozocin induced diabetic rats. European Journal of Pharmacology, 667(13): 410-418.

29.   Jaleel, A. A. H., Mahdi, J. F., Farooqui, M. and Shaikh, Y. H. (2019). Gas chromatography-mass spectroscopic analysis of black plum seed (Syzygium cumini) extract in hexane. Asian Journal of Pharmaceutical and Clinical Research, 12(2): 219-222.

30.   Sharma, R. J., Gupta, R. C., Bansal, A. K. and Singh, I. P. (2015). Metabolite fingerprinting of Eugenia jambolana fruit pulp extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS spectrometry. Natural Product Communications, 10(6): 969-976.

31.   Chitnis, K. S., Palekar, S. B., Koppar, D. R. and Mestry, D. Y. (2012). Evaluation of Syzygium cumini Linn. seed formulations available in the market using spectrophotometric and chromatographic techniques. International Journal of Pharmaceutical Sciences and Research, 3(2): 556-560.

32.   Kharat, S. N., Ansari, N. and Mendhulkar, V. D. (2020). HPTLC screening for flavonoids content in leaf extracts of Syzygium cumini (Linn.) and its antimicrobial activity. Research Journal of Pharmacy and Technology, 13(6): 2720-2726.