Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 821 - 830
AIR POLLUTION ASSESSMENT IN SOUTHERN PENINSULAR
MALAYSIA USING ENVIRONMETRIC ANALYSIS
(Penilaian
Pencemaran Udara Di Selatan Semenanjung Malaysia Menggunakan Analisis
Environmetrik)
Haslinda Ab Malek, Nurul
Nabila Natasha Jalaluddin, Sharifah Nadia Syed Hasan,Umi Amira Hassni, Isnewati
Ab Malek*
Faculty of Computer and
Mathematical Sciences
Universiti Teknologi MARA,
Cawangan Negeri Sembilan, Kampus Seremban,
70300 Seremban, Negeri
Sembilan, Malaysia
*Corresponding author: isnewati@uitm.edu.my
Received: 31 August 2021; Accepted: 2 October 2021;
Published: 25 October 2021
Abstract
Air pollution can be defined as the presence of
toxic chemicals at levels that pose a health risk. Air quality plays an
important role as polluted air could affect the environment. The air pollution
problem has become a major issue in Malaysia for the past two decades. Thus,
this study focused on the air pollution assessment in Southern Peninsular
Malaysia based on the data obtained from the Department of Environment
Malaysia. Six major air pollutants (PM10, PM2.5, SO2,
NO2, CO and O3) in five monitoring stations were measured
hourly for the year 2018. Factor Analysis was used to identify the most
dominant air pollutant to the air quality. It is found that PM10 and
PM2.5 were the most dominant air pollutants that contribute to the
degradation of the air quality in Southern Peninsular Malaysia due to industrial
activities. It is hoped that this study could help the authorities in
controlling air pollution by determining the most dominant air pollutants
involved.
Keywords:
air pollution, air pollutant, air
quality, factor analysis, dominant
Abstrak
Pencemaran udara dapat didefinisikan
sebagai kehadiran bahan kimia beracun pada tahap yang menimbulkan risiko
kesihatan. Kualiti udara memainkan peranan penting kerana udara yang tercemar
dapat mempengaruhi persekitaran. Masalah pencemaran udara telah menjadi isu
utama di Malaysia sejak dua dekad yang lalu. Oleh itu, kajian ini memfokuskan
pada penilaian pencemaran udara di Selatan Semenanjung Malaysia berdasarkan
data yang diperoleh dari Jabatan Alam Sekitar Malaysia. Enam pencemar udara
utama (PM10, PM2.5, SO2, NO2, CO
and O3) di lima stesen pemantauan diukur setiap jam untuk tahun
2018. Analisis Faktor digunakan untuk mengenal pasti bahan pencemar udara yang
paling dominan terhadap kualiti udara. Didapati bahawa PM10 dan PM2.5
adalah bahan pencemar udara yang paling dominan menyumbang kepada
penurunan kualiti udara di Selatan Semenanjung Malaysia kerana aktiviti
perindustrian. Diharapkan kajian ini dapat membantu pihak berkuasa dalam
mengawal pencemaran udara dengan menentukan bahan pencemar udara yang paling
dominan.
Kata kunci: pencemaran
udara, bahan pencemar udara, kualiti udara, analisis faktor, dominan
References
1.
Centers, E. P. (2017).
What is air pollution? https://www.environmentalpollutioncenters.org/air/.
[Access online 29 January 2021].
2.
Afroz R., Hassan M. N.
and Ibrahim N. A. (2003). Review of air pollution and health impacts in
Malaysia. Environmental Research, 92(2): 71-77.
3.
Airveda (2017). What is
PM2.5 and why is it important? https://www.airveda.com/
blog/what-is-pm2-5-and-why-is-it-important. [Access online 22 March 2021].
4.
Arsene, C., Olariu, R.
I., & Mihalopoulos, N. (2007). Chemical composition of rainwater in the
Northeastern Romania, Iasi Region (2003–2006). Atmospheric Environment,
41(40): 9452-9467.
5.
Zakaria, U., Saudi, A.,
Abu, I., Azid, A., Balakrishnan, A., Amin, N. and Rizman, Z. (2017). The
assessment of ambient air pollution pattern in Shah Alam, Selangor, Malaysia. Journal
of Fundamental and Applied Sciences, 9(4S): 772-788.
6.
Ismail, A. S., Abdullah,
A. M. and Samah, M. A. A. (2017). Environmetric study on air quality pattern
for assessment in northern region of Peninsular Malaysia. Journal
Environmental Science Technology, 10: 186-196.
7.
Isiyaka, H. A. and Azid,
A. (2015). Air quality pattern assessment in Malaysia using multivariate
techniques. Malaysian Journal of Analytical Sciences, 19(5): 966-978.
8.
Núñez-Alonso, D.,
Pérez-Arribas, L. V., Manzoor, S. and Cáceres, J. O. (2019). Statistical tools
for air pollution assessment: Multivariate and spatial analysis studies in the
Madrid region. Journal of Analytical Methods in Chemistry, 9: 1-9.
9.
Kamaruzzaman, A., Saudi,
A., Azid, A., Balakrishnan, A., Abu, I., Amin, N. and Rizman, Z. (2017).
Assessment on air quality pattern: A case study in Putrajaya, Malaysia. Journal
of Fundamental and Applied Sciences, 9(4S): 789-800.
10.
Mohtar, A. A. A, Latif M.
T, Baharudin, N. B, Ahmad, F., Chung J. X., Othman, M. and Juneng, L. (2018)
Variation of major air pollutants in different seasonal conditions in an urban
environment in Malaysia. Geoscience Letters, 5: 21.
11.
Anazawa, K. and Ohmori,
H. (2005). The hydrochemistry of surface waters in Andesitic volcanic area,
Norikura Volcano, Central Japan. Chemosphere, 59(5): 605-615.
12.
Field, A. P. (2013).
Discovering statistics using SPSS for windows. Academic Internet Publish: pp.
444.
13.
Bartlett, M. S. (1954). A
note on the multiplying factors for various χ2 approximations. Journal
of the Royal Statistical Society: Series B (Methodological), 1954: 296-298.
14.
Pallant, J. (2020). SPSS
survival manual: A step-by-step guide to data analysis using IBM SPSS.
Routledge: pp. 20.
15.
Kaiser, K. L. (1974). On
the optical activity of polychlorinated biphenyls. Environmental Pollution,
7(2): 93-101.
16.
Mutalib, S. N. S. A., Juahir,
H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z. and Dominick, D.
(2013). Spatial and temporal air quality
pattern recognition using environmetric techniques: A case study in Malaysia. Environmental
Science: Processes & Impacts, 15(9): 1717-1728.
17. Singh,
K. P., Malik, A., Mohan, D. and Sinha, S. (2004). Multivariate statistical
techniques for the evaluation of spatial and temporal variations in water
quality of Gomti River (India)—A case study. Water Research, 38(18):
3980-3992.
18.
Rietveld, T. and Hout, R.
V. (2011). Statistical techniques for the study of language and language
behaviour. Meuchen: De Gruyter: pp. 259.
19.
Cattell, R. B. (1966).
The scree test for the number of factors. Multivariate Behavioral Research,
1(2): 245-276.
20.
Juahir, H., Zain, S. M.,
Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E. and Mokhtar, M.
(2011). Spatial water quality assessment of Langat River Basin (Malaysia) using
environmetric techniques. Environmental Monitoring and Assessment,
173(1- 4): 625-641.
21.
Janssen, N. A. H., van
Vliet, P. H. N., Aarts, F., Harssema, H. and Brunekreef, B. (2001). Assessment
of exposure to traffic related air pollution of children attending schools near
motorways. Atmospheric Environment, 35(22): 3875-3884.
22.
Rosman, P. S., Abu Samah,
M. A., Yunus, K. and Mohd Hussain, M. R. (2019). Particulate matter (PM2.5)
at construction site: A review. International Journal of Recent Technology
and Engineering (IJRTE), 8: 255-259.
23.
Arkansas Department of
Energy & Environment (2021). Cars and air pollution. https:// www.adeq.state.ar.us/air/planning/ozone/cars.aspx.
[Access online 21 September 2021].
24.
Isiyaka H., Juahir, H.,
Toriman, M. E., Gasim, B. M., Azid, A., Amri, M. K., Ibrahim, A., Usman, U. N.,
Rano, A. R. and Garba, M. A. (2014). Spatial assessment of air pollution index
using environmetric modeling techniques. Advances in Environmental Biology,
8(24):244-256.
25.
Department of Environment
Malaysia (2009) A guide to air pollutant index (API) in Malaysia. Putrajaya:
Ministry of Natural Resources and Environment. https://www.doe.gov.my. [Access
online 21 September 2021].
26.
Minnesota Pollution
Control Agency (2021). Sulfur dioxide (SO2). https://www.pca.state.mn.us/
air/sulfurdioxide-so2. [Access online 21 September 2021].