Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 821 - 830

 

 

 

 

AIR POLLUTION ASSESSMENT IN SOUTHERN PENINSULAR MALAYSIA USING ENVIRONMETRIC ANALYSIS

 

(Penilaian Pencemaran Udara Di Selatan Semenanjung Malaysia Menggunakan Analisis Environmetrik)

 

Haslinda Ab Malek, Nurul Nabila Natasha Jalaluddin, Sharifah Nadia Syed Hasan,Umi Amira Hassni, Isnewati Ab Malek*

 

Faculty of Computer and Mathematical Sciences

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Seremban,

70300 Seremban, Negeri Sembilan, Malaysia

 

*Corresponding author:  isnewati@uitm.edu.my

 

 

Received:  31 August 2021; Accepted: 2 October 2021; Published:  25 October 2021

 

 

Abstract

Air pollution can be defined as the presence of toxic chemicals at levels that pose a health risk. Air quality plays an important role as polluted air could affect the environment. The air pollution problem has become a major issue in Malaysia for the past two decades. Thus, this study focused on the air pollution assessment in Southern Peninsular Malaysia based on the data obtained from the Department of Environment Malaysia. Six major air pollutants (PM10, PM2.5, SO2, NO2, CO and O3) in five monitoring stations were measured hourly for the year 2018. Factor Analysis was used to identify the most dominant air pollutant to the air quality. It is found that PM10 and PM2.5 were the most dominant air pollutants that contribute to the degradation of the air quality in Southern Peninsular Malaysia due to industrial activities. It is hoped that this study could help the authorities in controlling air pollution by determining the most dominant air pollutants involved.

 

Keywords:  air pollution, air pollutant, air quality, factor analysis, dominant

 

Abstrak

Pencemaran udara dapat didefinisikan sebagai kehadiran bahan kimia beracun pada tahap yang menimbulkan risiko kesihatan. Kualiti udara memainkan peranan penting kerana udara yang tercemar dapat mempengaruhi persekitaran. Masalah pencemaran udara telah menjadi isu utama di Malaysia sejak dua dekad yang lalu. Oleh itu, kajian ini memfokuskan pada penilaian pencemaran udara di Selatan Semenanjung Malaysia berdasarkan data yang diperoleh dari Jabatan Alam Sekitar Malaysia. Enam pencemar udara utama (PM10, PM2.5, SO2, NO2, CO and O3) di lima stesen pemantauan diukur setiap jam untuk tahun 2018. Analisis Faktor digunakan untuk mengenal pasti bahan pencemar udara yang paling dominan terhadap kualiti udara. Didapati bahawa PM10 dan PM2.5 adalah bahan pencemar udara yang paling dominan menyumbang kepada penurunan kualiti udara di Selatan Semenanjung Malaysia kerana aktiviti perindustrian. Diharapkan kajian ini dapat membantu pihak berkuasa dalam mengawal pencemaran udara dengan menentukan bahan pencemar udara yang paling dominan.

 

Kata kunci:  pencemaran udara, bahan pencemar udara, kualiti udara, analisis faktor, dominan

 

References

1.      Centers, E. P. (2017). What is air pollution? https://www.environmentalpollutioncenters.org/air/. [Access online 29 January 2021].

2.      Afroz R., Hassan M. N. and Ibrahim N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental Research, 92(2): 71-77.

3.      Airveda (2017). What is PM2.5 and why is it important? https://www.airveda.com/ blog/what-is-pm2-5-and-why-is-it-important. [Access online 22 March 2021].

4.      Arsene, C., Olariu, R. I., & Mihalopoulos, N. (2007). Chemical composition of rainwater in the Northeastern Romania, Iasi Region (2003–2006). Atmospheric Environment, 41(40): 9452-9467.

5.      Zakaria, U., Saudi, A., Abu, I., Azid, A., Balakrishnan, A., Amin, N. and Rizman, Z. (2017). The assessment of ambient air pollution pattern in Shah Alam, Selangor, Malaysia. Journal of Fundamental and Applied Sciences, 9(4S): 772-788.

6.      Ismail, A. S., Abdullah, A. M. and Samah, M. A. A. (2017). Environmetric study on air quality pattern for assessment in northern region of Peninsular Malaysia. Journal Environmental Science Technology, 10: 186-196.

7.      Isiyaka, H. A. and Azid, A. (2015). Air quality pattern assessment in Malaysia using multivariate techniques. Malaysian Journal of Analytical Sciences, 19(5): 966-978.

8.      Núñez-Alonso, D., Pérez-Arribas, L. V., Manzoor, S. and Cáceres, J. O. (2019). Statistical tools for air pollution assessment: Multivariate and spatial analysis studies in the Madrid region. Journal of Analytical Methods in Chemistry, 9: 1-9.

9.      Kamaruzzaman, A., Saudi, A., Azid, A., Balakrishnan, A., Abu, I., Amin, N. and Rizman, Z.  (2017).  Assessment on air quality pattern: A case study in Putrajaya, Malaysia. Journal of Fundamental and Applied Sciences, 9(4S): 789-800.

10.   Mohtar, A. A. A, Latif M. T, Baharudin, N. B, Ahmad, F., Chung J. X., Othman, M. and Juneng, L. (2018) Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia. Geoscience Letters, 5: 21.

11.   Anazawa, K. and Ohmori, H. (2005). The hydrochemistry of surface waters in Andesitic volcanic area, Norikura Volcano, Central Japan. Chemosphere, 59(5): 605-615.

12.   Field, A. P. (2013). Discovering statistics using SPSS for windows. Academic Internet Publish: pp. 444.

13.   Bartlett, M. S. (1954). A note on the multiplying factors for various χ2 approximations. Journal of the Royal Statistical Society: Series B (Methodological), 1954: 296-298.

14.   Pallant, J. (2020). SPSS survival manual: A step-by-step guide to data analysis using IBM SPSS. Routledge: pp. 20.

15.   Kaiser, K. L. (1974). On the optical activity of polychlorinated biphenyls. Environmental Pollution, 7(2): 93-101.

16.   Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z. and Dominick, D. (2013).  Spatial and temporal air quality pattern recognition using environmetric techniques: A case study in Malaysia. Environmental Science: Processes & Impacts, 15(9): 1717-1728.

17.   Singh, K. P., Malik, A., Mohan, D. and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38(18): 3980-3992.

18.   Rietveld, T. and Hout, R. V. (2011). Statistical techniques for the study of language and language behaviour. Meuchen: De Gruyter: pp. 259.

19.   Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2): 245-276.

20.   Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E. and Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173(1- 4): 625-641.

21.   Janssen, N. A. H., van Vliet, P. H. N., Aarts, F., Harssema, H. and Brunekreef, B. (2001). Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment, 35(22): 3875-3884.

22.   Rosman, P. S., Abu Samah, M. A., Yunus, K. and Mohd Hussain, M. R. (2019). Particulate matter (PM2.5) at construction site: A review. International Journal of Recent Technology and Engineering (IJRTE), 8: 255-259.

23.   Arkansas Department of Energy & Environment (2021). Cars and air pollution. https:// www.adeq.state.ar.us/air/planning/ozone/cars.aspx. [Access online 21 September 2021].

24.   Isiyaka H., Juahir, H., Toriman, M. E., Gasim, B. M., Azid, A., Amri, M. K., Ibrahim, A., Usman, U. N., Rano, A. R. and Garba, M. A. (2014). Spatial assessment of air pollution index using environmetric modeling techniques. Advances in Environmental Biology, 8(24):244-256.

25.   Department of Environment Malaysia (2009) A guide to air pollutant index (API) in Malaysia. Putrajaya: Ministry of Natural Resources and Environment. https://www.doe.gov.my. [Access online 21 September 2021].

26.   Minnesota Pollution Control Agency (2021). Sulfur dioxide (SO2). https://www.pca.state.mn.us/ air/sulfurdioxide-so2. [Access online 21 September 2021].