Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 791 - 807
METAL-ORGANIC
FRAMEWORKS AS SORBENT- BASED EXTRACTION: A REVIEW
(Rangka Kerja Logam-Organik Sebagai
Penjerap Berasaskan Pengekstrakan: Satu Ulasan)
Siti Sufiana Kamni1, Karimah Kassim1,2, Nur Sofiah Abu Kassim3, Nurul Auni Zainal Abidin3*
1Faculty of Applied Science
2 Institute of Science
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
3 School of Chemistry and Environment, Faculty of Applied
Science,
Universiti Teknologi MARA, Cawangan Negeri Sembilan,
Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan,
Malaysia
*Corresponding author: nurulauni@uitm.edu.my
Received: 27 July 2021; Accepted: 2 October 2021;
Published: 25 October 2021
Abstract
Metal-organic
frameworks (MOFs) are highly ordered porous crystalline structures and full of
cavities. They are formed by inorganic centers (metal ion atoms or metal
clusters) and organic linkers connected by covalent coordination bonds.
Depending on the ratio of such precursors and the synthetic conditions, the
characteristics of the resulting MOFs vary significantly, thus drifting into a
countless number of interesting materials with unique properties. This review
offers an overview on the current state of the use of MOFs in different
microextraction configurations, in all cases covering extraction devices coated
with (or incorporating) MOFs, with particular emphasis in their preparation. Moreover, recent
analytical applications reported from 2018 to 2020 will be discussed critically.
Keywords: metal-organic
framework, microextraction method, sorbent,
extraction
Abstrak
Rangka kerja logam-organik (MOFs) adalah
struktur kristal berliang yang sangat tersusun dan berongga. MOFs dibentuk oleh
logam pusat tak organik (atom ion logam atau kluster logam) dan penghubung
organik yang dihubungkan oleh ikatan koordinasi kovalen. Bergantung pada nisbah
bahan pemula dan keadaan sintetik, ciri-ciri MOFs yang dihasilkan berbeza-beza,
sehingga menjadikan MOFs sebagai penarik kepada bahan penyerap dan bersifat
unik. Ulasan ini memberikan gambaran umum mengenai keadaan semasa penggunaan
MOFs yang berbeza-beza dalam konfigurasi pengekstrakan mikro yang meliputi
kaedah pengekstrakan yang disaluti dengan (atau menggabungkan) MOFs, dengan
penekanan khusus dalam penyediaannya. Tambahan pula, aplikasi analisis terkini
yang dilaporkan dari tahun 2018 sehingga 2020 akan dibincangkan secara
kritikal.
Kata kunci: rangka kerja logam-organik, kaedah
pengekstrakan mikro, bahan penyerap, pengekstrakan
References
1.
Xu, G.
R., An, Z. H., Xu, K., Liu, Q., Das, R. and Zhao, L. H. (2020). Metal organic
framework (MOF)-based micro/nanoscaled materials for heavy metal ions
removal : the cutting-edge study on designs, synthesis, and applications
potential of zero charge. Journal of Coordinantion Chemistry, 427: 2-32.
2.
Emam, H.
E., Abdelhameed, R. M., A. and Ahmed, H. B. (2020). Adsorptive performance of
MOFs and MOF containing composites for clean energy and safe environment. Journal
of Environmental Chemical Engineering, 8(5): 1-13.
3.
Rocio-Bautista,
P., Taima-Mancera, I., Pasan, J. and Pino, V. (2019). metal-organic frameworks
in green analytical chemistry. Separation, 6: 1-21.
4.
Zhang,
K. D., Tsai, F. C., Ma, N., Xia, Y., Liu, H. L., Zhan, X. Q., Yu, X. Y., Zheng,
X. Z., Jiang, T., Shi, D., and Chang, C. J. (2017). Adsorption behavior of high
stable Zr-based MOFs for the removal of acid organic dye from water. Journal
of Materials, 10(205): 1-11.
5.
Yang,
S., Karve, V. V., Justin, A., Kochetygov, I., Espin, J., Asgari, M., Trukhina,
O., Sun, D. T., Peng, L. and Queen, W. L. (2020). Enhancing MOF performance
through the introduction of polymer guests. Coordination Chemistry Reviews,
427: 1-37.
6.
Salunkhe,
R. R., Kaneti, Y. V., Kim, J., Kim, J. H. and Yamauchi, Y. (2016). Nanoarchitectures
for metal-organic framework-derived nanoporous carbons toward supercapacitor
applications. Accounts of Chemical
Research, 49(12): 2796-2806.
7.
Li, X.,
Ma, W., Li, H., Bai, Y., A. and Liu, H. (2019). Metal-organic frameworks as
advanced sorbents in sample preparation for small organic analytes. Coordination Chemistry Reviews, 397: 1-13.
8.
Ahmad,
K., Nazir, M. A., Qureshi, A. K., Hussain, E., Najam, T., Javed, M. S., Shah,
S. S. A., Tufail, M. K., Hussain, S., Khan, N. A., Shah, H. R. and Ashfaq, M.
(2020). Engineering of zirconium based metal-organic frameworks (Zr-MOFs) as
efficient adsorbents. Materials Science & Engineering B, 262:
114766.
9.
Dahl,
J., Maddux, A. B. L. S., and Hutchison, J. E. (2017). Toward greener
nano-synthesis. Chemical Reviews, 107: 2228-2269.
10.
Ge, J.,
Wu, Z., Huang, X., A. and Ding, M. (2019). An effective microwave-assisted
synthesis of MOF235 with excellent adsorption of acid chrome blue K. Journal
of Nanomaterials, 2019: 1-8.
11.
Boontongto,
T. and Burakham, R. (2019). Evaluation of metal-organic framework NH2-MIL-101(Fe)
as an efficient sorbent for dispersive micro-solid phase extraction of phenolic
pollutants in environmental water samples. Heliyon, 5(11): e02848.
12.
Goyal,
A. (2019). Metal organic frameworks. Journal of Chemistry, 8(1): 9-16.
13.
Zhang,
X. F., Feng, Y., Wang, Z., Jia, M. and Yao, J. (2018). Fabrication of cellulose
nanofibrils/UiO-66-NH2 composite membrane for CO2/N2
separation. Journal of Membrane Science, 568: 10-16.
14.
Wu, H.
B. Wen, X. and Lou, D. (2017). Metal-organic frameworks and their derived
materials for electrochemical energy storage and conversion : promises
and challenges. Science Advances, 3: 1-16.
15.
Perez-Cejuela,
H. M., Herrero-Martinez, J. M. and Simo-Alfonso, F. E. (2020). Recent advances
in affinity MOF-based sorbents with sample preparation purposes. Molecules,
25(4216): 1-21.
16.
Hashemi,
B., Zohrabi, P., Raza, N. and Hashemi, B., Zohrabi, P., Raza, N., and Kim, K.
H. (2017). Metal-organic frameworks as advanced sorbents for the extraction and
determination of pollutants from environmental, biological, and food media. Trends
in Analytical Chemistry, 97(September): 65-82.
17.
Chisvert, A., Cardenas, S. and Lucena, R. (2019). Dispersive micro-solid
phase extraction. The Turkish Journal of
Pediatrics, 112: 226-233.
18.
Gutiérrez-serpa,
A., Pacheco-fernández, I., Pasán, J. and Pino, V. (2019). Metal-organic
frameworks as key materials for solid-phase microextraction devices - a review.
Separation, 6(47): 1-29.
19.
Soury,
S., Bahrami, A., Alizadeh, S., Shahna, F. G., A. and Nematollahi, D. (2019).
Development of a needle trap device packed with zinc based metal-organic
framework sorbent for the sampling and analysis of polycyclic aromatic
hydrocarbons in the air. Microchemical
Journal, 148(2019):
346-354.
20.
Manousi,
N., Zachariadis, G. A., Deliyanni, E. A. and Samanidou, V. F. (2018).
Application of metal-organic frameworks in food sample preparation. Molecules,
23: 1-21.
21.
Bieniek,
A., Terzyk, A. P., Wiśniewski, M., Roszek, K., Kowalczyk, P., Sarkisov, L.
and Keskin, S. and Kaneko, K. (2020). MOF materials as therapeutic agents, drug
carriers, imaging agents and biosensors in cancer biomedicine: Recent advances
and perspectives. Progress in Materials Science, 117: 100743.
22.
Wang,
X., Chen, Y., Zheng, Y. and Zhang, Z. (2017). Study of adsorption and
desorption performances of Zr-based metal-organic frameworks using paper spray
mass spectrometry. Materials, 10(7): 769.
23.
Cai, M.,
Qin, L., Pang, L., Ma, B., Bai, J., Liu, J., Dong, X., Yin, X. and Ni, J.
(2020). Amino-functionalized Zn metal -organic frameworks as antitumor drug
curcumin carriers. New Journal of Chemistry, 44(41):17693-17704.
24.
Li, L.,
Chen, Y., Yang, L., Wang, Z. and Liu, H. (2020). Recent advances in
applications of metal–organic frameworks for sample preparation in
pharmaceutical analysis. Coordination Chemistry Reviews, 411: 213235.
25.
Yaghi,
O. M., Li, G. and Li Hailian. (1995). Yaghi-selective binding and removal of
guests in a microporous metal-organic framework. Nature, 378(December):
703-706.
26.
Cavka,
J. V., Jakobsen, S., Olsbye, U., Guillou, N., Carlo Lambertis, C. and Silvia.
C. (2008). A new zirconium inorganic building brick forming metal organic frameworks
with exceptional stability. Journal
American Chemical Society, 130(42):
13850-13851.
27.
Abolghasemi,
M.M.; Yousefi, V. and Piryaei, M. (2015).
Synthesis of a metal-organic framework confined in periodic mesoporous silica
with enhanced hydrostability as a novel fiber coating for solid-phase
microextraction. Journal of Separation
Sciences, 38: 1187-1193.
28.
Zhu, J.,
Wu, L., Bu, Z., Jie, S. and Li, B. G. (2019). Polyethyleneimine-Modified
UiO-66-NH2 (Zr) metal− organic frameworks: Preparation and
enhanced CO2 selective adsorption. American Chemical Society
Omega, 2019(4): 3188-3197.
29.
Kesuma,
R. F., Patah, A., A., and Permana, Y. (2019). Microwave-assisted synthesis of
DUT-52 and investigation of its photoluminescent properties. Bulletin of
Chemical Reaction Engineering & Catalysis, 14(1): 124-129.
30.
Rada, Z.
H., Abid, H. R., Sun, H., Shang, J., Li, J. and He, Y. (2018). Effects of -NO2
and -NH2 functional groups in mixed-linker Zr-based MOFs on gas
adsorption of CO2 and CH4. Progress in Natural
Science: Materials International, 28(2):160-167.
31. Yang, J. H., Cui, C. X., Qu, L. B., Chen, J., Zhou, X. M. and
Zhang, Y. P. (2018). Preparation
of a monolithic magnetic stir bar for the determination of sulfonylurea
herbicides coupled with HPLC. Microchemical
Journal, 141: 369-376.
32.
Kahkha,
M. R. R., Oveisi, A. R., Kaykhaii, M. and Kahkha, B. R. (2018). Determination
of carbamazepine in urine and water samples using amino‑functionalized
metal-organic framework as sorbent. Chemistry Central Journal, 12(77):
1-12.
33.
Howarth,
A. J., Peters, A. W., Vermeulen, N. A., Wang, T. C., Hupp, J. T. and Farha, O.
K. (2017). Best practices for the synthesis, activation, and characterization
of metal−organic frameworks. Chemical Materials, 29: 26-39.
34.
Sajid,
M., Nazal, M. K. and Ihsanullah, I. (2021). Novel materials for dispersive
(micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental
water samples: A review. Analytica
Chimica Acta, 1141: 246-262.
35.
Zhao,
X., Wang, Y., Li, D. S., Bu, X. and Feng, P. (2018). Metal–organic frameworks
for separation. Advances Materials, 30: 869-932.
36.
Ma, M.,
Lu, L., Li, H., Xiong, Y. and Dong, F. (2019). Functional metal organic
framework/SiO2 nanocomposites: From versatile synthesis to advanced
applications. Polymers, 11(11): 1823.
37. Lin,
S., Gan, N., Cao, Y., Chen, Y. and Jiang, Q. (2016). Selective dispersive solid
phase extraction-chromatography tandem mass spectrometry based on
aptamer-functionalized Uio-66-NH2 for determination of
polychlorinated biphenyls. Journal of
Chromatography A, 1446: 34-40.
38. Su, H., Wang, Z., Jia, Y., Deng, L., Chen, X., Zhao, R. and
Chan, T. W. D. (2015). A cadmium (II)-based
metal-organic framework material for the dispersive solid-phase extraction of
polybrominated diphenyl ethers in environmental water samples. Journal of Chromatography A, 1422: 334-339.
39. Mavumengwana-Khanyile, B., Katima, Z., Songa, E. A., A. and
Okonkwo, J. O. (2019). Recent advances in sorbents applications and techniques
used for solid-phase extraction of atrazine and its metabolites
deisopropylatrazine and deethylatrazine: A review. International Journal of Environmental Analytical Chemistry, 99(11): 1017-1068.
40. Islas, G., Ibarra, I. S., Hernandez, P., Miranda, J. M. and
Cepeda, A. (2017). Dispersive solid phase extraction for the analysis of
veterinary drugs applied to food samples: A review. International Journal of Analytical Chemistry, 2017:1-16.
41. Lawal, A., Wong, R. C. S. Tan, G. H., Abdulra'Uf, L. B. and
Alsharif, A. M. A. (2018). Recent modifications and validation of QuEChERS-DSPE
coupled to LC-MS and GC-MS instruments for determination of
pesticide/agrochemical residues in fruits and vegetables: Review. Journal of Chromatographic Science, 56(7): 656-669.
42.
Dou, Y.,
Guo, L., Li, G., Lv, X. and Xia, L. J. (2019). Amino group functionalized
metal-organic framework as dispersive solid-phase extraction sorbent to
determine nitrobenzene compounds in water samples. Microchemical Journal,
146: 366-373.
43. Ghorbani, M., Aghamohammadhassan, M., Ghorbani, H. and
Zabihi, A. (2020). Trends in sorbent development for dispersive micro-solid
phase extraction. Microchemical Journal, 158: 105250.
44.
Ghaemi,
F. and Amiri, A. (2020). Microcrystalline cellulose/metal-organic framework
hybrid as a sorbent for dispersive micro-solid phase extraction of
chlorophenols in water samples. Journal of Chromatography A, 1626: 1-7.
45.
Hu, Y.,
Lian, H., Zhou, L. and Li, G. (2015).
In situ solvothermal growth of metal-organic framework-5 supported on
porous copper foam for noninvasive sampling of plant volatile sulfides. Analytical Chemistry, 87: 406-412.
46.
Xie, L.,
Liu, S., Han, Z., Jiang, R., Liu, H., Zhu, F., Zeng, F., Su, C. and Ouyang, G.
(2015). Preparation and characterization of metal-organic framework
MIL-101(Cr)-coated solid-phase microextraction fiber. Analytica Chimica Acta,
853: 303-310.
47. Venna, S. R., Lartey, M., Li, T., Spore, A., Kumar, S.,
Nulwala, H., B., Luebke, D. R., Rosi, N. L. and Albenze, E. (2015). Fabrication
of mmms with improved gas separation properties using externally-functionalized
MOF Particles. Journal of Materials
Chemistry A, 3(9): 5014-5022.
48. Seo, P. W., Bhadra, Bi. N., Ahmed, I., Khan, N. A. and Jhung,
S. H. (2016). Adsorptive removal of pharmaceuticals and
personal care products from water with functionalized metal-organic frameworks:
Remarkable adsorbents with hydrogen-bonding abilities. Scientific Reports, 6:
1-11.
49. Wilcockson, J. B. and Gobas, F. A. P. C. (2001). Thin-film solid-phase
extraction to measure fugacities of organic chemicals with low volatility in
biological samples. Environmental Science
and Technology, 35: 1425-1431.
50. Carasek, E. and Merib, J. (2015). Membrane-based microextraction techniques in analytical
chemistry: A review. Analytica Chimica
Acta, 880: 8-25.
51. Emmons, R. V., Liden, T., Schug, K. A. and Gionfriddo, E.
(2020). Optimization of thin film solid phase microextraction and data
deconvolution methods for accurate characterization of organic compounds in
produced water. Journal of Separation Science, 43(9-10): 1915-1924.
52. Tascon, M., Gómez-Ríos, G. A., Reyes-Garcés, N., Poole, J.,
Boyacl, E. and Pawliszyn, J. (2017).
High-throughput screening and quantitation of target compounds in biofluids by
coated blade spray-mass spectrometry. Analytical
Chemistry, 89: 8421-8428.
53. Olcer, Y. A., Tascon, M., Eroglu, A. E. and Boyacı, E. (2019). Thin film microextraction:
Towards faster and more sensitive microextraction. Trends Analytical Chemistry, 113: 93-101.
54. Gao, G., Li, S., Li, S., Zhao, L., Wang, T. and Hou, X. (2018). Development and application of
vortex-assisted membrane extraction based on metal-organic framework
mixed-matrix membrane for the analysis of estrogens in human urine. Analytica Chimica Acta, 1023: 35-43.
55. Mohammadi, V., Jafari, M. T. and Saraji, M. (2019). Flexible/self-supported
zeolitic imidazolate framework-67 film as an adsorbent for thin-film
microextraction. Microchemical Journal, 146: 98-105.
56. Ghani, M., Font Picó, M. F., Salehinia, S., Palomino Cabello,
C., Maya, F., Berlier, G., Saraji, M., Cerdà, V. and Turnes Palomino, G. (2017). Metal-organic framework
mixed-matrix disks: Versatile supports for automated solid-phase extraction
prior to chromatographic separation. Journal
Chromatography A, 1488: 1-9.
57. Wang, S., Wang, X., Ren, Y. and Xu, H. (2015). Metal–organic framework 199
film as a novel adsorbent of thin-film extraction. Chromatographia, 78:
621-629.
58. Eisert, R. and Pawliszyn, J. (1997). Automated in-tube solid-phase microextraction coupled to
high-performance liquid chromatography. Analytical
Chemistry, 69: 3140-3147.
59. Costa Queiroz, M. E., Donizeti de Souza, I. and Marchioni, C.
(2019). Current advances and
applications of in-tube solid-phase microextraction. Trends Analytical Chemistry, 111:
261-278.
60. Moliner-Martinez, Y., Herráez-Hernández, R., Verdú-Andrés,
J., Molins-Legua, C., Campíns-Falcó, P. (2015). Recent Advances of In-Tube Solid-Phase Microextraction. Trends Analytical Chemistry, 71: 205-213.
61. Fernández-Amado, M., Prieto-Blanco, M. C., López-Mahía, P.,
Muniategui-Lorenzo, S. and Prada-Rodríguez, D. (2016). Strengths and weaknesses of in-tube solid-phase
microextraction: A scoping review. Analytica
Chimica Acta, 906: 41-57.
62. Shih, Y. H.,Wang, K. Y., Singco, B., Lin, C. H. and Huang, H.
Y. (2016). Metal-organic
framework-polymer composite as a highly efficient sorbent for sulfonamide
adsorption and desorption: Effect of coordinatively unsaturated metal site and
topology. Langmuir, 32: 11465-11473.
63. Lirio, S., Liu,W. L., Lin, C. L., Lin, C. H. and Huang, H. Y.
(2016). Aluminum based metal-organic
framework-polymer monolith in solid-phase microextraction of penicillins in
riverwater and milk samples. Journal of
Chromatography A, 1428: 236-245.
64. Ling, X. and Chen, Z. (2019). Immobilization of zeolitic imidazolate frameworks with
assist of electrodeposited zinc oxide layer and application in online
solid-phase microextraction of sudan dyes. Talanta,
192: 142-146.
65. Baltussen, E., Sandra, P., David, F. and Cramers, C. (1999). Stir bar sorptive extraction
(SBSE), a novel extraction technique for aqueous samples: Theory and
principles. Journal of Microcoloumn
Separations, 11: 737-747.
66. Płotka-Wasylka, J., Szczepa´ nska, N., de la Guardia, M.
and Namie´snik, J. (2015).
Miniaturized solid-phase extraction techniques. Trends Analytical Chemistry, 73: 19-38.
67. Xiao, Z., He, M., Chen, B. and Hu, B. (2016).
Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive
extraction coupled to gas chromatography-flame photometric detection for the
determination of organophosphorus pesticides in environmentalwater samples. Talanta, 156–157: 126-133.
68. David, F., Ochiai, N. and Sandra, P. (2019). Two decades of stir bar sorptive extraction: A
retrospective and future outlook. Trends
Analytical Chemistry, 112:
102-111.
69. Lin, S., Gan, N., Qiao, L., Zhang, J., Cao, Y. and Chen, Y. (2015). Magnetic metal-organic
frameworks coated stir bar sorptive extraction coupled with GC-MS for
determination of polychlorinated biphenyls in fish samples. Talanta, 144:1139-1145.
70. You, L., He, M., Chen, B. and Hu, B. (2017). One-pot synthesis of zeolitic imidazolate
framework-8/poly(methyl methacrylate-ethyleneglycol dimethacrylate) monolith
coating for stir bat sorptive extraction of phytohormones from fruit samples
followed by high performance liquid chromatography-ultraviolet detection. Journal of Chromatography A, 1524: 57-65.
71. Wang, Y., Jia, M., Wu, X., Wang, T., Wang, J. and Hou, X. (2019). PEG modified column
MIL-101(Cr)/PVA cryogel as a sorbent in stir bar solid phase extraction for
determination of non-steroidal anti-inflammatory drugs in water samples. Microchemical Journal, 146: 214-219.
72. Wang, Y., Rui, M. and Lu, G. (2018). Recent applications of
metal–organic frameworks in sample pretreatment. Journal of Separation
Sciences, 41: 180-194.
73. Ghani, M., Ghoreishi, S. M. and Azamati, M. (2018). In-Situ growth of
zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar
sorptive extraction sorbent for determining caffeine. Journal of Chromatography A, 1577:
15-23.
74. Wang, C., Zhou,W., Liao, X., Wang, X. and Chen, Z. (2018). Covalent immobilization of
metal organic frameworks onto chemical resistant poly(ether ether ketone)
jacket for stir bar extraction. Analytica
Chimica Acta, 1025: 124-133.
75. Du, F., Sun, L., Tan,W., Wei, Z., Nie, H., Huang, Z., Ruan,
G. and Li, J. (2019). Magnetic
stir cake sorptive extraction of trace tetracycline antibiotics in food
samples: preparation of metal–organic framework-embedded polyhipe monolithic
composites, validation and application. Analytical
Bioanalytical Chemistry, 411: 2239-2248.
76. Koziel, J. A., Odziemkowski, M. and Pawliszyn, J. (2001).
Sampling and analysis of airborne particulate matter and aerosols using
in-needle trap and SPME fiber devices. Analytical Chemistry, 73: 47-54.
77. Firoozichahak, A., Bahrami, A., Ghorbani Shahna, F., Alizadeh,
S., Nematollahi, D. and Farhadian, M. (2019). UIO-66-NH2 packed
needle trap for accurate and reliable sampling and analysis of the halogenated
volatile organic compounds in air. International Journal of Environmental
Analytical Chemistry, 2019: 1-18.
78. Biagini, D., Lomonaco, T., Ghimenti, S., Bellagambi, F. G.,
Onor, M., Scali, M. C., Barletta, V., Marzilli, M., Salvo, P., Trivella, M. G.,
Fuoco, R. and Di Francesco, F. (2017). Determination of volatile organic
compounds in exhaled breath of heart failure patients by needle trap
micro-extraction coupled with gas chromatographytandem mass spectrometry. Journal
of Breath Research, 11: 047110.
79. Feng, D. and Xia, Y. (2018). Comparisons of glyphosate
adsorption properties of different functional Cr-based metal–organic
frameworks. Journal of Separation Sciences, 41: 732-739.