Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 791 - 807

 

 

 

 

METAL-ORGANIC FRAMEWORKS AS SORBENT- BASED EXTRACTION: A REVIEW

 

(Rangka Kerja Logam-Organik Sebagai Penjerap Berasaskan Pengekstrakan: Satu Ulasan)

 

Siti Sufiana Kamni1, Karimah Kassim1,2, Nur Sofiah Abu Kassim3, Nurul Auni Zainal Abidin3*

 

1Faculty of Applied Science

2 Institute of Science

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3 School of Chemistry and Environment, Faculty of Applied Science,

Universiti Teknologi MARA, Cawangan Negeri Sembilan,

Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author:  nurulauni@uitm.edu.my

 

 

Received: 27 July 2021; Accepted: 2 October 2021; Published:  25 October 2021

 

 

Abstract

Metal-organic frameworks (MOFs) are highly ordered porous crystalline structures and full of cavities. They are formed by inorganic centers (metal ion atoms or metal clusters) and organic linkers connected by covalent coordination bonds. Depending on the ratio of such precursors and the synthetic conditions, the characteristics of the resulting MOFs vary significantly, thus drifting into a countless number of interesting materials with unique properties. This review offers an overview on the current state of the use of MOFs in different microextraction configurations, in all cases covering extraction devices coated with (or incorporating) MOFs, with particular emphasis in their preparation.  Moreover, recent analytical applications reported from 2018 to 2020 will be discussed critically.  

 

Keywords:  metal-organic framework, microextraction method, sorbent, extraction

 

Abstrak

Rangka kerja logam-organik (MOFs) adalah struktur kristal berliang yang sangat tersusun dan berongga. MOFs dibentuk oleh logam pusat tak organik (atom ion logam atau kluster logam) dan penghubung organik yang dihubungkan oleh ikatan koordinasi kovalen. Bergantung pada nisbah bahan pemula dan keadaan sintetik, ciri-ciri MOFs yang dihasilkan berbeza-beza, sehingga menjadikan MOFs sebagai penarik kepada bahan penyerap dan bersifat unik. Ulasan ini memberikan gambaran umum mengenai keadaan semasa penggunaan MOFs yang berbeza-beza dalam konfigurasi pengekstrakan mikro yang meliputi kaedah pengekstrakan yang disaluti dengan (atau menggabungkan) MOFs, dengan penekanan khusus dalam penyediaannya. Tambahan pula, aplikasi analisis terkini yang dilaporkan dari tahun 2018 sehingga 2020 akan dibincangkan secara kritikal.

 

Kata kunci:  rangka kerja logam-organik, kaedah pengekstrakan mikro, bahan penyerap, pengekstrakan

 

References

1.      Xu, G. R., An, Z. H., Xu, K., Liu, Q., Das, R. and Zhao, L. H. (2020). Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal : the cutting-edge study on designs, synthesis, and applications potential of zero charge. Journal of Coordinantion Chemistry, 427: 2-32.

2.      Emam, H. E., Abdelhameed, R. M., A. and Ahmed, H. B. (2020). Adsorptive performance of MOFs and MOF containing composites for clean energy and safe environment. Journal of Environmental Chemical Engineering, 8(5): 1-13.

3.      Rocio-Bautista, P., Taima-Mancera, I., Pasan, J. and Pino, V. (2019). metal-organic frameworks in green analytical chemistry. Separation, 6: 1-21.

4.      Zhang, K. D., Tsai, F. C., Ma, N., Xia, Y., Liu, H. L., Zhan, X. Q., Yu, X. Y., Zheng, X. Z., Jiang, T., Shi, D., and Chang, C. J. (2017). Adsorption behavior of high stable Zr-based MOFs for the removal of acid organic dye from water. Journal of Materials, 10(205): 1-11.

5.      Yang, S., Karve, V. V., Justin, A., Kochetygov, I., Espin, J., Asgari, M., Trukhina, O., Sun, D. T., Peng, L. and Queen, W. L. (2020). Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 427: 1-37.

6.      Salunkhe, R. R., Kaneti, Y. V., Kim, J., Kim, J. H. and Yamauchi, Y. (2016). Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts of Chemical Research, 49(12): 2796-2806.

7.      Li, X., Ma, W., Li, H., Bai, Y., A. and Liu, H. (2019). Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes.  Coordination  Chemistry  Reviews, 397: 1-13.

8.      Ahmad, K., Nazir, M. A., Qureshi, A. K., Hussain, E., Najam, T., Javed, M. S., Shah, S. S. A., Tufail, M. K., Hussain, S., Khan, N. A., Shah, H. R. and Ashfaq, M. (2020). Engineering of zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Materials Science & Engineering B, 262: 114766.

9.      Dahl, J., Maddux, A. B. L. S., and Hutchison, J. E. (2017). Toward greener nano-synthesis. Chemical Reviews, 107: 2228-2269.

10.   Ge, J., Wu, Z., Huang, X., A. and Ding, M. (2019). An effective microwave-assisted synthesis of MOF235 with excellent adsorption of acid chrome blue K. Journal of Nanomaterials, 2019: 1-8.

11.   Boontongto, T. and Burakham, R. (2019). Evaluation of metal-organic framework NH2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples. Heliyon, 5(11): e02848.

12.   Goyal, A. (2019). Metal organic frameworks. Journal of Chemistry, 8(1): 9-16.

13.   Zhang, X. F., Feng, Y., Wang, Z., Jia, M. and Yao, J. (2018). Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. Journal of Membrane Science, 568: 10-16.

14.   Wu, H. B. Wen, X. and Lou, D. (2017). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion : promises and challenges. Science Advances, 3: 1-16.

15.   Perez-Cejuela, H. M., Herrero-Martinez, J. M. and Simo-Alfonso, F. E. (2020). Recent advances in affinity MOF-based sorbents with sample preparation purposes. Molecules, 25(4216): 1-21.

16.   Hashemi, B., Zohrabi, P., Raza, N. and Hashemi, B., Zohrabi, P., Raza, N., and Kim, K. H. (2017). Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends in Analytical Chemistry, 97(September): 65-82.

17.   Chisvert, A., Cardenas, S. and Lucena, R. (2019). Dispersive micro-solid phase extraction. The Turkish Journal of Pediatrics, 112: 226-233.

18.   Gutiérrez-serpa, A., Pacheco-fernández, I., Pasán, J. and Pino, V. (2019). Metal-organic frameworks as key materials for solid-phase microextraction devices - a review. Separation, 6(47): 1-29.

19.   Soury, S., Bahrami, A., Alizadeh, S., Shahna, F. G., A. and Nematollahi, D. (2019). Development of a needle trap device packed with zinc based metal-organic framework sorbent for the sampling and analysis of polycyclic aromatic hydrocarbons in the air. Microchemical Journal, 148(2019): 346-354.

20.   Manousi, N., Zachariadis, G. A., Deliyanni, E. A. and Samanidou, V. F. (2018). Application of metal-organic frameworks in food sample preparation. Molecules, 23: 1-21.

21.   Bieniek, A., Terzyk, A. P., Wiśniewski, M., Roszek, K., Kowalczyk, P., Sarkisov, L. and Keskin, S. and Kaneko, K. (2020). MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Progress in Materials Science, 117: 100743.

22.   Wang, X., Chen, Y., Zheng, Y. and Zhang, Z. (2017). Study of adsorption and desorption performances of Zr-based metal-organic frameworks using paper spray mass spectrometry. Materials, 10(7): 769.

23.   Cai, M., Qin, L., Pang, L., Ma, B., Bai, J., Liu, J., Dong, X., Yin, X. and Ni, J. (2020). Amino-functionalized Zn metal -organic frameworks as antitumor drug curcumin carriers. New Journal of Chemistry, 44(41):17693-17704.

24.   Li, L., Chen, Y., Yang, L., Wang, Z. and Liu, H. (2020). Recent advances in applications of metal–organic frameworks for sample preparation in pharmaceutical analysis. Coordination Chemistry Reviews, 411: 213235.

25.   Yaghi, O. M., Li, G. and Li Hailian. (1995). Yaghi-selective binding and removal of guests in a microporous metal-organic framework. Nature, 378(December): 703-706.

26.   Cavka, J. V., Jakobsen, S., Olsbye, U., Guillou, N., Carlo Lambertis, C. and Silvia. C. (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal American Chemical Society, 130(42): 13850-13851.

27.   Abolghasemi, M.M.; Yousefi, V. and Piryaei, M. (2015). Synthesis of a metal-organic framework confined in periodic mesoporous silica with enhanced hydrostability as a novel fiber coating for solid-phase microextraction. Journal of Separation Sciences, 38: 1187-1193.

28.   Zhu, J., Wu, L., Bu, Z., Jie, S. and Li, B. G. (2019). Polyethyleneimine-Modified UiO-66-NH2 (Zr) metal− organic frameworks: Preparation and enhanced CO2 selective adsorption. American Chemical Society Omega, 2019(4): 3188-3197.

29.   Kesuma, R. F., Patah, A., A., and Permana, Y. (2019). Microwave-assisted synthesis of DUT-52 and investigation of its photoluminescent properties. Bulletin of Chemical Reaction Engineering & Catalysis, 14(1): 124-129.

30.   Rada, Z. H., Abid, H. R., Sun, H., Shang, J., Li, J. and He, Y. (2018). Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 28(2):160-167.

31.   Yang, J. H., Cui, C. X., Qu, L. B., Chen, J., Zhou, X. M. and Zhang, Y. P. (2018). Preparation of a monolithic magnetic stir bar for the determination of sulfonylurea herbicides coupled with HPLC. Microchemical Journal, 141: 369-376.

32.   Kahkha, M. R. R., Oveisi, A. R., Kaykhaii, M. and Kahkha, B. R. (2018). Determination of carbamazepine in urine and water samples using amino‑functionalized metal-organic framework as sorbent. Chemistry Central Journal, 12(77): 1-12.

33.   Howarth, A. J., Peters, A. W., Vermeulen, N. A., Wang, T. C., Hupp, J. T. and Farha, O. K. (2017). Best practices for the synthesis, activation, and characterization of metal−organic frameworks. Chemical Materials, 29: 26-39.

34.   Sajid, M., Nazal, M. K. and Ihsanullah, I. (2021). Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Analytica Chimica Acta, 1141: 246-262.

35.   Zhao, X., Wang, Y., Li, D. S., Bu, X. and Feng, P. (2018). Metal–organic frameworks for separation. Advances Materials, 30: 869-932.

36.   Ma, M., Lu, L., Li, H., Xiong, Y. and Dong, F. (2019). Functional metal organic framework/SiO2 nanocomposites: From versatile synthesis to advanced applications. Polymers, 11(11): 1823.

37.   Lin, S., Gan, N., Cao, Y., Chen, Y. and Jiang, Q. (2016). Selective dispersive solid phase extraction-chromatography tandem mass spectrometry based on aptamer-functionalized Uio-66-NH2 for determination of polychlorinated biphenyls. Journal of Chromatography A, 1446: 34-40.

38.   Su, H., Wang, Z., Jia, Y., Deng, L., Chen, X., Zhao, R. and Chan, T. W. D. (2015). A cadmium (II)-based metal-organic framework material for the dispersive solid-phase extraction of polybrominated diphenyl ethers in environmental water samples. Journal of Chromatography A, 1422: 334-339.

39.   Mavumengwana-Khanyile, B., Katima, Z., Songa, E. A., A. and Okonkwo, J. O. (2019). Recent advances in sorbents applications and techniques used for solid-phase extraction of atrazine and its metabolites deisopropylatrazine and deethylatrazine: A review. International Journal of Environmental Analytical Chemistry, 99(11): 1017-1068.

40.   Islas, G., Ibarra, I. S., Hernandez, P., Miranda, J. M. and Cepeda, A. (2017). Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. International Journal of Analytical Chemistry, 2017:1-16.

41.   Lawal, A., Wong, R. C. S. Tan, G. H., Abdulra'Uf, L. B. and Alsharif, A. M. A. (2018). Recent modifications and validation of QuEChERS-DSPE coupled to LC-MS and GC-MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables: Review. Journal of Chromatographic Science, 56(7): 656-669.

42.   Dou, Y., Guo, L., Li, G., Lv, X. and Xia, L. J. (2019). Amino group functionalized metal-organic framework as dispersive solid-phase extraction sorbent to determine nitrobenzene compounds in water samples. Microchemical Journal, 146: 366-373.

43.   Ghorbani, M., Aghamohammadhassan, M., Ghorbani, H. and Zabihi, A. (2020). Trends in sorbent development for dispersive micro-solid phase extraction. Microchemical Journal, 158: 105250.

44.   Ghaemi, F. and Amiri, A. (2020). Microcrystalline cellulose/metal-organic framework hybrid as a sorbent for dispersive micro-solid phase extraction of chlorophenols in water samples. Journal of Chromatography A, 1626: 1-7.

45.   Hu, Y., Lian, H., Zhou, L. and Li, G. (2015). In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides. Analytical Chemistry, 87: 406-412.

46.   Xie, L., Liu, S., Han, Z., Jiang, R., Liu, H., Zhu, F., Zeng, F., Su, C. and Ouyang, G. (2015). Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Analytica Chimica Acta, 853: 303-310.

47.   Venna, S. R., Lartey, M., Li, T., Spore, A., Kumar, S., Nulwala, H., B., Luebke, D. R., Rosi, N. L. and Albenze, E. (2015). Fabrication of mmms with improved gas separation properties using externally-functionalized MOF Particles. Journal of Materials Chemistry A, 3(9): 5014-5022.

48.   Seo, P. W., Bhadra, Bi. N., Ahmed, I., Khan, N. A. and Jhung, S. H. (2016). Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: Remarkable adsorbents with hydrogen-bonding abilities. Scientific Reports, 6: 1-11.

49.   Wilcockson, J. B. and Gobas, F. A. P. C. (2001). Thin-film solid-phase extraction to measure fugacities of organic chemicals with low volatility in biological samples. Environmental Science and Technology, 35: 1425-1431.

50.   Carasek, E. and Merib, J. (2015). Membrane-based microextraction techniques in analytical chemistry: A review. Analytica Chimica Acta, 880: 8-25.

51.   Emmons, R. V., Liden, T., Schug, K. A. and Gionfriddo, E. (2020). Optimization of thin film solid phase microextraction and data deconvolution methods for accurate characterization of organic compounds in produced water. Journal of Separation Science, 43(9-10): 1915-1924. 

52.   Tascon, M., Gómez-Ríos, G. A., Reyes-Garcés, N., Poole, J., Boyacl, E. and Pawliszyn, J. (2017). High-throughput screening and quantitation of target compounds in biofluids by coated blade spray-mass spectrometry. Analytical Chemistry, 89: 8421-8428.

53.   Olcer, Y. A., Tascon, M., Eroglu, A. E. and Boyacı, E. (2019). Thin film microextraction: Towards faster and more sensitive microextraction. Trends Analytical Chemistry, 113: 93-101.

54.   Gao, G., Li, S., Li, S., Zhao, L., Wang, T. and Hou, X. (2018). Development and application of vortex-assisted membrane extraction based on metal-organic framework mixed-matrix membrane for the analysis of estrogens in human urine. Analytica Chimica Acta, 1023: 35-43.

55.   Mohammadi, V., Jafari, M. T. and Saraji, M. (2019). Flexible/self-supported zeolitic imidazolate framework-67 film as an adsorbent for thin-film microextraction. Microchemical Journal, 146: 98-105.

56.   Ghani, M., Font Picó, M. F., Salehinia, S., Palomino Cabello, C., Maya, F., Berlier, G., Saraji, M., Cerdà, V. and Turnes Palomino, G. (2017). Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. Journal Chromatography A, 1488: 1-9.

57.   Wang, S., Wang, X., Ren, Y. and Xu, H. (2015). Metal–organic framework 199 film as a novel adsorbent of thin-film extraction. Chromatographia, 78: 621-629.

58.   Eisert, R. and Pawliszyn, J. (1997). Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Analytical Chemistry, 69: 3140-3147.

59.   Costa Queiroz, M. E., Donizeti de Souza, I. and Marchioni, C. (2019). Current advances and applications of in-tube solid-phase microextraction. Trends Analytical Chemistry, 111: 261-278.

60.   Moliner-Martinez, Y., Herráez-Hernández, R., Verdú-Andrés, J., Molins-Legua, C., Campíns-Falcó, P. (2015). Recent Advances of In-Tube Solid-Phase Microextraction. Trends Analytical Chemistry, 71: 205-213.

61.   Fernández-Amado, M., Prieto-Blanco, M. C., López-Mahía, P., Muniategui-Lorenzo, S. and Prada-Rodríguez, D. (2016). Strengths and weaknesses of in-tube solid-phase microextraction: A scoping review. Analytica Chimica Acta, 906: 41-57.

62.   Shih, Y. H.,Wang, K. Y., Singco, B., Lin, C. H. and Huang, H. Y. (2016). Metal-organic framework-polymer composite as a highly efficient sorbent for sulfonamide adsorption and desorption: Effect of coordinatively unsaturated metal site and topology. Langmuir, 32: 11465-11473.

63.   Lirio, S., Liu,W. L., Lin, C. L., Lin, C. H. and Huang, H. Y. (2016). Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in riverwater and milk samples. Journal of Chromatography A, 1428: 236-245.

64.   Ling, X. and Chen, Z. (2019). Immobilization of zeolitic imidazolate frameworks with assist of electrodeposited zinc oxide layer and application in online solid-phase microextraction of sudan dyes. Talanta, 192: 142-146.

65.   Baltussen, E., Sandra, P., David, F. and Cramers, C. (1999). Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. Journal of Microcoloumn Separations, 11: 737-747.

66.   Płotka-Wasylka, J., Szczepa´ nska, N., de la Guardia, M. and Namie´snik, J. (2015). Miniaturized solid-phase extraction techniques. Trends Analytical Chemistry, 73: 19-38.

67.   Xiao, Z., He, M., Chen, B. and Hu, B. (2016). Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmentalwater samples. Talanta, 156–157: 126-133.

68.   David, F., Ochiai, N. and Sandra, P. (2019). Two decades of stir bar sorptive extraction: A retrospective and future outlook. Trends Analytical Chemistry, 112: 102-111.

69.   Lin, S., Gan, N., Qiao, L., Zhang, J., Cao, Y. and Chen, Y. (2015). Magnetic metal-organic frameworks coated stir bar sorptive extraction coupled with GC-MS for determination of polychlorinated biphenyls in fish samples. Talanta, 144:1139-1145.

70.   You, L., He, M., Chen, B. and Hu, B. (2017). One-pot synthesis of zeolitic imidazolate framework-8/poly(methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bat sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection. Journal of Chromatography A, 1524: 57-65.

71.   Wang, Y., Jia, M., Wu, X., Wang, T., Wang, J. and Hou, X. (2019). PEG modified column MIL-101(Cr)/PVA cryogel as a sorbent in stir bar solid phase extraction for determination of non-steroidal anti-inflammatory drugs in water samples. Microchemical Journal, 146: 214-219.

72.   Wang, Y., Rui, M. and Lu, G. (2018). Recent applications of metal–organic frameworks in sample pretreatment. Journal of Separation Sciences, 41: 180-194.

73.   Ghani, M., Ghoreishi, S. M. and Azamati, M. (2018). In-Situ growth of zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar sorptive extraction sorbent for determining caffeine. Journal of Chromatography A, 1577: 15-23.

74.   Wang, C., Zhou,W., Liao, X., Wang, X. and Chen, Z. (2018). Covalent immobilization of metal organic frameworks onto chemical resistant poly(ether ether ketone) jacket for stir bar extraction. Analytica Chimica Acta, 1025: 124-133.

75.   Du, F., Sun, L., Tan,W., Wei, Z., Nie, H., Huang, Z., Ruan, G. and Li, J. (2019). Magnetic stir cake sorptive extraction of trace tetracycline antibiotics in food samples: preparation of metal–organic framework-embedded polyhipe monolithic composites, validation and application. Analytical Bioanalytical Chemistry, 411: 2239-2248.

76.   Koziel, J. A., Odziemkowski, M. and Pawliszyn, J. (2001). Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices. Analytical Chemistry, 73: 47-54.

77.   Firoozichahak, A., Bahrami, A., Ghorbani Shahna, F., Alizadeh, S., Nematollahi, D. and Farhadian, M. (2019). UIO-66-NH2 packed needle trap for accurate and reliable sampling and analysis of the halogenated volatile organic compounds in air. International Journal of Environmental Analytical Chemistry, 2019: 1-18.

78.   Biagini, D., Lomonaco, T., Ghimenti, S., Bellagambi, F. G., Onor, M., Scali, M. C., Barletta, V., Marzilli, M., Salvo, P., Trivella, M. G., Fuoco, R. and Di Francesco, F. (2017). Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatographytandem mass spectrometry. Journal of Breath Research, 11: 047110.

79.   Feng, D. and Xia, Y. (2018). Comparisons of glyphosate adsorption properties of different functional Cr-based metal–organic frameworks. Journal of Separation Sciences, 41: 732-739.