Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 776 - 790
VOLATILE CHEMICAL PROFILING OF UNBURNT AND BURNT RON 95
PETROL FROM THREE OIL STATIONS: A PRELIMINARY STUDY
(Pemprofilan
Sebatian Kimia Meruap bagi Petrol RON 95 yang Tidak Dibakar dan
Dibakar daripada Tiga Stesen Minyak: Satu Kajian Awal)
Dheephikha Kumaraguru1, Wan Nur Syuhaila Mat
Desa2, Khairul Osman1, Noor Hazfalinda Hamzah1,
Gina Francesca Gabriel1*
1Forensic Science Programme, Faculty of Health Sciences,
Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Forensic Science Programme, School of Health Sciences, Health Campus,
Universiti
Sains Malaysia, 16150, Kubang Kerian, Malaysia
*Corresponding author: ginafgabriel@ukm.edu.my
Received: 27 July 2021;
Accepted: 30 September 2021; Published: 25 October 2021
Abstract
Commercially available petrol is often
used as fire accelerants in arson cases, and the determination of petrol
residues are instrumental in fire investigations. When subjected to heat, changes
occur to the chemical fingerprint of petrol, resulting in differences between
petrol in post-fire and pre-fire. This study aimed to identify the differences
in the volatile chemical fingerprints of unburnt and burnt petrol (RON 95) from
three different oil stations, X, Y and Z, in Malaysia. Unburnt petrol was
prepared by diluting 1 mL of petrol with 1 mL of pentane. Burnt petrol was
prepared by burning 30 mL of petrol in an aluminium can for 1 minute. All
samples were analysed using the gas chromatography-mass spectrometry (GC-MS).
Results revealed that a range of n-alkanes, n-alkylbenzenes,
alcohol, n-cycloalkanes and indane were detected from unburnt petrol. In
contrast, only n-alkylbenzenes were present in the burnt petrol samples
across the three oil stations. The majority of the volatile chemical of unburnt
petrol were similar across all three oil stations. Some specific volatiles were
identified in unburnt petrol, including 3,7-dimethyl-1-octene and
2,2,4-trimethylpentane in X, 2-methyl-1-butene in Y and 2-hexene in Z.
Principal Component Analysis (PCA) plot (with 80.1% total variation) supported
the discrimination of the three unburnt petrol samples. Conversely, PCA plot
(with 91.2% total variation) of burnt petrol samples were indistinguishable due
to the loss of lighter volatile compounds, including the specific volatiles.
This preliminary profiling study explains the characterisation of specific
petrol volatiles, which potentially impart valuable information to the forensic
ignitable liquid reference database.
Keywords: petrol, gas chromatography-mass
spectrometry, activated carbon tablet,
RON 95, principal component analysis
Abstrak
Petrol merupakan bahan api yang biasa
digunakan dalam kes-kes arson. Oleh itu, pengenalpastian petrol di tempat
kejadian kebakaran amat penting dalam penyiasatan kebakaran. Apabila dibakar,
perubahan akan berlaku pada komposisi petrol yang menyebabkan perbezaan antara
petrol yang tidak dibakar dan dibakar. Dengan itu, kajian ini bertujuan untuk
mengenalpasti perbezaan antara petunjuk utama petrol yang dibakar dengan petrol
yang tidak dibakar dari tiga stesen minyak yang berlainan di Malaysia. Sampel
petrol yang tidak dibakar disediakan dengan melarutkan 1 mL pentana dengan 1 mL
petrol. Sampel petrol terbakar pula disediakan dengan membakar 30 mL petrol
dalam tin aluminium selama 1 minit. Semua sampel dianalisis dengan kromatografi
gas-spektrometri jisim (GC-MS). Hasil kajian menunjukkan bahawa sebatian n-alkana,
n-alkilbenzena, alkohol, n-sikloalkana dan indana dikesan dalam
petrol yang tidak terbakar manakala hanya n-alkilbenzena dikesan dalam
sampel petrol yang terbakar daripada ketiga-tiga stesen minyak. Sebilangan
besar sebatian meruap dalam sampel petrol tidak dibakar dari ketiga-tiga stesen
minyak adalah sama. Beberapa sebatian meruap spesifik telah dikenalpasti dalam
petrol tidak dibakar iaitu 3,7-dimetil-1-oktena dan 2,2,4-trimetilpentana dari
X, 2-metil-1-butena dari Y dan 2- heksena dari Z. Plot analisis komponen utama
(PCA) (dengan 80.1% total varians) mengukuhkan diskriminasi antara ketiga-tiga
sampel petrol tidak dibakar. Sebaliknya, plot PCA (dengan 91.2% total varians)
bagi sampel-sampel petrol dibakar tidak dapat dibezakan disebabkan oleh
kehilangan sebatian mudah meruap termasuklah sebatian-sebatian meruap spesifik
tersebut. Kajian pemprofilan di peringkat permulaan ini menjelaskan bahawa
pencirian sebatian meruap yang spesifik dalam petrol berpotensi memberi
maklumat tambahan kepada pangkalan data bahan mudah bakar forensik.
Kata kunci: petrol, kromatografi gas-spektrometri jisim, karbon tablet teraktif, RON 95, analisis
komponen utama
References
1. Ré-Poppi, N.,
Almeida, F. F. P., Cardoso, C. A. L., Raposo Jr, J. L., Viana, L. H., Silva, T.
Q., Souza, J. L. C. and Ferreira, V. S. (2009). Screening analysis of type C
Brazilian petrol by gas chromatography–flame ionisation detector. Fuel, 88(3): 418-423
2. Dabbagh, H.
A., Ghobadi, F., Ehsani, M. R. and Moradmand, M. (2013). The influence of ester
additives on the properties of petrol. Fuel, 104:216-223
3. World's
Largest Oil Refineries by Processing Capacity (2021). Available at:
https://www.listnbest.com/11-worlds-largest-oil-refineries-processing-capacity/
[Accessed: 22 March 2021]
4. Chong, C., Ni,
W., Ma, L., Liu, P. and Li, Z., (2015). The use of energy in Malaysia: Tracing
energy flows from primary source to end-use. Energies, 8(4):
2828-2866.
5. Westphal, G.A.,
Krahl, J., Brüning, T., Hallier, E. and Bünger, J. (2010). Ether oxygenate
additives in petrol reduce the toxicity of exhausts. Toxicology, 268(3):198-203.
6. Pinto, V. S.,
Gambarra-Neto, F. F., Flores, I. S., Monteiro, M. R. and Lião, L. M. (2016).
Use of 1H NMR and chemometrics to detect additives present in the Brazilian
commercial petrol. Fuel, 182:27-33.
7. Brito, L. R.,
da Silva, M. P., Rohwedder, J. J., Pasquini, C., Honorato, F. A. and Pimentel,
M. F. (2015). Determination of detergent and dispersant additives in petrol by
ring-oven and near-infrared hyperspectral imaging. Analytica Chimica Acta,
863: 9-19.
8. Demirbas, A.,
Balubaid, M. A., Basahel, A. M., Ahmad, W. and Sheikh, M. H. (2015). Octane
rating of petrol and octane booster additives. Petroleum Science and
Technology, 33(11):1190-1197.
9. Mohamad, T. I.
and How, H. G. (2014). Part-load performance and emissions of a spark-ignition
engine fueled with RON95 and RON97 petrol: Technical viewpoint on Malaysia's
fuel price debate. Energy Conversion and Management, 88: 928-935.
10. Hamadi, A. S.
(2010). Selective additives for improvement of petrol octane number. Tikrit
Journal of Engineering Sciences, 17(2): 22-35.
11. Lim, A.
(2020). Petronas Primax 97 with Pro-Race launched - world's first Advanced Dual
Friction Modifier for more power - paultan.org. [Accessed 13 May 2021].
12. DYNAFLEX
Technology (2021). [Accessed 13 September 2021].
13. Gabriel, G.
F., Ismail,Osman, K. and Noor Hazfalinda, H. (2017). The analysis of thermal
decomposition products generated from porcine tissues exposed to outdoor
burning conditions. Malaysian Journal of Analytical Sciences, 21(3): 585-596.
14. Jabatan bomba
dan Penyelamat (2018). Laporan tahunan 2018, Malaysia.
15. Gonzalez-Rodriguez,
J., Sissons, N. and Robinson, S. (2011). Fire debris analysis by Raman
spectroscopy and chemometrics. Journal of Analytical and Applied Pyrolysis,
91(1): 210-218.
16. Stauffer, E.,
Dolan, J. A. and Newman, R. (2007). Fire debris analysis. Academic
Press. Amsterdam.
17. Malaysian
Meterology Department Official Website (2021). Available at:
https://www.met.gov.my/?lang=en# (Accessed: 20 March 2020).
18. Lim, P. W.,
Abdullah, A. F. L., Chang, K. H. (2018). Forensic gas chromatography analysis
of time elapsed petrol in fire scene investigation. Malaysian Journal
of Analytical Sciences, 22(1): 72-79.
19. Samri, M. A.
S. and Chang, K. H. (2016). Gas chromatography based forensic analysis of
petrol from burnt carpets retrieved using different fire extinguishing
methods. Malaysian Journal of Forensic Sciences, 7(1): 39-44.
20.
Kunashegaran, H. (2010) Chemometric
approach for the discrimination of petroleum-based accelerants from fire
debris. Thesis of Master degree, Faculty of Science, Universiti Teknologi
Malaysia.
21. Jais, F. I.,
Mastura, S., Mahat, N.A., Ismail, D. and Mohamad, M. N, (2020). Forensic
analysis of accelerant on different fabrics using attenuated total
reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics
techniques. Malaysian Journal of Medical Health Sciences, 16(2):
1-6.
22. Abu Hassan @
Mohamad, R. (2013). Determination of chemical fingerprint of RON 95
commercial petrol in Malaysia by chemometric analysis, Thesis of Masters
degree, Universiti Kebangsaan Malaysia.
23. Dhabbah, A. M.
(2018). Detection of petrol residues in natural and synthetic textiles before
and after burning using SPME and GC-MS. Australian Journal of Forensic
Sciences 52(2): 194-207.
24. Cacho, J. I.,
Campillo, N., Aliste, M., Viñas, P. and Hernández-Córdoba, M. (2014). Headspace
sorptive extraction for the detection of combustion accelerants in fire debris.
Forensic science international 238:
26-32.
25. Xiao, L.,
Stern, W. and Maynard, P. (2014). Ignitable liquids in fire debris
investigation: A GC-MS practical for forensic chemistry. Australian
Journal of Education in Chemistry 73: 29.
26. Desa, W. N.
M., Daéid, N. N., Ismail, D. and Savage, K. (2010). Application of unsupervised
chemometric analysis and self-organising feature map (SOFM) for the
classification of lighter fuels. Analytical Chemistry, 82(15):
6395-6400.
27. Mat-Desa, W.
N., Ismail, D. and NicDaeid, N. (2011). Classification and source determination
of medium petroleum distillates by chemometric and artificial neural networks:
A self-organising feature approach. Analytical Chemistry, 83(20):
7745-7754.
28. Krüger, S.,
Deubel, J. H., Werrel, M., Fettig, I. and Raspe, T. (2015). Experimental
studies on the effect of fire accelerants during living room fires and
detection of ignitable liquids in fire debris. Fire and Materials 39(7): 636-646.
29. Sarker, M.
(2011). Alternative fuels derived from solid waste plastics. Journal of
Environmental Science and Engineering 5(3): 316-322.
30. Sarker, M.,
Rashid, M. M., Zaman, A. and Molla, M. (2011). Generation of transportation
fuel from solid municipal waste plastics. Journal of Environmental Science
and Engineering, 5(1):
57-62.
31. Sarker, M.,
Rashid, M. M. and Molla, M. (2011). New alternative vehicle hydrocarbon liquid
fuels from municipal solid waste plastics. Journal of Fundamentals of
Renewable Energy and Applications, 1: 1-9.
32. Mack, J. H.,
Rapp, V. H., Broeckelmann, M., Lee, T. S. and Dibble, R.W. (2014).
Investigation of biofuels from microorganism metabolism for use as antiknock
additives. Fuel, 117:
939-943.
33. Oseev, A.,
Zubtsov, M. and Lucklum, R. (2012). Octane number determination of petrol with
a photonic crystal sensor. Procedia Engineering 47: 1382-1385.
34. Xin, J., Yan,
D., Ayodele, O., Zhang, Z., Lu, X. and Zhang, S. (2015). Conversion of
biomass-derived valerolactone into high octane number petrol with an ionic
liquid. Green Chemistry, 17(2):1065-1070.
35. Soto, R.,
Fité, C., Ramírez, E., Bringué, R. and Cunill, F. (2014). Equilibrium of the
simultaneous etherification of isobutene and isoamylenes with ethanol in
liquid-phase. Chemical Engineering Research and Design, 92(4):644-656.
36. Vazquez-Esparragoza,
J. J., Iglesias-Silva, G.A., Hlavinka, Soto, R., Fité, C., Ramírez, E.,
Bringué, R. and Cunill, F. (2014). Equilibrium of the simultaneous
etherification of isobutene and isoamylenes with ethanol in liquid-phase. Chemical
Engineering Research and Design, 92(4):
644-656.
37. Hajipour, S.,
Satyro, M. A. and Foley, M. W. (2014). Uncertainty analysis applied to
thermodynamic models and fuel properties–natural gas dew points and petrol reid
vapor pressures. Energy & Fuels 28(2): 1569-1578.
38. Vazquez-Esparragoza,
J. J., Iglesias-Silva, G. A., Hlavinka, M.W. and Bullin, JA (1992). How to
estimate Reid vapour pressure (RVP) of blends. Bryan Research &
Engineering, Inc., website, Encyclopedia of Chemical Processing and Design, 47: 415-424.
39. Finlayson-Pitts,
B. J. and Pitts Jr, J. N. (1993). Atmospheric chemistry of tropospheric ozone
formation: scientific and regulatory implications. Air & Waste, 43(8): 1091-1100.
40. Rihko-Struckmann,
L. K., Linnekoski, J. A., Krause, A. O. I. and Pavlov, O. S. (2000).
Vapour-liquid and chemical reaction equilibria in the synthesis of
2-methoxy-2-methylbutane (TAME). Journal of Chemical & Engineering Data,
45(6):1030-1035.
41. Bumbac, G.,
Plesu, V., Ciornei, C. and Plesu, A.E. (2014). Modelling and simulation the process in a reactive dividing wall column
for petrol additive TAME synthesis in the oil refinery. Klemes, J. (Ed.), Chemical Engineering Transactions, 12: 1-6.
42. Nadeina, K.
A., Klimov, O.V., Pereima, V. Y., Koryakina, G. I., Danilova, I. G., Prosvirin,
I. P., Gerasimov, E.Y., Yegizariyan, A. M. and Noskov, A. S. (2016). Catalysts
based on amorphous aluminosilicates for selective hydrotreating of FCC petrol
to produce Euro-5 petrol with minimum octane number loss. Catalysis Today, 271: 4-15.
43. Barnett, I.
and Zhang, M. (2018). Discrimination of brands of petrol by using DART-MS and
chemometrics. Forensic Chemistry, 10: 58-66.
44. Baerncopf, J.
M., McGuffin, V. L. and Smith, R.W. (2011). Association of ignitable liquid
residues to neat ignitable liquids in the presence of matrix interferences
using chemometric procedures. Journal of Forensic Sciences, 56(1): 70-81.
45. Liu, S.J.,
Wang, Y. H. and Yu, L. L. (2013). Study on timeliness of petrol analysis
adsorbed in cotton cloth carrier. Advanced Materials Research, 616:
881-884.
46. Sandercock, P.
M. L. (2008). Fire investigation and ignitable liquid residue analysis - a
review: 2001–2007. Forensic Science International 176(2-3):93-110
47. Price, D. and
Horrocks, A. R. (2013). Combustion Processes of Textile Fibres, in
Handbook of Fire-Resistant Textiles. 1st ed.:Woodhead Publishing.
48. Kilinc, F. S.
(2013). Handbook of Fire-Resistant Textiles. 1st edition:
Woodhead Publishing Limited.
49. Pert, A. D.,
Baron, M. G. and Birkett, J.W. (2006). Review of analytical techniques for
arson residues. Journal of Forensic Sciences, 51(5): 1033-1049.