Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 776 - 790

 

 

 

 

VOLATILE CHEMICAL PROFILING OF UNBURNT AND BURNT RON 95 PETROL FROM THREE OIL STATIONS: A PRELIMINARY STUDY

 

(Pemprofilan Sebatian Kimia Meruap bagi Petrol RON 95 yang Tidak Dibakar dan Dibakar daripada Tiga Stesen Minyak: Satu Kajian Awal)

 

Dheephikha Kumaraguru1, Wan Nur Syuhaila Mat Desa2, Khairul Osman1, Noor Hazfalinda Hamzah1, Gina Francesca Gabriel1*

 

1Forensic Science Programme, Faculty of Health Sciences,

Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

2Forensic Science Programme, School of Health Sciences, Health Campus,

Universiti Sains Malaysia, 16150, Kubang Kerian, Malaysia

 

*Corresponding author:  ginafgabriel@ukm.edu.my

 

 

Received:  27 July 2021; Accepted: 30 September 2021; Published:  25 October 2021

 

 

Abstract

Commercially available petrol is often used as fire accelerants in arson cases, and the determination of petrol residues are instrumental in fire investigations. When subjected to heat, changes occur to the chemical fingerprint of petrol, resulting in differences between petrol in post-fire and pre-fire. This study aimed to identify the differences in the volatile chemical fingerprints of unburnt and burnt petrol (RON 95) from three different oil stations, X, Y and Z, in Malaysia. Unburnt petrol was prepared by diluting 1 mL of petrol with 1 mL of pentane. Burnt petrol was prepared by burning 30 mL of petrol in an aluminium can for 1 minute. All samples were analysed using the gas chromatography-mass spectrometry (GC-MS). Results revealed that a range of n-alkanes, n-alkylbenzenes, alcohol, n-cycloalkanes and indane were detected from unburnt petrol. In contrast, only n-alkylbenzenes were present in the burnt petrol samples across the three oil stations. The majority of the volatile chemical of unburnt petrol were similar across all three oil stations. Some specific volatiles were identified in unburnt petrol, including 3,7-dimethyl-1-octene and 2,2,4-trimethylpentane in X, 2-methyl-1-butene in Y and 2-hexene in Z. Principal Component Analysis (PCA) plot (with 80.1% total variation) supported the discrimination of the three unburnt petrol samples. Conversely, PCA plot (with 91.2% total variation) of burnt petrol samples were indistinguishable due to the loss of lighter volatile compounds, including the specific volatiles. This preliminary profiling study explains the characterisation of specific petrol volatiles, which potentially impart valuable information to the forensic ignitable liquid reference database.

 

Keywords:   petrol, gas chromatography-mass spectrometry, activated carbon tablet, RON 95, principal component analysis

 

Abstrak

Petrol merupakan bahan api yang biasa digunakan dalam kes-kes arson. Oleh itu, pengenalpastian petrol di tempat kejadian kebakaran amat penting dalam penyiasatan kebakaran. Apabila dibakar, perubahan akan berlaku pada komposisi petrol yang menyebabkan perbezaan antara petrol yang tidak dibakar dan dibakar. Dengan itu, kajian ini bertujuan untuk mengenalpasti perbezaan antara petunjuk utama petrol yang dibakar dengan petrol yang tidak dibakar dari tiga stesen minyak yang berlainan di Malaysia. Sampel petrol yang tidak dibakar disediakan dengan melarutkan 1 mL pentana dengan 1 mL petrol. Sampel petrol terbakar pula disediakan dengan membakar 30 mL petrol dalam tin aluminium selama 1 minit. Semua sampel dianalisis dengan kromatografi gas-spektrometri jisim (GC-MS). Hasil kajian menunjukkan bahawa sebatian n-alkana, n-alkilbenzena, alkohol, n-sikloalkana dan indana dikesan dalam petrol yang tidak terbakar manakala hanya n-alkilbenzena dikesan dalam sampel petrol yang terbakar daripada ketiga-tiga stesen minyak. Sebilangan besar sebatian meruap dalam sampel petrol tidak dibakar dari ketiga-tiga stesen minyak adalah sama. Beberapa sebatian meruap spesifik telah dikenalpasti dalam petrol tidak dibakar iaitu 3,7-dimetil-1-oktena dan 2,2,4-trimetilpentana dari X, 2-metil-1-butena dari Y dan 2- heksena dari Z. Plot analisis komponen utama (PCA) (dengan 80.1% total varians) mengukuhkan diskriminasi antara ketiga-tiga sampel petrol tidak dibakar. Sebaliknya, plot PCA (dengan 91.2% total varians) bagi sampel-sampel petrol dibakar tidak dapat dibezakan disebabkan oleh kehilangan sebatian mudah meruap termasuklah sebatian-sebatian meruap spesifik tersebut. Kajian pemprofilan di peringkat permulaan ini menjelaskan bahawa pencirian sebatian meruap yang spesifik dalam petrol berpotensi memberi maklumat tambahan kepada pangkalan data bahan mudah bakar forensik.

 

Kata kunci:  petrol, kromatografi gas-spektrometri jisim, karbon tablet teraktif, RON 95, analisis komponen utama

 

References

1.      Ré-Poppi, N., Almeida, F. F. P., Cardoso, C. A. L., Raposo Jr, J. L., Viana, L. H., Silva, T. Q., Souza, J. L. C. and Ferreira, V. S. (2009). Screening analysis of type C Brazilian petrol by gas chromatography–flame ionisation detector. Fuel, 88(3): 418-423

2.      Dabbagh, H. A., Ghobadi, F., Ehsani, M. R. and Moradmand, M. (2013). The influence of ester additives on the properties of petrol. Fuel, 104:216-223

3.      World's Largest Oil Refineries by Processing Capacity (2021). Available at: https://www.listnbest.com/11-worlds-largest-oil-refineries-processing-capacity/ [Accessed: 22 March 2021]

4.      Chong, C., Ni, W., Ma, L., Liu, P. and Li, Z., (2015). The use of energy in Malaysia: Tracing energy flows from primary source to end-use. Energies, 8(4): 2828-2866.

5.      Westphal, G.A., Krahl, J., Brüning, T., Hallier, E. and Bünger, J. (2010). Ether oxygenate additives in petrol reduce the toxicity of exhausts. Toxicology, 268(3):198-203.

6.      Pinto, V. S., Gambarra-Neto, F. F., Flores, I. S., Monteiro, M. R. and Lião, L. M. (2016). Use of 1H NMR and chemometrics to detect additives present in the Brazilian commercial petrol. Fuel, 182:27-33.

7.      Brito, L. R., da Silva, M. P., Rohwedder, J. J., Pasquini, C., Honorato, F. A. and Pimentel, M. F. (2015). Determination of detergent and dispersant additives in petrol by ring-oven and near-infrared hyperspectral imaging. Analytica Chimica Acta, 863: 9-19.

8.      Demirbas, A., Balubaid, M. A., Basahel, A. M., Ahmad, W. and Sheikh, M. H. (2015). Octane rating of petrol and octane booster additives. Petroleum Science and Technology, 33(11):1190-1197.

9.      Mohamad, T. I. and How, H. G. (2014). Part-load performance and emissions of a spark-ignition engine fueled with RON95 and RON97 petrol: Technical viewpoint on Malaysia's fuel price debate. Energy Conversion and Management, 88: 928-935.

10.   Hamadi, A. S. (2010). Selective additives for improvement of petrol octane number. Tikrit Journal of Engineering Sciences, 17(2): 22-35.

11.   Lim, A. (2020). Petronas Primax 97 with Pro-Race launched - world's first Advanced Dual Friction Modifier for more power - paultan.org. [Accessed 13 May 2021].

12.   DYNAFLEX Technology (2021). [Accessed 13 September 2021].

13.   Gabriel, G. F., Ismail,Osman, K. and Noor Hazfalinda, H. (2017). The analysis of thermal decomposition products generated from porcine tissues exposed to outdoor burning conditions. Malaysian Journal of Analytical Sciences, 21(3): 585-596.

14.   Jabatan bomba dan Penyelamat (2018). Laporan tahunan 2018, Malaysia.

15.   Gonzalez-Rodriguez, J., Sissons, N. and Robinson, S. (2011). Fire debris analysis by Raman spectroscopy and chemometrics. Journal of Analytical and Applied Pyrolysis, 91(1): 210-218.

16.   Stauffer, E., Dolan, J. A. and Newman, R. (2007). Fire debris analysis. Academic Press. Amsterdam.

17.   Malaysian Meterology Department Official Website  (2021). Available at: https://www.met.gov.my/?lang=en# (Accessed: 20 March 2020).

18.   Lim, P. W., Abdullah, A. F. L., Chang, K. H. (2018). Forensic gas chromatography analysis of time elapsed petrol in fire scene investigation. Malaysian Journal of Analytical Sciences22(1): 72-79.

19.   Samri, M. A. S. and Chang, K. H. (2016). Gas chromatography based forensic analysis of petrol from burnt carpets retrieved using different fire extinguishing methods. Malaysian Journal of Forensic Sciences, 7(1): 39-44.

20.   Kunashegaran, H. (2010) Chemometric approach for the discrimination of petroleum-based accelerants from fire debris. Thesis of Master degree, Faculty of Science, Universiti Teknologi Malaysia.

21.   Jais, F. I., Mastura, S., Mahat, N.A., Ismail, D. and Mohamad, M. N, (2020). Forensic analysis of accelerant on different fabrics using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics techniques. Malaysian Journal of Medical Health Sciences, 16(2): 1-6.

22.   Abu Hassan @ Mohamad, R. (2013). Determination of chemical fingerprint of RON 95 commercial petrol in Malaysia by chemometric analysis, Thesis of Masters degree, Universiti Kebangsaan Malaysia.

23.   Dhabbah, A. M. (2018). Detection of petrol residues in natural and synthetic textiles before and after burning using SPME and GC-MS. Australian Journal of Forensic Sciences 52(2): 194-207.

24.   Cacho, J. I., Campillo, N., Aliste, M., Viñas, P. and Hernández-Córdoba, M. (2014). Headspace sorptive extraction for the detection of combustion accelerants in fire debris. Forensic science international 238: 26-32.

25.   Xiao, L., Stern, W. and Maynard, P. (2014). Ignitable liquids in fire debris investigation: A GC-MS practical for forensic chemistry. Australian Journal of Education in Chemistry 73: 29.

26.   Desa, W. N. M., Daéid, N. N., Ismail, D. and Savage, K. (2010). Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels. Analytical Chemistry, 82(15): 6395-6400.

27.   Mat-Desa, W. N., Ismail, D. and NicDaeid, N. (2011). Classification and source determination of medium petroleum distillates by chemometric and artificial neural networks: A self-organising feature approach. Analytical Chemistry, 83(20): 7745-7754.

28.   Krüger, S., Deubel, J. H., Werrel, M., Fettig, I. and Raspe, T. (2015). Experimental studies on the effect of fire accelerants during living room fires and detection of ignitable liquids in fire debris. Fire and Materials 39(7): 636-646.

29.   Sarker, M. (2011). Alternative fuels derived from solid waste plastics. Journal of Environmental Science and Engineering 5(3): 316-322.

30.   Sarker, M., Rashid, M. M., Zaman, A. and Molla, M. (2011). Generation of transportation fuel from solid municipal waste plastics. Journal of Environmental Science and Engineering, 5(1): 57-62.

31.   Sarker, M., Rashid, M. M. and Molla, M. (2011). New alternative vehicle hydrocarbon liquid fuels from municipal solid waste plastics. Journal of Fundamentals of Renewable Energy and Applications, 1: 1-9.

32.   Mack, J. H., Rapp, V. H., Broeckelmann, M., Lee, T. S. and Dibble, R.W. (2014). Investigation of biofuels from microorganism metabolism for use as antiknock additives. Fuel, 117: 939-943.

33.   Oseev, A., Zubtsov, M. and Lucklum, R. (2012). Octane number determination of petrol with a photonic crystal sensor. Procedia Engineering 47: 1382-1385.

34.   Xin, J., Yan, D., Ayodele, O., Zhang, Z., Lu, X. and Zhang, S. (2015). Conversion of biomass-derived valerolactone into high octane number petrol with an ionic liquid. Green Chemistry, 17(2):1065-1070.

35.   Soto, R., Fité, C., Ramírez, E., Bringué, R. and Cunill, F. (2014). Equilibrium of the simultaneous etherification of isobutene and isoamylenes with ethanol in liquid-phase. Chemical Engineering Research and Design, 92(4):644-656.

36.   Vazquez-Esparragoza, J. J., Iglesias-Silva, G.A., Hlavinka, Soto, R., Fité, C., Ramírez, E., Bringué, R. and Cunill, F. (2014). Equilibrium of the simultaneous etherification of isobutene and isoamylenes with ethanol in liquid-phase. Chemical Engineering Research and Design, 92(4): 644-656.

37.   Hajipour, S., Satyro, M. A. and Foley, M. W. (2014). Uncertainty analysis applied to thermodynamic models and fuel properties–natural gas dew points and petrol reid vapor pressures. Energy & Fuels 28(2): 1569-1578.

38.   Vazquez-Esparragoza, J. J., Iglesias-Silva, G. A., Hlavinka, M.W. and Bullin, JA (1992). How to estimate Reid vapour pressure (RVP) of blends. Bryan Research & Engineering, Inc., website, Encyclopedia of Chemical Processing and Design, 47: 415-424.

39.   Finlayson-Pitts, B. J. and Pitts Jr, J. N. (1993). Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications. Air & Waste, 43(8): 1091-1100.

40.   Rihko-Struckmann, L. K., Linnekoski, J. A., Krause, A. O. I. and Pavlov, O. S. (2000). Vapour-liquid and chemical reaction equilibria in the synthesis of 2-methoxy-2-methylbutane (TAME). Journal of Chemical & Engineering Data, 45(6):1030-1035.

41.   Bumbac, G., Plesu, V., Ciornei, C. and Plesu, A.E. (2014). Modelling and simulation the process in a reactive dividing wall column for petrol additive TAME synthesis in the oil refinery. Klemes, J. (Ed.),  Chemical  Engineering  Transactions, 12: 1-6.

42.   Nadeina, K. A., Klimov, O.V., Pereima, V. Y., Koryakina, G. I., Danilova, I. G., Prosvirin, I. P., Gerasimov, E.Y., Yegizariyan, A. M. and Noskov, A. S. (2016). Catalysts based on amorphous aluminosilicates for selective hydrotreating of FCC petrol to produce Euro-5 petrol with minimum octane number loss. Catalysis Today, 271: 4-15.

43.   Barnett, I. and Zhang, M. (2018). Discrimination of brands of petrol by using DART-MS and chemometrics. Forensic Chemistry, 10: 58-66.

44.   Baerncopf, J. M., McGuffin, V. L. and Smith, R.W. (2011). Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures. Journal of Forensic Sciences, 56(1): 70-81.

45.   Liu, S.J., Wang, Y. H. and Yu, L. L. (2013). Study on timeliness of petrol analysis adsorbed in cotton cloth carrier. Advanced Materials Research, 616: 881-884.

46.   Sandercock, P. M. L. (2008). Fire investigation and ignitable liquid residue analysis - a review: 2001–2007. Forensic Science International 176(2-3):93-110

47.   Price, D. and Horrocks, A. R. (2013). Combustion Processes of Textile Fibres, in Handbook of Fire-Resistant Textiles. 1st ed.:Woodhead Publishing.

48.   Kilinc, F. S. (2013). Handbook of Fire-Resistant Textiles. 1st edition: Woodhead Publishing Limited.

49.   Pert, A. D., Baron, M. G. and Birkett, J.W. (2006). Review of analytical techniques for arson residues. Journal of Forensic Sciences, 51(5): 1033-1049.