Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 848 - 857

 

 

 

 

CHITOSAN-LIGNIN COMPOSITE FOR RECOVERY OF LANTHANUM (III) IONS FROM AQUEOUS SOLUTIONS

 

(Kitosan-Lignin Komposit untuk Perolehan Semula Lanthanum (III) Ion Dari Larutan Akueus)

 

Shariff Ibrahim1*, Nur Shuhaidah Shamsul Kamal1, Megat Ahmad Kamal Megat Hanafiah2, Noorul Farhana Md Ariff1, Sabiha Hanim Saleh1

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 264000 Jengka, Pahang, Malaysia

 

*corresponding author:  sha88@uitm.edu.my

 

 

Received:  5 July 2021; Accepted: 6 October 2021; Published:  25 October 2021

 

 

Abstract

A chitosan-lignin composite was prepared, characterised, and applied as an effective adsorbent to recover precious rare earth La(III) ions. The characterisation studies revealed that the chitosan-lignin composite consisted of slightly acidic groups, as both pHZPC and pH of the slurry were 6.17 and 5.47, respectively. The specific surface area of the composite was found to be 1.41 m² g-1 using Brunauer Emmett Teller (BET), which was lower than the raw chitosan surface area. The FTIR spectrum showed the disappearance of the primary amine peak of chitosan at 1648 cm-1 due to interaction with the benzene ring in lignin. Factors influencing La(III) adsorption behaviour include the pH of the solution, adsorbent dosage, concentration, and contact time. The maximum adsorption of La(III) was at pH 4 with an adsorbent dosage of 0.5 g L-1. The Langmuir isotherm model fitted well to the experimental isotherm data, with R2 = 0.99. The maximum adsorption capacity of the chitosan-lignin composite was 500 mg g-1 at 300 K. A competitive ion experiment revealed Ce(III) ions, another lanthanide group member, adsorbed more than La(III) when both metal ions were mixed in a binary system. Maximum desorption of 90% La(III) was noted with Na2EDTA as the desorbing agent.

 

Keywords:  adsorption, composite, chitosan, lignin, kinetics

 

Abstrak

Komposit kitosan-lignin disediakan, dicirikan, dan digunakan sebagai penjerap yang berkesan untuk pengambilan semula ion La(III) nadir bumi. Kajian pencirian menunjukkan bahawa komposit kitosan-lignin terdiri daripada kumpulan yang sedikit berasid kerana kedua-dua pHzpc dan pH buburan masing-masing adalah 6.17 dan 5.47. Luas permukaan komposit yang spesifik didapati 1.41 m² g-1 menggunakan Brunauer Emmett Teller (BET), iaitu lebih rendah daripada luas permukaan kitosan mentah. Spektrum FTIR menunjukkan hilangnya puncak kitosan amina primer pada 1648 cm-1 kerana interaksi dengan cincin benzena di lignin. Faktor-faktor yang mempengaruhi tingkah laku penjerapan La(III) termasuk pH larutan, dos penjerap, kepekatan, dan masa sentuhan. Penjerapan maksimum La(III) berlaku pada pH 4 dengan dos penjerap 0.5 g L-1. Model isoterma Langmuir sesuai dengan data isoterma eksperimen dengan pekali regresi R2 = 0.99. Kapasiti penjerapan maksimum komposit kitosan-lignin ialah 500 mg g-1 pada 300 K. Eksperimen persaingan ion mendedahkan Ce(III), iaitu ahli kumpulan lantanida lain, dijerap lebih banyak berbanding La(III) ketika kedua-dua ion logam tersebut bercampur dalam sistem binari. Nyahjerapan maksimum La(III) mencatatkan 90% dengan Na2EDTA sebagai agen penyahjerapan.

 

Kata kunci:  penjerapan, komposit, kitosan, lignin, kinetik

 

References

1.      Iftekhar, S., Ramasamy, D. L., Srivastava, V., Asif, M. B. and Sillanpää, M. (2018). Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. Chemosphere 204: 413-430.

2.      Awwad, N., Gad, H., Ahmad, M. and Aly, H. (2010). Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk. Colloids and Surfaces B: Biointerfaces, 81(2): 593-599.

3.      Zhao, F., Repo, E., Meng, Y., Wang, X., Yin, D. and Sillanpää, M. (2016). An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. Journal of Colloid and Interface Science, 465: 215-224.

4.      Srivastava, V. and Sillanpää, M. (2017). Synthesis of malachite@ clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater. Journal of Environmental Sciences, 51: 97-110.

5.      Zhang, D., Crini, G., Lichtfouse, E., Rhimi, B. and Wang, C. (2020). Removal of mercury ions from aqueous solutions by crosslinked chitosan‐based adsorbents: A mini review. The Chemical Record, 20(10): 1220-1234.

6.      Kyzas, G. Z. and Bikiaris, D. N. (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, 13(1): 312-337.

7.      Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z. and Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113: 115-130.

8.      Begum, S., Yuhana, N. Y., Saleh, N. M., Kamarudin, N. N. and Sulong, A. B. (2021). Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydrate Polymers, 259: 117613.

9.      Karimi-Maleh, H., Ayati, A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S., Orooji, Y., Fu, L. and Sillanpää, M. (2021). Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. Journal of Cleaner Production 291: 125880.

10.   Ge, Y. and Li, Z. (2018). Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustainable Chemistry & Engineering, 6(5):  7181-7192.

11.   Guo, X., Zhang, S. and Shan, X. Q. (2008). Adsorption of metal ions on lignin. Journal Of Hazardous Materials, 151(1): 134-142.

12.   Albadarin, A. B., Collins, M. N., Naushad, M., Shirazian, S., Walker, G. and Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307: 264-272.

13.   Fouda-Mbanga, B., Prabakaran, E. and Pillay, K. (2021). Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnology Reports, 2021: e00609.

14.   Nair, V., Panigrahy, A. and Vinu, R. (2014). Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal, 254: 491-502.

15.   Zhang, D., Wang, L., Zeng, H., Rhimi, B. and Wang, C. (2020). Novel polyethyleneimine functionalized chitosan–lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg (ii) ions from aqueous solution. Environmental Science: Nano, 7(3): 793-802.

16.   Lourenço, A. and Pereira, H. (2018). Compositional variability of lignin in biomass. In lignin—trends and applications (Poletto, M. ed). IntechOpen: pp. 65-98.

17.   Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J. and Sulaiman, O. (2019). Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. International Journal of Biological Macromolecules, 132: 1304-1317.

18.   Chen, L., Tang, C.-Y., Ning, N.-Y., Wang, C.-Y., Fu, Q. and Zhang, Q. (2009). Preparation and properties of chitosan/lignin composite films. Chinese Journal of Polymer Science, 27(05): 739-746.

19.   Iftekhar, S., Srivastava, V., Hammouda, S.B. and Sillanpää, M. (2018). Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydrate Polymers, 194: 274-284.

20.   Shojaei, Z., Iravani, E., Moosavian, M. and Torab, M. M. (2016). Removal of cerium from aqueous solutions by amino phosphate modified nano TiO2: kinetic, and equilibrium studies. Iranian Journal of Chemical Engineering, 13(2): 3-21.

21.   Oyewo, O., Onyango, M. and Wolkersdorfer, C. (2018). Lanthanides removal from mine water using banana peels nanosorbent. International Journal of Environmental Science and Technology, 15(6): 1265-1274.

22.   Yanfei, X., Huang, L., Zhiqi, L., Zongyu, F. and Liangshi, W. (2016). Adsorption ability of rare earth elements on clay minerals and its practical performance. Journal of Rare Earths, 34(5): 543-548.

23.   Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9): 1361-1403.

24.   Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1): 385-470.

25.   Ogata, T., Narita, H. and Tanaka, M. (2015). Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy, 152: 178-182.

26.   Vijayaraghavan, K., Sathishkumar, M. and Balasubramanian, R. (2011). Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination, 265(1-3): 54-59.

27.   Awual, M.R., Kobayashi, T., Shiwaku, H., Miyazaki, Y., Motokawa, R., Suzuki, S., Okamoto, Y. and Yaita, T. (2013). Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chemical Engineering Journal, 225: 558-566.

28.   Anastopoulos, I., Bhatnagar, A. and Lima, E. C. (2016). Adsorption of rare earth metals: A review of recent literature. Journal of Molecular Liquids, 221: 954-962.

29.   Ngah, W.W. and Hanafiah, M. (2008). Biosorption of copper ions from dilute aqueous solutions on base treatedrubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms. Journal of Environmental Sciences, 20(10): 1168-1176.

30.   Fang, L., Zhou, C., Cai, P., Chen, W., Rong, X., Dai, K., Liang, W., Gu, J.-D. and Huang, Q. (2011). Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. Journal of Hazardous Materials, 190(1-3): 810-815.

31.   Awwad, N., Daifuallah, A. and Ali, M. (2008). Removal of Pb2+, Cd2+, Fe3+, and Sr2+ from aqueous solution by selected activated carbons derived from date pits. Solvent Extraction and Ion Exchange, 26(6): 764-782.