Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 848 - 857
CHITOSAN-LIGNIN COMPOSITE FOR RECOVERY OF
LANTHANUM (III) IONS FROM AQUEOUS SOLUTIONS
(Kitosan-Lignin
Komposit untuk Perolehan Semula Lanthanum (III) Ion Dari Larutan Akueus)
Shariff Ibrahim1*, Nur
Shuhaidah Shamsul Kamal1, Megat
Ahmad Kamal Megat Hanafiah2, Noorul Farhana Md Ariff1, Sabiha Hanim Saleh1
1School of Chemistry
and Environment, Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Faculty of Applied
Sciences,
Universiti
Teknologi MARA, 264000 Jengka, Pahang, Malaysia
*corresponding
author: sha88@uitm.edu.my
Received: 5 July 2021; Accepted: 6 October 2021;
Published: 25 October 2021
Abstract
A chitosan-lignin composite
was prepared, characterised, and applied as an effective adsorbent to recover
precious rare earth La(III) ions. The characterisation studies revealed that
the chitosan-lignin composite consisted of slightly acidic groups, as both pHZPC
and pH of the slurry were 6.17 and 5.47, respectively. The specific surface
area of the composite was found to be 1.41 m² g-1 using Brunauer
Emmett Teller (BET), which was lower than the raw chitosan surface area. The
FTIR spectrum showed the disappearance of the primary amine peak of chitosan at
1648 cm-1 due to interaction with the benzene ring in lignin.
Factors influencing La(III) adsorption behaviour include the pH of the
solution, adsorbent dosage, concentration, and contact time. The maximum
adsorption of La(III) was at pH 4 with an adsorbent dosage of 0.5 g L-1.
The Langmuir isotherm model fitted well to the experimental isotherm data, with
R2 = 0.99. The maximum adsorption capacity of the chitosan-lignin
composite was 500 mg g-1 at 300 K. A competitive ion experiment
revealed Ce(III) ions, another lanthanide group member, adsorbed more than
La(III) when both metal ions were mixed in a binary system. Maximum desorption
of 90% La(III) was noted with Na2EDTA as the desorbing agent.
Keywords: adsorption,
composite, chitosan, lignin, kinetics
Abstrak
Komposit kitosan-lignin
disediakan, dicirikan, dan digunakan sebagai penjerap yang berkesan untuk
pengambilan semula ion La(III) nadir bumi. Kajian pencirian menunjukkan bahawa
komposit kitosan-lignin terdiri daripada kumpulan yang sedikit berasid kerana
kedua-dua pHzpc dan pH buburan masing-masing adalah 6.17 dan 5.47.
Luas permukaan komposit yang spesifik didapati 1.41 m² g-1
menggunakan Brunauer Emmett Teller (BET), iaitu lebih rendah daripada luas
permukaan kitosan mentah. Spektrum FTIR menunjukkan hilangnya puncak kitosan
amina primer pada 1648 cm-1 kerana interaksi dengan cincin benzena
di lignin. Faktor-faktor yang mempengaruhi tingkah laku penjerapan La(III)
termasuk pH larutan, dos penjerap, kepekatan, dan masa sentuhan. Penjerapan
maksimum La(III) berlaku pada pH 4 dengan dos penjerap 0.5 g L-1.
Model isoterma Langmuir sesuai dengan data isoterma eksperimen dengan pekali
regresi R2 = 0.99. Kapasiti penjerapan maksimum komposit kitosan-lignin
ialah 500 mg g-1 pada 300 K. Eksperimen persaingan ion mendedahkan
Ce(III), iaitu ahli kumpulan lantanida lain, dijerap lebih banyak berbanding
La(III) ketika kedua-dua ion logam tersebut bercampur dalam sistem binari.
Nyahjerapan maksimum La(III) mencatatkan 90% dengan Na2EDTA sebagai
agen penyahjerapan.
Kata
kunci: penjerapan, komposit, kitosan, lignin, kinetik
References
1.
Iftekhar,
S., Ramasamy, D. L., Srivastava, V., Asif, M. B. and Sillanpää, M. (2018). Understanding
the factors affecting the adsorption of Lanthanum using different adsorbents: A
critical review. Chemosphere 204:
413-430.
2.
Awwad,
N., Gad, H., Ahmad, M. and Aly, H. (2010). Sorption of lanthanum and erbium
from aqueous solution by activated carbon prepared from rice husk. Colloids and Surfaces B: Biointerfaces, 81(2):
593-599.
3.
Zhao,
F., Repo, E., Meng, Y., Wang, X., Yin, D. and Sillanpää, M. (2016). An
EDTA-β-cyclodextrin material for the adsorption of rare earth elements and
its application in preconcentration of rare earth elements in seawater. Journal of Colloid and Interface Science, 465:
215-224.
4.
Srivastava,
V. and Sillanpää, M. (2017). Synthesis of malachite@ clay nanocomposite for
rapid scavenging of cationic and anionic dyes from synthetic wastewater. Journal of Environmental Sciences, 51:
97-110.
5.
Zhang,
D., Crini, G., Lichtfouse, E., Rhimi, B. and Wang, C. (2020). Removal of
mercury ions from aqueous solutions by crosslinked chitosan‐based
adsorbents: A mini review. The Chemical
Record, 20(10): 1220-1234.
6.
Kyzas,
G. Z. and Bikiaris, D. N. (2015). Recent modifications of chitosan for
adsorption applications: A critical and systematic review. Marine Drugs, 13(1): 312-337.
7.
Vakili,
M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B.,
Gholami, Z. and Amouzgar, P. (2014). Application of chitosan and its
derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113: 115-130.
8.
Begum,
S., Yuhana, N. Y., Saleh, N. M., Kamarudin, N. N. and Sulong, A. B. (2021). Review
of chitosan composite as a heavy metal adsorbent: Material preparation and
properties. Carbohydrate Polymers, 259:
117613.
9.
Karimi-Maleh,
H., Ayati, A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S.,
Orooji, Y., Fu, L. and Sillanpää, M. (2021). Recent advances in using of
chitosan-based adsorbents for removal of pharmaceutical contaminants: A review.
Journal of Cleaner Production 291: 125880.
10.
Ge, Y.
and Li, Z. (2018). Application of lignin and its derivatives in adsorption of
heavy metal ions in water: a review. ACS
Sustainable Chemistry & Engineering, 6(5): 7181-7192.
11.
Guo,
X., Zhang, S. and Shan, X. Q. (2008). Adsorption of metal ions on lignin. Journal Of Hazardous Materials, 151(1):
134-142.
12.
Albadarin,
A. B., Collins, M. N., Naushad, M., Shirazian, S., Walker, G. and Mangwandi, C.
(2017). Activated lignin-chitosan extruded blends for efficient adsorption of
methylene blue. Chemical Engineering
Journal, 307: 264-272.
13.
Fouda-Mbanga,
B., Prabakaran, E. and Pillay, K. (2021). Carbohydrate biopolymers, lignin
based adsorbents for removal of heavy metals (Cd2+, Pb2+,
Zn2+) from wastewater, regeneration and reuse for spent adsorbents
including latent fingerprint detection: A review. Biotechnology Reports, 2021: e00609.
14.
Nair,
V., Panigrahy, A. and Vinu, R. (2014). Development of novel chitosan–lignin
composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal, 254:
491-502.
15.
Zhang,
D., Wang, L., Zeng, H., Rhimi, B. and Wang, C. (2020). Novel polyethyleneimine
functionalized chitosan–lignin composite sponge with nanowall-network
structures for fast and efficient removal of Hg (ii) ions from aqueous
solution. Environmental Science: Nano, 7(3):
793-802.
16.
Lourenço,
A. and Pereira, H. (2018). Compositional variability of lignin in biomass. In
lignin—trends and applications (Poletto, M. ed). IntechOpen: pp. 65-98.
17.
Sohni,
S., Hashim, R., Nidaullah, H., Lamaming, J. and Sulaiman, O. (2019). Chitosan/nano-lignin
based composite as a new sorbent for enhanced removal of dye pollution from
aqueous solutions. International Journal of
Biological Macromolecules, 132: 1304-1317.
18.
Chen,
L., Tang, C.-Y., Ning, N.-Y., Wang, C.-Y., Fu, Q. and Zhang, Q. (2009). Preparation
and properties of chitosan/lignin composite films. Chinese Journal of Polymer Science, 27(05): 739-746.
19.
Iftekhar,
S., Srivastava, V., Hammouda, S.B. and Sillanpää, M. (2018). Fabrication of
novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite
for adsorption of rare earth elements. Carbohydrate
Polymers, 194: 274-284.
20.
Shojaei,
Z., Iravani, E., Moosavian, M. and Torab, M. M. (2016). Removal of cerium from
aqueous solutions by amino phosphate modified nano TiO2: kinetic,
and equilibrium studies. Iranian Journal of Chemical Engineering, 13(2):
3-21.
21.
Oyewo,
O., Onyango, M. and Wolkersdorfer, C. (2018). Lanthanides removal from mine
water using banana peels nanosorbent. International
Journal of Environmental Science and Technology, 15(6): 1265-1274.
22.
Yanfei,
X., Huang, L., Zhiqi, L., Zongyu, F. and Liangshi, W. (2016). Adsorption
ability of rare earth elements on clay minerals and its practical performance. Journal of Rare Earths, 34(5): 543-548.
23.
Langmuir,
I. (1918). The adsorption of gases on plane surfaces of glass, mica and
platinum. Journal of the American
Chemical Society, 40(9): 1361-1403.
24.
Freundlich,
H. (1907). Über die adsorption in lösungen. Zeitschrift
für physikalische Chemie, 57(1): 385-470.
25.
Ogata,
T., Narita, H. and Tanaka, M. (2015). Adsorption behavior of rare earth
elements on silica gel modified with diglycol amic acid. Hydrometallurgy, 152: 178-182.
26.
Vijayaraghavan,
K., Sathishkumar, M. and Balasubramanian, R. (2011). Interaction of rare earth
elements with a brown marine alga in multi-component solutions. Desalination, 265(1-3): 54-59.
27.
Awual,
M.R., Kobayashi, T., Shiwaku, H., Miyazaki, Y., Motokawa, R., Suzuki, S.,
Okamoto, Y. and Yaita, T. (2013). Evaluation of lanthanide sorption and their
coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chemical Engineering Journal, 225:
558-566.
28.
Anastopoulos,
I., Bhatnagar, A. and Lima, E. C. (2016). Adsorption of rare earth metals: A
review of recent literature. Journal of
Molecular Liquids, 221: 954-962.
29.
Ngah,
W.W. and Hanafiah, M. (2008). Biosorption of copper ions from dilute aqueous
solutions on base treatedrubber (Hevea brasiliensis) leaves powder: kinetics,
isotherm, and biosorption mechanisms. Journal
of Environmental Sciences, 20(10): 1168-1176.
30.
Fang,
L., Zhou, C., Cai, P., Chen, W., Rong, X., Dai, K., Liang, W., Gu, J.-D. and
Huang, Q. (2011). Binding characteristics of copper and cadmium by
cyanobacterium Spirulina platensis. Journal
of Hazardous Materials, 190(1-3): 810-815.
31.
Awwad,
N., Daifuallah, A. and Ali, M. (2008). Removal of Pb2+, Cd2+,
Fe3+, and Sr2+ from aqueous solution by selected
activated carbons derived from date pits. Solvent
Extraction and Ion Exchange, 26(6): 764-782.