Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 831 - 847
ANALYTICAL
COMPARATIVE STUDIES OF ADSORPTION EFFICIENCY OF MCM-41 AND SBA-15 ON REMOVAL OF
ANIONIC-AZO AND CATIONIC DYES FROM AQUEOUS SAMPLE
(Kajian
Perbandingan Analisis Keberkesanan Penjerapan MCM-41 dan SBA-15 untuk Penyingkiran
Pewarna Anionik-Azo dan Kationik Dari Sampel Akueus)
Nur
Zabirah Zabi1, Wan Nazihah Wan Ibrahim1*, Nur
Husna Zainal Abidin1, Siti Syairah Mat Salleh1, Farah
Amira Shahrul Effendi1, Isna Fazliana Mohamed Idrus1,
Hamizah Md Rasid1, Nursyamsyila Mat Hadzir1, Nor Suhaila
Mohamad Hanapi1, Mazhani Muhammad2
1
School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Centre of Foundation
Studies (CFS),
Universiti Teknologi
MARA, 438000 Dengkil Campus, Selangor, Malaysia
*Corresponding
author: wannazihah@uitm.edu.my
Received: 29 June 2021;
Accepted: 15 August 2021; Published: 25 October
2021
Abstract
Mobil Composition of Matter No. 41
(MCM-41) and Santa Barbara Amorphous (SBA-15), a type of mesoporous
adsorbents, were successfully prepared
via mixed cationic-neutral templating route and sol-gel method, respectively.
Analytically, the prepared materials were compared to remove anionic azo
(methyl orange) and cationic dyes (methylene blue) from highly colored
solutions. Both adsorbents were characterized using Fourier transform infrared
(FTIR), field emission scanning electron microscopy (FESEM), and nitrogen
adsorption/desorption to enhance the understanding of structure and surface
properties. To assess the efficiency of the prepared adsorbents, the pH of the
sample, the initial concentration of the dyes, and contact time were studied.
At optimum conditions, maximum adsorption capacities for methyl orange (MO) and
methylene blue (MB) using MCM-41 were 4.757 mg/g and 16.00 mg/g and for SBA-15
the maximum adsorption capacities were 20.212 mg/g and 10.45 mg/g,
respectively. Furthermore, Langmuir and Freundlich isotherm models were
selected to describe the adsorption process while pseudo-first-order and
pseudo-second-order kinetics equations were applied to determine the adsorption
kinetics. The obtained results showed that SBA-15 can remove both dyes 38.53% better
than MCM-41 due to higher surface area, which was 507 m2/g compared
to 436 m2/g for MCM-41.
Keywords:
cationic dyes, anionic dyes, adsorption,
mesoporous silica
Abstrak
Komposisi
Mobil Perkara 41 (MCM-41) dan Santa Barbara Amorfous (SBA-15) jenis penjerap
mesopori berjaya disediakan melalui kaedah templat neutral kationik-neutral dan
kaedah sol-gel. Bahan yang disediakan dibandingkan secara analitikal untuk
mengeluarkan pewarna azo anionik (oren metil) dan pewarna kationik (biru
metilena) dari larutan yang sangat berwarna. Kedua-dua penjerap dicirikan
menggunakan inframerah jelmaan Fourier (FTIR), mikroskopi elektron pengimbasan
pelepasan medan (FESEM) dan penjerapan/penyahjerapan nitrogen untuk
meningkatkan pemahaman mengenai sifat struktur dan permukaan. Untuk menilai
kecekapan penjerap yang telah disediakan, tiga parameter telah dikaji iaitu pH
sampel, kepekatan awal pewarna dan masa penyentuhan. Pada keadaan optimum, kapasiti
penjerapan maksimum untuk metil oren (MO) dan metilena biru (MB) menggunakan
MCM-41 ialah 4.757 mg/g dan 16.00 mg/g dan untuk SBA-15 kapasiti penjerapan
maksimum ialah 20.212 mg/g dan 10.45 mg/g masing-masing. Selanjutnya, model
isoterm Langmuir dan Freundlich dipilih untuk menggambarkan proses penjerapan
sementara persamaan kinetik turutan-pseudo-pertama dan turutan-pseudo-kedua
digunakan untuk menentukan kinetik penjerapan. Hasil perolehan menunjukkan
bahawa SBA-15 dapat menyerap kedua-dua pewarna 38.53% lebih baik daripada
MCM-41 kerana luas permukaannya yang lebih tinggi iaitu 507 m2/g
berbanding dengan 436 m2/g untuk MCM-41.
Kata
kunci: pewarna kation, pewarna anion, penjerapan, silika
mesopori
References
1.
Liang, C. Z., Sun, S. P.,
Li, F. Y., Ong, Y. K. and Chung, T. S. (2014). Treatment of highly concentrated
wastewater containing multiple synthetic dyes by a combined process of
coagulation/flocculation and nanofiltration. Journal of Membrane Science,
469: 306-315.
2.
Forster, S. V. and
Christie, R. M. (2013). The sifnificance of the introduction of synthetic dyes
in the mid 19th century on the democratisation of western fashion. Journal
of the International Colour Association, 11: 1-17.
3.
Ratna nd Padhi, B. S.
(2012). Pollution due to synthetic dyes toxicity and carcinogenecity studies
and remediation. International Journal of Environmental Sciences, 3(3):
940-947.
4.
Kausar, A., Iqbal, M.,
Javed, A., Aftab, K., Nazli, Z.-i.-H., Bhatti, H. N. and Nouren, S. (2018).
Dyes adsorption using clay and modified clay: A review. Journal of Molecular
Liquids, 256: 395-407.
5.
Lafi, R. and Hafiane, A.
(2016). Removal of methyl orange (MO) from aqueous solution using cationic
surfactants modified coffee waste (MCWs). Journal of the Taiwan Institute of
Chemical Engineers, 58: 424-433.
6.
Elbanna, K., Sarhan, O.
M., Khider, M., Elmogy, M., Abulreesh, H. H. and Shaaban, M. R. (2017).
Microbiological, histological, and biochemical evidence for the adverse effects
of food azo dyes on rats. Journal of Food and Drug Analysis, 25(3):
667-680.
7.
Weglarz-Tomczak, E. and
Gorecki, L. (2012). Azo dyes-biological activity and synthetic strategy. Chemik
Science-Technique-Market, 66(12): 1298-1307.
8.
Percy, A. J., Moore, N.
and Chipman, J. K. (1989). Formation of nuclear anomalies in rat intestine by
benzidine and its biliary metabolites. Toxicology, 57: 217-233.
9.
Nasuha, N., Hameed, B. H.
and Din, A. T. (2010). Rejected tea as a potential low-cost adsorbent for the
removal of methylene blue. Journal of Hazardous Materials, 175(1-3):
126-132.
10.
Rafatullah, M., Sulaiman,
O., Hashim, R. and Ahmad, A. (2010). Adsorption of methylene blue on low-cost
adsorbents: a review. Journal of Hazardous Materials, 177(1-3): 70-80.
11.
Nidheesh, P. V., Zhou, M.
and Oturan, M. A. (2018). An overview on the removal of synthetic dyes from
water by electrochemical advanced oxidation processes. Chemosphere, 197:
210-227.
12.
Moradi, G.,
Zinadini, S. and Rajabi, L. (2020). Development of high flux nanofiltration
membrane using para-amino benzoate ferroxane nanoparticle for enhanced
antifouling behavior and dye removal. Process Safety and Environmental
Protection, 144: 65-78.
13.
Hussein, T.
K. and Jasim, N. A. (2021). A comparison study between chemical coagulation and
electro-coagulation processes for the treatment of wastewater containing
reactive blue dye. Materials Today: Proceedings, 42(5): 1946-1950.
14.
Abid, M. F.,
Zablouk, M. A. and Abid-Alameer, A. M. (2012). Experimental study of dye
removal from industrial wastewater by membrane technologies of reverse osmosis
and nanofiltration. Iranian Journal of Environmental Health Science
& Engineering, 9(1): 17.
15.
Chen, W.,
Sun, F., Zhu, Z., Min, Z. and Li, W. (2014). Nanoporous SnO2 prepared by a
photochemical strategy: Controlling of specific surface area and photocatalytic
activity in degradation of dye pollutants. Microporous and Mesoporous
Materials, 186: 65-72.
16.
Yang, Z.,
Asoh, T. A. and Uyama, H. (2019). Removal of cationic or anionic dyes from
water using ion exchange cellulose monoliths as adsorbents. Bulletin of
the Chemical Society of Japan, 92(9): 1453-1461.
17.
Pathania, D., Sharma, S.
and Singh, P. (2013). Removal of methylene blue by adsorption onto activated
carbon developed from Ficus carica bast. Arabian Journal of
Chemistry, 10: S1445-S1451.
18.
Wang, J. and
Zhuang, S. (2017). Removal of various pollutants from water and wastewater by
modified chitosan adsorbents. Critical Reviews in Environmental Science
and Technology, 47(23): 2331-2386.
19.
Abdul Karim,
S. K., Lim, S.-F., Chua, D., Shanti Faridah, S. and Puong Ling, L. (2018).
Removal of crystal violet and acid green dye in aqueous solution using banana
plant-derived sorbents. Malaysian Journal of Analytical Sciences, 22(1):
115-122.
20.
Sumari, S.
M., Hamzah, Z. and Kantasamy, N. (2016). Adsorption of anionic dyes from
aqueous solutions by calcined and uncalcined Mg/Al layered double
hydroxide. Malaysian Journal of Analytical Science, 20(4),
777-792.
21. Wang, Y., Zhang, C., Zhao,
L., Meng, G., Wu, J. and Liu, Z. (2017). Cellulose-based porous adsorbents with
high capacity for methylene blue adsorption from aqueous solutions. Fibers
and Polymers, 18(5): 891-899.
22. Guo, F., Jiang, X., Li,
X., Jia, X., Liang, S. and Qian, L. (2020). Synthesis of MgO/Fe3O4
nanoparticles embedded activated carbon from biomass for high-efficient
adsorption of malachite green. Materials Chemistry and Physics, 240:
122240.
23.
Islam, M. A.,
Ahmed, M. J., Khanday, W. A., Asif, M. and Hameed, B. H. (2017). Mesoporous
activated coconut shell-derived hydrochar prepared via hydrothermal
carbonization-NaOH activation for methylene blue adsorption. Journal of
Environmental Management, 203: 237-244.
24. Jiang, C., Wang, X., Qin,
D., Da, W., Hou, B., Hao, C. and Wu, J. (2019). Construction of magnetic
lignin-based adsorbent and its adsorption properties for dyes. Journal
of Hazardous Materials, 369: 50-61.
25.
Kantasamy, N.
and Sumari, S. M. (2016). Equilibrium and thermodynamic studies of anionic dyes
removal by an anionic clay-layered double hydroxide. Malaysian Journal
of Analytical Sciences, 20(2): 358-364.
26. Qu, W., He, D., Huang,
H., Guo, Y., Tang, Y. and Song, R. J. (2020). Characterization of
amino-crosslinked hypromellose and its adsorption characteristics for methyl
orange from water. Journal of Materials Science, 55(17):
7268-7282.
27.
Yang, X. J.,
Zhang, P., Li, P., Li, Z., Xia, W., Zhang, H., Di, Z., Wang, M., Zhang, H. and
Niu, Q. J. (2019). Layered double hydroxide/polyacrylamide nanocomposite hydrogels:
Green preparation, rheology and application in methyl orange removal from
aqueous solution. Journal of Molecular Liquids, 280: 128-134.
28. Wang, D., Shen, H., Guo,
L., Wang, C. and Fu, F. (2016). Porous BiOBr/Bi2MoO6 heterostructures for
highly selective adsorption of methylene blue. ACS Omega, 1(4):
566-577.
29.
Gibson, L. T.
(2014). Mesosilica materials and organic pollutant adsorption: part B removal
from aqueous solution. Chemistry Society Reviews, 43(15):
5173-5182.
30. Boukoussa, B., Hakiki,
A., Moulai, S., Chikh, K., Kherroub, D. E., Bouhadjar, L., Guedal, D.,
Messaoudi, K., Mokthar, F. and Hamacha, R. (2018). Adsorption behaviors of
cationic and anionic dyes from aqueous solution on nanocomposite
polypyrrole/SBA-15. Journal of Materials Science, 53(10):
7372-7386.
31.
Kresge, C. T., Leonowicz,
M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S. (1992). Ordered mesoporous
sieves synthesised by a liquid-crystal template mechanism. Nature, 359:
710-712.
32.
Björk, E. M.
(2016). Synthesizing and characterizing mesoporous silica SBA-15: A hands-on
laboratory experiment for undergraduates using various instrumental
techniques. Journal of Chemical Education, 94(1): 91-94.
33.
Sabri, A. A., Albayati, T. M. and Alazawi, R. A.
(2015). Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene
blue. Korean Journal of Chemical
Engineering, 32(9):
1835-1841.
34. Alothman, Z. (2012). A
review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12):
2874-2902.
35.
Xiao, X., Zhang, F.,
Feng, Z., Deng, S. and Wang, Y. (2015). Adsorptive removal and kinetics of
methylene blue from aqueous solution using NiO/MCM-41 composite. Physica E:
Low-dimensional Systems and Nanostructures, 65: 4-12.
36.
Diagboya, P. N. E. and
Dikio, E. D. (2018). Silica-based mesoporous materials; emerging designer
adsorbents for aqueous pollutants removal and water treatment. Microporous
and Mesoporous Materials, 266: 252-267.
37.
Kamaruzaman, S., Sanagi,
M. M., Endud, S., Wan Ibrahim, W. A. and Yahaya, N. (2013). MCM-41 solid phase
membrane tip extraction combined with liquid chromatography for the
determination of non-steroidal anti-inflammatory drugs in human urine. Journal
of Chromatography B, 940: 59-65.
38.
Ab Rahman, N. B., Rashid,
H. M., Hassan, H. M. and Jalil, M. N. (2016). Synthesis and characterization of
mesoporous silica MCM-41 and SBA-15 from power plant bottom ash. Malaysian
Journal of Analytical Sciences, 20(3): 539-545.
39. Yuan, N., Cai, H., Liu,
T., Huang, Q. and Zhang, X. (2019). Adsorptive removal of methylene blue from
aqueous solution using coal fly ash-derived mesoporous silica material. Adsorption
Science & Technology, 37(3-4): 333-348.
40.
Rizzi, V.,
Romanazzi, F., Gubitosa, J., Fini, P., Romita, R., Agostiano, A., Petrella, A.,
Cosma, P. (2019). Chitosan film as eco-friendly and recyclable bio-adsorbent to
remove/recover diclofenac, ketoprofen, and their mixture from wastewater. Biomolecules, 9(10):
571.
41. Rizzi, V., Gubitosa, J.,
Fini, P., Nuzzo, S. and Cosma, P. (2020). Amino-grafted mesoporous MCM-41 and
SBA-15 recyclable adsorbents: Desert-rose-petals-like SBA-15 type as the most
efficient to remove azo textile dyes and their mixture from water. Sustainable
Materials and Technologies, 26: e00231.
42.
Morsi, R. E. and Mohamed,
R. S. (2018). Nanostructured mesoporous silica: influence of the preparation
conditions on the physical-surface properties for efficient organic dye uptake. Royal Society Open Science, 5(3):
172021.
43.
Shu, Y., Shao, Y., Wei,
X., Wang, X., Sun, Q., Zhang, Q. and Li, L. (2015). Synthesis and
characterization of Ni-MCM-41 for methyl blue adsorption. Microporous and
Mesoporous Materials, 214: 88-94.
44.
Loganathan,
S., Tikmani, M. and Ghoshal, A. K. (2013). A novel pore-expanded MCM-41 for CO2
capture: Synthesis and characterization. Langmuir, 29(10):
3491-3499.
45.
He, R., Wang, Z., Tan, L., Zhong, Y., Li, W., Xing, D.,
Wei, C. and Tang, Y. (2018). Design and fabrication of highly ordered ion
imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of
Ni2+ from different properties of wastewaters. Microporous and
Mesoporous Materials, 257: 212-221.
46.
Ruthstein,
S., Frydman, V., Kababya, S., Landau, M. and Goldfarb, D. (2003). Study of the
formation of the mesoporous material SBA-15 by EPR spectroscopy. The
Journal of Physical Chemistry B, 107(8): 1739-1748.
47.
Ghorbani, F., Habibollah,
Y., Mehraban, Z., Çelik, M. S., Ghoreyshi, A. A. and Anbia, M. (2013).
Preparation and characterization of highly pure silica from sedge as
agricultural waste and its utilization in the synthesis of mesoporous silica
MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 44(5):
821- 828.
48.
Veregue, F.
R., de Lima, H. H. C., Ribeiro, S. C., Almeida, M. S., da Silva, C. T. P.,
Guilherme, M. R. and Rinaldi, A. W. (2020). MCM-41/chondroitin sulfate hybrid
hydrogels with remarkable mechanical properties and superabsorption of
methylene blue. Carbohydrate Polymers, 247: 116558.
49.
Akpotu, S. O. and
Moodley, B. (2018). Application of as-synthesised MCM-41 and MCM-41 wrapped
with reduced graphene oxide/graphene oxide in the remediation of acetaminophen
and aspirin from aqueous system. Journal
of Environmental Economics and Management,
209: 205-215.
50.
Björk, E. M. (2013). Mesoporous building blocks –
synthesis and characterization of mesoporous silica particles and films.
Doctoral dissertation, Linköping
University, Sweden.
51.
Thommes, M.,
Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol,
J. and Sing, K. S. W. (2015). Physisorption of gases, with special reference to
the evaluation of surface area and pore size distribution (IUPAC Technical
Report). Pure and Applied Chemistry, 87(9-10): 1051-1069.
52.
Zhu, C., Xia,
Y., Zai, Y., Dai, Y., Liu, X., Bian, J., Liu, Y., Liu, J. and Li, G. (2019).
Adsorption and desorption behaviors of HPEI and thermoresponsive HPEI based
gels on anionic and cationic dyes. Chemical Engineering Journal, 369:
863-873.
53.
Alkan,
M., Demirbas, O. and Dogan, M. (2004). Removal of Acid Yellow 49 from aqueous
solution by adsorption. Fresenius
Environmental Bulletin, 13(11): 1121.
54.
Fil, B. A.,
Ozmetin, C. and Korkmaz, M. (2012). Cationic dye (methylene blue) removal from
aqueous solution by montmorillonite. Bulletin of the Korean Chemical
Society, 33(10): 3184-3190.
55.
Ansari, R.
and Mosayebzadeh, Z. (2010). Removal of basic dye methylene blue from aqueous
solutions using sawdust and sawdust coated with polypyrrole. Journal of
the Iranian Chemical Society, 7(2): 339-350.
56.
Bharathi, K.
S. and Ramesh, S. T. (2013). Removal of dyes using agricultural waste as
low-cost adsorbents: a review. Applied Water Science, 3(4):
773-790.
57.
Özdemir, Y.,
Doğan, M. and Alkan, M. (2006). Adsorption of cationic dyes from aqueous
solutions by sepiolite. Microporous and Mesoporous Materials, 96(1-3):
419-427.
58.
Yagub, M. T., Sen, T. K.,
Afroze, S. and Ang, H. M. (2014). Dye and its removal from aqueous solution by
adsorption: A review. Advances in Colloid
and Interface Science, 209: 172-184.
59. Huang, R., Liu, Q., Huo,
J. and Yang, B. (2017). Adsorption of methyl orange onto protonated
cross-linked chitosan. Arabian Journal of Chemistry, 10(1):
24-32.
60.
El-Gamal, S. M. A., Amin, M. S. and Ahmed, M. A. (2015). Removal
of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s
cement nanoparticles. Journal of Environmental Chemical Engineering, 3(3):
1702-1712.
61. Melo, B. C., Paulino, F.
A. A., Cardoso, V. A., Pereira, A. G. B., Fajardo, A. R. and Rodrigues, F. H.
A. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity
of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181,
358–367.
62.
Albayati, T.
M., Alwan, G. M. and Mahdy, O. S. (2016). High performance methyl orange
capture on magnetic nanoporous MCM-41 prepared by incipient wetness
impregnation method. Korean Journal of Chemical Engineering, 34(1),
259–265.
63.
Brdar, M.,
Šćiban, M., Takači, A. and Došenović, T. (2012). Comparison of
two and three parameters adsorption isotherm for Cr(VI) onto Kraft
lignin. Chemical Engineering Journal, 183: 108-111.
64.
Qin, Q., Ma, J. and Liu,
K. (2009). Adsorption of anionic dyes on ammonium-functionalized MCM-41. Journal of
Hazardous Materials, 162(1):
133-139.
65.
Juang, L. C., Wang, C. C.
and Lee, C. K. (2006). Adsorption of basic dyes onto MCM41. Chemosphere, 64(11):
1920-1928.
66.
Mirzaie, M.,
Rashidi, A., Tayebi, H.-A. and Yazdanshenas, M. E. (2017). Removal of anionic
dye from aqueous media by adsorption onto SBA-15/polyamidoamine dendrimer
hybrid: Adsorption equilibrium and kinetics. Journal of Chemical &
Engineering Data, 62(4): 1365-1376.
67.
Bardajee, G. R., Hooshyar, Z. and Shahidi, F. E.
(2015). Synthesis and characterization of a novel Schiff-base/SBA-15 nanoadsorbent
for removal of methylene blue from aqueous solutions. International Journal
of Environmental Science and Technology, 12(5): 1737-1748.
68. Jalil,
M. N. (2011). The preparation and characterisation of mesoporous films for
electrochemical applications. Doctoral dissertation, University of Manchester,
United Kingdom.
69. Yusmaniar, Y., Erdawati,
E., Ghifari, Y. F. and Ubit, D. P. (2020). Synthesis of mesopore silica
composite from rice husk with activated carbon from coconut shell as absorbent
methyl orange color adsorbent. IOP Conference Series: Materials Science
and Engineering, 830: 032078.
70. Ge, S., Geng, W., He, X.,
Zhao, J., Zhou, B., Duan, L., Wu, Y. and Zhang, Q. (2018). Effect of framework
structure, pore size and surface modification on the adsorption performance of
methylene blue and Cu2+ in mesoporous silica. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 539: 154-162.
71. Nazar de Souza, A. P.,
Licea, Y. E., Colaço, M. V., Senra, J. D. and Carvalho, N. M. F. (2021). Green
iron oxides/amino-functionalized MCM-41 composites as adsorbent for anionic azo
dye: Kinetic and isotherm studies. Journal of Environmental Chemical
Engineering, 9(2): 105062.
72.
Ngulube, T.,
Gumbo, J. R., Masindi, V. and Maity, A. (2018). Calcined magnesite as an adsorbent
for cationic and anionic dyes: characterization, adsorption parameters,
isotherms and kinetics study. Heliyon, 4(10): e00838.
73.
Sun, C. Y.,
Wang, X. L., Qin, C., Jin, J. L., Su, Z. M., Huang, P. and Shao, K. Z. (2013).
Solvatochromic behavior of chiral mesoporous metal-organic frameworks and their
applications for sensing small molecules and separating cationic dyes. Chemistry
- A European Journal, 19(11): 3639-3645.
74.
de Oliveira
Brito, S. M., Andrade, H. M. C., Soares, L. F. and de Azevedo, R. P. (2010).
Brazil nut shells as a new biosorbent to remove methylene blue and indigo
carmine from aqueous solutions. Journal of Hazardous Materials,
174 (1-3): 84-92.