Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 831 - 847

 

 

 

 

ANALYTICAL COMPARATIVE STUDIES OF ADSORPTION EFFICIENCY OF MCM-41 AND SBA-15 ON REMOVAL OF ANIONIC-AZO AND CATIONIC DYES FROM AQUEOUS SAMPLE

 

(Kajian Perbandingan Analisis Keberkesanan Penjerapan MCM-41 dan SBA-15 untuk Penyingkiran Pewarna Anionik-Azo dan Kationik Dari Sampel Akueus)

 

Nur Zabirah Zabi1, Wan Nazihah Wan Ibrahim1*, Nur Husna Zainal Abidin1, Siti Syairah Mat Salleh1, Farah Amira Shahrul Effendi1, Isna Fazliana Mohamed Idrus1, Hamizah Md Rasid1, Nursyamsyila Mat Hadzir1, Nor Suhaila Mohamad Hanapi1, Mazhani Muhammad2

 

1 School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre of Foundation Studies (CFS),

Universiti Teknologi MARA, 438000 Dengkil Campus, Selangor, Malaysia

 

*Corresponding author:  wannazihah@uitm.edu.my

 

 

Received:  29 June 2021; Accepted: 15 August 2021; Published:  25 October 2021

 

 

Abstract

Mobil Composition of Matter No. 41 (MCM-41) and Santa Barbara Amorphous (SBA-15), a type of mesoporous adsorbents,  were successfully prepared via mixed cationic-neutral templating route and sol-gel method, respectively. Analytically, the prepared materials were compared to remove anionic azo (methyl orange) and cationic dyes (methylene blue) from highly colored solutions. Both adsorbents were characterized using Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and nitrogen adsorption/desorption to enhance the understanding of structure and surface properties. To assess the efficiency of the prepared adsorbents, the pH of the sample, the initial concentration of the dyes, and contact time were studied. At optimum conditions, maximum adsorption capacities for methyl orange (MO) and methylene blue (MB) using MCM-41 were 4.757 mg/g and 16.00 mg/g and for SBA-15 the maximum adsorption capacities were 20.212 mg/g and 10.45 mg/g, respectively. Furthermore, Langmuir and Freundlich isotherm models were selected to describe the adsorption process while pseudo-first-order and pseudo-second-order kinetics equations were applied to determine the adsorption kinetics. The obtained results showed that SBA-15 can remove both dyes 38.53% better than MCM-41 due to higher surface area, which was 507 m2/g compared to 436 m2/g for MCM-41. 

 

Keywords:  cationic dyes, anionic dyes, adsorption, mesoporous silica

 

Abstrak

Komposisi Mobil Perkara 41 (MCM-41) dan Santa Barbara Amorfous (SBA-15) jenis penjerap mesopori berjaya disediakan melalui kaedah templat neutral kationik-neutral dan kaedah sol-gel. Bahan yang disediakan dibandingkan secara analitikal untuk mengeluarkan pewarna azo anionik (oren metil) dan pewarna kationik (biru metilena) dari larutan yang sangat berwarna. Kedua-dua penjerap dicirikan menggunakan inframerah jelmaan Fourier (FTIR), mikroskopi elektron pengimbasan pelepasan medan (FESEM) dan penjerapan/penyahjerapan nitrogen untuk meningkatkan pemahaman mengenai sifat struktur dan permukaan. Untuk menilai kecekapan penjerap yang telah disediakan, tiga parameter telah dikaji iaitu pH sampel, kepekatan awal pewarna dan masa penyentuhan. Pada keadaan optimum, kapasiti penjerapan maksimum untuk metil oren (MO) dan metilena biru (MB) menggunakan MCM-41 ialah 4.757 mg/g dan 16.00 mg/g dan untuk SBA-15 kapasiti penjerapan maksimum ialah 20.212 mg/g dan 10.45 mg/g masing-masing. Selanjutnya, model isoterm Langmuir dan Freundlich dipilih untuk menggambarkan proses penjerapan sementara persamaan kinetik turutan-pseudo-pertama dan turutan-pseudo-kedua digunakan untuk menentukan kinetik penjerapan. Hasil perolehan menunjukkan bahawa SBA-15 dapat menyerap kedua-dua pewarna 38.53% lebih baik daripada MCM-41 kerana luas permukaannya yang lebih tinggi iaitu 507 m2/g berbanding dengan 436 m2/g untuk MCM-41.

 

Kata kunci:  pewarna kation, pewarna anion, penjerapan, silika mesopori

 

References

1.      Liang, C. Z., Sun, S. P., Li, F. Y., Ong, Y. K. and Chung, T. S. (2014). Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469: 306-315.

2.      Forster, S. V. and Christie, R. M. (2013). The sifnificance of the introduction of synthetic dyes in the mid 19th century on the democratisation of western fashion. Journal of the International Colour Association, 11: 1-17.

3.      Ratna nd Padhi, B. S. (2012). Pollution due to synthetic dyes toxicity and carcinogenecity studies and remediation. International Journal of Environmental Sciences, 3(3): 940-947.

4.      Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.-i.-H., Bhatti, H. N. and Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256: 395-407.

5.      Lafi, R. and Hafiane, A. (2016). Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). Journal of the Taiwan Institute of Chemical Engineers, 58: 424-433.

6.      Elbanna, K., Sarhan, O. M., Khider, M., Elmogy, M., Abulreesh, H. H. and Shaaban, M. R. (2017). Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. Journal of Food and Drug Analysis, 25(3): 667-680.

7.      Weglarz-Tomczak, E. and Gorecki, L. (2012). Azo dyes-biological activity and synthetic strategy. Chemik Science-Technique-Market, 66(12): 1298-1307.

8.      Percy, A. J., Moore, N. and Chipman, J. K. (1989). Formation of nuclear anomalies in rat intestine by benzidine and its biliary metabolites. Toxicology, 57: 217-233.

9.      Nasuha, N., Hameed, B. H. and Din, A. T. (2010). Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Journal of Hazardous Materials, 175(1-3): 126-132.

10.   Rafatullah, M., Sulaiman, O., Hashim, R. and Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177(1-3): 70-80.

11.   Nidheesh, P. V., Zhou, M. and Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197: 210-227.

12.   Moradi, G., Zinadini, S. and Rajabi, L. (2020). Development of high flux nanofiltration membrane using para-amino benzoate ferroxane nanoparticle for enhanced antifouling behavior and dye removal. Process Safety and Environmental Protection, 144: 65-78.

13.   Hussein, T. K. and Jasim, N. A. (2021). A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Materials Today: Proceedings, 42(5): 1946-1950.

14.   Abid, M. F., Zablouk, M. A. and Abid-Alameer, A. M. (2012). Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian Journal of Environmental Health Science & Engineering, 9(1): 17.

15.   Chen, W., Sun, F., Zhu, Z., Min, Z. and Li, W. (2014). Nanoporous SnO2 prepared by a photochemical strategy: Controlling of specific surface area and photocatalytic activity in degradation of dye pollutants. Microporous and Mesoporous Materials, 186: 65-72.

16.   Yang, Z., Asoh, T. A. and Uyama, H. (2019). Removal of cationic or anionic dyes from water using ion exchange cellulose monoliths as adsorbents. Bulletin of the Chemical Society of Japan, 92(9): 1453-1461.

17.   Pathania, D., Sharma, S. and Singh, P. (2013). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10: S1445-S1451.

18.   Wang, J. and Zhuang, S. (2017). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Critical Reviews in Environmental Science and Technology, 47(23): 2331-2386.

19.   Abdul Karim, S. K., Lim, S.-F., Chua, D., Shanti Faridah, S. and Puong Ling, L. (2018). Removal of crystal violet and acid green dye in aqueous solution using banana plant-derived sorbents. Malaysian Journal of Analytical Sciences, 22(1): 115-122.

20.   Sumari, S. M., Hamzah, Z. and Kantasamy, N. (2016). Adsorption of anionic dyes from aqueous solutions by calcined and uncalcined Mg/Al layered double hydroxide. Malaysian Journal of Analytical Science, 20(4), 777-792.

21.   Wang, Y., Zhang, C., Zhao, L., Meng, G., Wu, J. and Liu, Z. (2017). Cellulose-based porous adsorbents with high capacity for methylene blue adsorption from aqueous solutions. Fibers and Polymers, 18(5): 891-899.

22.   Guo, F., Jiang, X., Li, X., Jia, X., Liang, S. and Qian, L. (2020). Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Materials Chemistry and Physics, 240: 122240.

23.   Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M. and Hameed, B. H. (2017). Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. Journal of Environmental Management, 203: 237-244.

24.   Jiang, C., Wang, X., Qin, D., Da, W., Hou, B., Hao, C. and Wu, J. (2019). Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. Journal of Hazardous Materials, 369: 50-61.

25.   Kantasamy, N. and Sumari, S. M. (2016). Equilibrium and thermodynamic studies of anionic dyes removal by an anionic clay-layered double hydroxide. Malaysian Journal of Analytical Sciences, 20(2): 358-364.

26.   Qu, W., He, D., Huang, H., Guo, Y., Tang, Y. and Song, R. J. (2020). Characterization of amino-crosslinked hypromellose and its adsorption characteristics for methyl orange from water. Journal of Materials Science, 55(17): 7268-7282.

27.   Yang, X. J., Zhang, P., Li, P., Li, Z., Xia, W., Zhang, H., Di, Z., Wang, M., Zhang, H. and Niu, Q. J. (2019). Layered double hydroxide/polyacrylamide nanocomposite hydrogels: Green preparation, rheology and application in methyl orange removal from aqueous solution. Journal of Molecular Liquids, 280: 128-134.

28.   Wang, D., Shen, H., Guo, L., Wang, C. and Fu, F. (2016). Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue. ACS Omega, 1(4): 566-577.

29.   Gibson, L. T. (2014). Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution. Chemistry Society Reviews, 43(15): 5173-5182.

30.   Boukoussa, B., Hakiki, A., Moulai, S., Chikh, K., Kherroub, D. E., Bouhadjar, L., Guedal, D., Messaoudi, K., Mokthar, F. and Hamacha, R. (2018). Adsorption behaviors of cationic and anionic dyes from aqueous solution on nanocomposite polypyrrole/SBA-15. Journal of Materials Science, 53(10): 7372-7386.

31.   Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S. (1992). Ordered mesoporous sieves synthesised by a liquid-crystal template mechanism. Nature, 359: 710-712.

32.   Björk, E. M. (2016). Synthesizing and characterizing mesoporous silica SBA-15: A hands-on laboratory experiment for undergraduates using various instrumental techniques. Journal of Chemical Education, 94(1): 91-94.

33.   Sabri, A. A., Albayati, T. M. and Alazawi, R. A. (2015). Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue. Korean Journal of Chemical Engineering, 32(9): 1835-1841.

34.   Alothman, Z. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12): 2874-2902.

35.   Xiao, X., Zhang, F., Feng, Z., Deng, S. and Wang, Y. (2015). Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite. Physica E: Low-dimensional Systems and Nanostructures, 65: 4-12.

36.   Diagboya, P. N. E. and Dikio, E. D. (2018). Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous and Mesoporous Materials, 266: 252-267.

37.   Kamaruzaman, S., Sanagi, M. M., Endud, S., Wan Ibrahim, W. A. and Yahaya, N. (2013). MCM-41 solid phase membrane tip extraction combined with liquid chromatography for the determination of non-steroidal anti-inflammatory drugs in human urine. Journal of Chromatography B, 940: 59-65.

38.   Ab Rahman, N. B., Rashid, H. M., Hassan, H. M. and Jalil, M. N. (2016). Synthesis and characterization of mesoporous silica MCM-41 and SBA-15 from power plant bottom ash. Malaysian Journal of Analytical Sciences, 20(3): 539-545.

39.   Yuan, N., Cai, H., Liu, T., Huang, Q. and Zhang, X. (2019). Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorption Science & Technology, 37(3-4): 333-348.

40.   Rizzi, V., Romanazzi, F., Gubitosa, J., Fini, P., Romita, R., Agostiano, A., Petrella, A., Cosma, P. (2019). Chitosan film as eco-friendly and recyclable bio-adsorbent to remove/recover diclofenac, ketoprofen, and their mixture from wastewater. Biomolecules, 9(10): 571.

41.   Rizzi, V., Gubitosa, J., Fini, P., Nuzzo, S. and Cosma, P. (2020). Amino-grafted mesoporous MCM-41 and SBA-15 recyclable adsorbents: Desert-rose-petals-like SBA-15 type as the most efficient to remove azo textile dyes and their mixture from water. Sustainable Materials and Technologies, 26: e00231.

42.   Morsi, R. E. and Mohamed, R. S. (2018). Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake. Royal Society Open Science, 5(3): 172021.

43.   Shu, Y., Shao, Y., Wei, X., Wang, X., Sun, Q., Zhang, Q. and Li, L. (2015). Synthesis and characterization of Ni-MCM-41 for methyl blue adsorption. Microporous and Mesoporous Materials, 214: 88-94.

44.   Loganathan, S., Tikmani, M. and Ghoshal, A. K. (2013). A novel pore-expanded MCM-41 for CO2 capture: Synthesis and characterization. Langmuir, 29(10): 3491-3499.

45.   He, R., Wang, Z., Tan, L., Zhong, Y., Li, W., Xing, D., Wei, C. and Tang, Y. (2018). Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters. Microporous and Mesoporous Materials, 257: 212-221.

46.   Ruthstein, S., Frydman, V., Kababya, S., Landau, M. and Goldfarb, D. (2003). Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy. The Journal of Physical Chemistry B, 107(8): 1739-1748.

47.   Ghorbani, F., Habibollah, Y., Mehraban, Z., Çelik, M. S., Ghoreyshi, A. A. and Anbia, M. (2013). Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 44(5): 821- 828.

48.   Veregue, F. R., de Lima, H. H. C., Ribeiro, S. C., Almeida, M. S., da Silva, C. T. P., Guilherme, M. R. and Rinaldi, A. W. (2020). MCM-41/chondroitin sulfate hybrid hydrogels with remarkable mechanical properties and superabsorption of methylene blue. Carbohydrate Polymers, 247: 116558.

49.   Akpotu, S. O. and Moodley, B. (2018). Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system. Journal of Environmental Economics and Management, 209: 205-215.

50.   Björk, E. M. (2013). Mesoporous building blocks – synthesis and characterization of mesoporous silica particles and films. Doctoral dissertation,  Linköping University, Sweden.

51.   Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): 1051-1069.

52.   Zhu, C., Xia, Y., Zai, Y., Dai, Y., Liu, X., Bian, J., Liu, Y., Liu, J. and Li, G. (2019). Adsorption and desorption behaviors of HPEI and thermoresponsive HPEI based gels on anionic and cationic dyes. Chemical Engineering Journal, 369: 863-873.

53.   Alkan, M., Demirbas, O. and Dogan, M. (2004). Removal of Acid Yellow 49 from aqueous solution by adsorption. Fresenius Environmental Bulletin, 13(11): 1121.

54.   Fil, B. A., Ozmetin, C. and Korkmaz, M. (2012). Cationic dye (methylene blue) removal from aqueous solution by montmorillonite. Bulletin of the Korean Chemical Society, 33(10): 3184-3190.

55.   Ansari, R. and Mosayebzadeh, Z. (2010). Removal of basic dye methylene blue from aqueous solutions using sawdust and sawdust coated with polypyrrole. Journal of the Iranian Chemical Society, 7(2): 339-350.

56.   Bharathi, K. S. and Ramesh, S. T. (2013). Removal of dyes using agricultural waste as low-cost adsorbents: a review. Applied Water Science, 3(4): 773-790.

57.   Özdemir, Y., Doğan, M. and Alkan, M. (2006). Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials, 96(1-3): 419-427.

58.   Yagub, M. T., Sen, T. K., Afroze, S. and Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209: 172-184.

59.   Huang, R., Liu, Q., Huo, J. and Yang, B. (2017). Adsorption of methyl orange onto protonated cross-linked chitosan. Arabian Journal of Chemistry, 10(1): 24-32.

60.   El-Gamal, S. M. A., Amin, M. S. and Ahmed, M. A. (2015). Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. Journal of Environmental Chemical Engineering, 3(3): 1702-1712.

61.   Melo, B. C., Paulino, F. A. A., Cardoso, V. A., Pereira, A. G. B., Fajardo, A. R. and Rodrigues, F. H. A. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181, 358–367.

62.   Albayati, T. M., Alwan, G. M. and Mahdy, O. S. (2016). High performance methyl orange capture on magnetic nanoporous MCM-41 prepared by incipient wetness impregnation method. Korean Journal of Chemical Engineering, 34(1), 259–265.

63.   Brdar, M., Šćiban, M., Takači, A. and Došenović, T. (2012). Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin. Chemical Engineering Journal, 183: 108-111.

64.   Qin, Q., Ma, J. and Liu, K. (2009). Adsorption of anionic dyes on ammonium-functionalized MCM-41. Journal of  Hazardous Materials, 162(1): 133-139.

65.   Juang, L. C., Wang, C. C. and Lee, C. K. (2006). Adsorption of basic dyes onto MCM41. Chemosphere, 64(11): 1920-1928.

66.   Mirzaie, M., Rashidi, A., Tayebi, H.-A. and Yazdanshenas, M. E. (2017). Removal of anionic dye from aqueous media by adsorption onto SBA-15/polyamidoamine dendrimer hybrid: Adsorption equilibrium and kinetics. Journal of Chemical & Engineering Data, 62(4): 1365-1376.

67.   Bardajee, G. R., Hooshyar, Z. and Shahidi, F. E. (2015). Synthesis and characterization of a novel Schiff-base/SBA-15 nanoadsorbent for removal of methylene blue from aqueous solutions. International Journal of Environmental Science and Technology, 12(5): 1737-1748.

68.   Jalil, M. N. (2011). The preparation and characterisation of mesoporous films for electrochemical applications. Doctoral dissertation, University of Manchester, United Kingdom.

69.   Yusmaniar, Y., Erdawati, E., Ghifari, Y. F. and Ubit, D. P. (2020). Synthesis of mesopore silica composite from rice husk with activated carbon from coconut shell as absorbent methyl orange color adsorbent. IOP Conference Series: Materials Science and Engineering, 830: 032078.

70.   Ge, S., Geng, W., He, X., Zhao, J., Zhou, B., Duan, L., Wu, Y. and Zhang, Q. (2018). Effect of framework structure, pore size and surface modification on the adsorption performance of methylene blue and Cu2+ in mesoporous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539: 154-162.

71.   Nazar de Souza, A. P., Licea, Y. E., Colaço, M. V., Senra, J. D. and Carvalho, N. M. F. (2021). Green iron oxides/amino-functionalized MCM-41 composites as adsorbent for anionic azo dye: Kinetic and isotherm studies. Journal of Environmental Chemical Engineering, 9(2): 105062.

72.   Ngulube, T., Gumbo, J. R., Masindi, V. and Maity, A. (2018). Calcined magnesite as an adsorbent for cationic and anionic dyes: characterization, adsorption parameters, isotherms and kinetics study. Heliyon, 4(10): e00838.

73.   Sun, C. Y., Wang, X. L., Qin, C., Jin, J. L., Su, Z. M., Huang, P. and Shao, K. Z. (2013). Solvatochromic behavior of chiral mesoporous metal-organic frameworks and their applications for sensing small molecules and separating cationic dyes. Chemistry - A European Journal, 19(11): 3639-3645.

74.   de Oliveira Brito, S. M., Andrade, H. M. C., Soares, L. F. and de Azevedo, R. P. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials,  174 (1-3):  84-92.