Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 858 - 866
PHYSICOCHEMICAL AND DYEING CHARACTERISTICS OF COTTON FABRIC DYEING
FROM THE EXTRACT OF ANGSANA (Pterocarpus indicus) BARK
(Fiziko
Kimia dan Ciri Pencelupan Pewarnaan Kain Kapas dengan Menggunakan Ekstrak dari
Kulit Kayu Angsana (Pterocarpus indicus))
Mukmin Sapto Pamungkas1,2, Edia
Rahyuningsih1,2*, Taranipa Marfitania2, Wachid Siti
Fatimah2
1Department of Chemical Engineering, Faculty of
Engineering
Universitas
Gadjah Mada, Sleman 565223, Daerah Istimewa Yogyakarta, Indonesia
2Indonesia Natural Dye Institute, Integrated
Research and Testing Laboratory
Universitas
Gadjah Mada, Sleman 565223, Daerah Istimewa Yogyakarta, Indonesia
*Corresponding author: edia_rahayu@ugm.ac.id
Received: 12 July 2021; Accepted: 7 October 2021;
Published: 25 October 2021
Abstract
Herein, the Angsana
bark (Pterocarpus indicus) extract was studied for its potential
as a natural dye for cotton fabrics. Angsana bark was extracted using water
solvent at 70 °C with a ratio of solid-water of 70 g/L, for 1 hour, with a
yield of 20.08% (w/w). The Angsana bark extract has acidic pH, a tannin content of 11.90%,
and a density of 1.015 g/mL. Visible spectrophotometry results showed the
highest peak of 395 nm, which indicated a high tannin content. FTIR revealed the presence of
hydroxyl (-OH) (indicating an auxochrome group), aromatic (C-H) (indicating an
aromatic group), carbonyl (C=O), and ether (C-O-C) groups. Cotton fabrics were
premordanted using alum and soda ash prior to dyeing. Dyeing of the cotton fabrics
was done by immersion for 15 minutes in the Angsana extract repeatedly and
postmordanted using alum, lime, and iron sulfate. The colors
produced by the alum and lime fixatives were different variations of brown,
whereas that for the iron sulfate fixative was dark green. The highest K/S
value of 8.554 was found
for the iron sulfate fixative. Overall wash and light fastness scores were
presented on the scale of 4 (good) and 4/5 (excellent). Thus, Angsana bark in
water can be used as a source of natural dye for cotton fabrics, showing potential as a new
material for application in cotton fabrics.
Keywords: Angsana extract, cotton fabrics, natural
dye, Pterocarpus indicus
Abstrak
Di sini, potensi ekstrak kulit kayu Angsana (Pterocarpus indicus) sebagai pewarna semula jadi untuk kain kapas dikaji. Kulit
kayu Angsana diekstrak menggunakan pelarut air pada suhu 70 °C dengan nisbah
air pepejal sebanyak 70 g/L, selama 1 jam, dengan hasil sebanyak 20.08% (b/b).
Ekstrak kulit kayu Angsana mempunyai pH berasid, kandungan tanin sebanyak
11.90%, dan ketumpatan 1.015 g/mL. Penelitian menggunakan spektrofotometri
menunjukkan puncak tertinggi dicapai pada 395 nm, iaitu menunjukkan kandungan
tanin yang tinggi. FTIR mendedahkan kehadiran hidroksil (-OH) (menunjukkan
kumpulan auxochrome), aromatik (C-H) (menunjukkan kumpulan aromatik), karbonil
(C=O), dan kumpulan eter (C-O-C). Sebelum pencelupan, kain kapas akan di
pra-mordant menggunakan alum dan abu soda. Pencelupan kain kapas dilakukan
dengan merendamkannya ke dalam ekstrak Angsana secara berulang kali dan di
post-mordant menggunakan alum, kapur dan besi sulfat. Warna yang dihasilkan
oleh fiksasi alum dan kapur adalah variasi warna coklat yang berbeza, manakala
warna untuk fiksasi besi sulfat adalah hijau tua. Didapati fiksasi besi sulfat
mempunyai nilai K/S tertinggi iaitu 8.554. Keseluruhan skor pencucian dan
ketahanan cahaya ditunjukkan pada skala 4 (baik) dan 4-5 (cemerlang). Demikian,
kulit kayu Angsana dapat digunakan sebagai sumber pewarna semula jadi untuk
kain kapas, yang menunjukkan potensi sebagai bahan baru untuk aplikasi kain
kapas.
Kata kunci: ekstrak Angsana, kain kapas, pewarna semula jadi, Pterocarpus
indicus
References
1. Booth, G. (2000). Dyes, general survey in Ullmann’s encyclopedia of industrial
chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim: pp. 676-678.
2. Gulrajani, M.
L. and Gupta, D. (1992). Natural dyes and their application to textiles.
Department of Textile Technology, New Delhi: pp. 38–42.
3. Krizova, H.
(2013). Textile dyeing theory and application -chapter 2. Natural Dyes. Liberec
TUL. Czechia: pp. 15-25.
4. Bruna, C. V.
and Maria, A. M. M. (2013). Azo dyes: Characterization and toxicity – A review.
Textiles and Light Industrial Science and Technology, 2(2): 85-103.
5. Thomson, L. A.
J. (2006). Specifies
profiles for Pacific Island agroforestry: Pterocarpus indicus (Narra). Permanent Agriculture Resources, Hawaii: pp. 1-5.
6. Smith, B. and
Swain (1962). Flavonoid compounds: Comparative biochemistry. III. Academic
Press, New York: pp. 75-809.
7. Sieniawska, E.
and Baj, T. (2017). Pharmacognosy. Tannins. Elsevier, Amsterdam: pp. 199-232.
8. Prayanto, Nur,
A. and Nurcahyanti, D (2018). Produksi dan aplikasi zat warna alami dari kulit
kayu mahoni dan kulit kayu tingi untuk batik di desa Kuwiran, Kecematan
Banyudono, Kabupaten Boyolali. Jurnal Ilmiah Momentum, 14(2): 1-7.
9. Handayani, P.
A. and Maulana, I. (2013). Pewarna alami batik dari kulit soga tingi (Ceriops tagal) dengan
metode ekstraksi. Jurnal Bahan Alam Terbarukan, 2(2): 1-6.
10. Win, Z. M. and
Swe, M. M. (2008). purification of natural dyestuff extracted from mango bark
for the application on protein fibres. World Academy of Science, Engineering
and Technology, 46: 536-540.
11. Dewi, L. F.,
Pringgenies, D., and Ridlo, A. (2018). Pemanfaatan mangrove Rhizophora
mucronata sebagai pewarna alami katun. Journal of Marine Research, 7(2): 79-98.
12. Lestari, D. W.
and Satria, Y. (2017). Pemanfaatan kulit kayu Angsana (Pterocarpus indicus) sebagai
sumber zat warna alami pada pewarnaan kain batik sutera. Dinamika Kerajinan
Dan Batik, 34(1): 35-42.
13.
Dochia, M., Sirghie, C., Kozłowski, R.M.
and Roskwitalski, Z. (2012). Handbook of natural fibres: cotton fibres.
Woodhead Publishing, Cambridge: pp. 11-23.
14.
Ismail, S. and Azha, S. F. (2018). Cotton cloth: Diversified
applications beyond fashion and wearable cloth. Current Trend in Fashion
Technology & Textile Engineering, 2(3): 39-45.
15.
IHS Markit (2019). Natural and man-made fibers overview.
https://ihsmarkit.com/products/fibers-chemical-economics-handbook.html. [Access
online 4 September 2021].
16. Oliveira, R.
N., Mancini, M. C., Oliveira, F. C. Sd, Passos, T. M., Quilty, B., Thiré, R.
MdS. M., and McGuinness, G. B. (2016). FTIR analysis and quantification of
phenols and flavonoids of five commercially available plants extracts used in
wound healing. Matéria (Rio de Janeiro), 21(3): 767–779.
17. Okonkwo, S.
N., Ohanuzua, C. B. C., Onuegbu, G. C., Obasi, H. C. and Nnorom, O. O. (2019).
Extraction of natural dyes from Whitfieldia lateritia plant and its
application on cotton fabric. International Journal of Textile Science and
Engineering, 9(1): 1-4.
18.
Anburaj, R. and Jothiprakasam, V.
(2017). Bioassay of tannin rich fraction and identification of compounds using
UV–Vis, FTIR, and RP-HPLC. Research Journal of Pharmaceutical,
Biological and Chemical Sciences, 8(1): 432-445.
19. Pujilestari,
T. (2014). Pengaruh ekstraksi zat warna alam dan fiskasi terhadap ketahanan
luntur warna pada kain batik katun. Dinamika Kerajinan Dan Batik, 31(1): 31-40.
20. Uddin, M. G.
(2015). Extraction of eco-friendly natural dyes from mango leaves and their
application on silk fabric. Textiles and Clothing Sustainability, 1(1): 1-7.