Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 858 - 866

 

 

 

 

PHYSICOCHEMICAL AND DYEING CHARACTERISTICS OF COTTON FABRIC DYEING FROM THE EXTRACT OF ANGSANA (Pterocarpus indicus) BARK

 

(Fiziko Kimia dan Ciri Pencelupan Pewarnaan Kain Kapas dengan Menggunakan Ekstrak dari Kulit Kayu Angsana (Pterocarpus indicus))

 

Mukmin Sapto Pamungkas1,2, Edia Rahyuningsih1,2*, Taranipa Marfitania2, Wachid Siti Fatimah2

 

1Department of Chemical Engineering, Faculty of Engineering

Universitas Gadjah Mada, Sleman 565223, Daerah Istimewa Yogyakarta, Indonesia

2Indonesia Natural Dye Institute, Integrated Research and Testing Laboratory

Universitas Gadjah Mada, Sleman 565223, Daerah Istimewa Yogyakarta, Indonesia

 

*Corresponding author:  edia_rahayu@ugm.ac.id

 

 

Received:  12 July 2021; Accepted: 7 October 2021; Published:  25 October 2021

 

 

Abstract

Herein, the Angsana bark (Pterocarpus indicus) extract was studied for its potential as a natural dye for cotton fabrics. Angsana bark was extracted using water solvent at 70 °C with a ratio of solid-water of 70 g/L, for 1 hour, with a yield of 20.08% (w/w). The Angsana bark extract has acidic pH, a tannin content of 11.90%, and a density of 1.015 g/mL. Visible spectrophotometry results showed the highest peak of 395 nm, which indicated a high tannin content. FTIR revealed the presence of hydroxyl (-OH) (indicating an auxochrome group), aromatic (C-H) (indicating an aromatic group), carbonyl (C=O), and ether (C-O-C) groups. Cotton fabrics were premordanted using alum and soda ash prior to dyeing. Dyeing of the cotton fabrics was done by immersion for 15 minutes in the Angsana extract repeatedly and postmordanted using alum, lime, and iron sulfate. The colors produced by the alum and lime fixatives were different variations of brown, whereas that for the iron sulfate fixative was dark green. The highest K/S value of 8.554 was found for the iron sulfate fixative. Overall wash and light fastness scores were presented on the scale of 4 (good) and 4/5 (excellent). Thus, Angsana bark in water can be used as a source of natural dye for cotton fabrics, showing potential as a new material for application in cotton fabrics.

 

Keywords:  Angsana extract, cotton fabrics, natural dye, Pterocarpus indicus

 

Abstrak

Di sini, potensi ekstrak kulit kayu Angsana (Pterocarpus indicus) sebagai pewarna semula jadi untuk kain kapas dikaji. Kulit kayu Angsana diekstrak menggunakan pelarut air pada suhu 70 °C dengan nisbah air pepejal sebanyak 70 g/L, selama 1 jam, dengan hasil sebanyak 20.08% (b/b). Ekstrak kulit kayu Angsana mempunyai pH berasid, kandungan tanin sebanyak 11.90%, dan ketumpatan 1.015 g/mL. Penelitian menggunakan spektrofotometri menunjukkan puncak tertinggi dicapai pada 395 nm, iaitu menunjukkan kandungan tanin yang tinggi. FTIR mendedahkan kehadiran hidroksil (-OH) (menunjukkan kumpulan auxochrome), aromatik (C-H) (menunjukkan kumpulan aromatik), karbonil (C=O), dan kumpulan eter (C-O-C). Sebelum pencelupan, kain kapas akan di pra-mordant menggunakan alum dan abu soda. Pencelupan kain kapas dilakukan dengan merendamkannya ke dalam ekstrak Angsana secara berulang kali dan di post-mordant menggunakan alum, kapur dan besi sulfat. Warna yang dihasilkan oleh fiksasi alum dan kapur adalah variasi warna coklat yang berbeza, manakala warna untuk fiksasi besi sulfat adalah hijau tua. Didapati fiksasi besi sulfat mempunyai nilai K/S tertinggi iaitu 8.554. Keseluruhan skor pencucian dan ketahanan cahaya ditunjukkan pada skala 4 (baik) dan 4-5 (cemerlang). Demikian, kulit kayu Angsana dapat digunakan sebagai sumber pewarna semula jadi untuk kain kapas, yang menunjukkan potensi sebagai bahan baru untuk aplikasi kain kapas.

 

Kata kunci:  ekstrak Angsana, kain kapas, pewarna semula jadi, Pterocarpus indicus

 

References

1.      Booth, G. (2000). Dyes, general survey in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim: pp. 676-678.

2.      Gulrajani, M. L. and Gupta, D. (1992). Natural dyes and their application to textiles. Department of Textile Technology, New Delhi: pp. 38–42.

3.      Krizova, H. (2013). Textile dyeing theory and application -chapter 2. Natural Dyes. Liberec TUL. Czechia: pp. 15-25.

4.      Bruna, C. V. and Maria, A. M. M. (2013). Azo dyes: Characterization and toxicity – A review. Textiles and Light Industrial Science and Technology, 2(2): 85-103.

5.      Thomson, L. A. J. (2006). Specifies profiles for Pacific Island agroforestry: Pterocarpus indicus (Narra). Permanent Agriculture Resources, Hawaii: pp. 1-5.

6.      Smith, B. and Swain (1962). Flavonoid compounds: Comparative biochemistry. III. Academic Press, New York: pp. 75-809.

7.      Sieniawska, E. and Baj, T. (2017). Pharmacognosy. Tannins. Elsevier, Amsterdam: pp. 199-232.

8.      Prayanto, Nur, A. and Nurcahyanti, D (2018). Produksi dan aplikasi zat warna alami dari kulit kayu mahoni dan kulit kayu tingi untuk batik di desa Kuwiran, Kecematan Banyudono, Kabupaten Boyolali. Jurnal Ilmiah Momentum, 14(2): 1-7.

9.      Handayani, P. A. and Maulana, I. (2013). Pewarna alami batik dari kulit soga tingi (Ceriops tagal) dengan metode ekstraksi. Jurnal Bahan Alam Terbarukan, 2(2): 1-6.

10.   Win, Z. M. and Swe, M. M. (2008). purification of natural dyestuff extracted from mango bark for the application on protein fibres. World Academy of Science, Engineering and Technology, 46: 536-540.

11.   Dewi, L. F., Pringgenies, D., and Ridlo, A. (2018). Pemanfaatan mangrove Rhizophora mucronata sebagai pewarna alami katun. Journal of Marine Research, 7(2): 79-98.

12.   Lestari, D. W. and Satria, Y. (2017). Pemanfaatan kulit kayu Angsana (Pterocarpus indicus) sebagai sumber zat warna alami pada pewarnaan kain batik sutera. Dinamika Kerajinan Dan Batik, 34(1): 35-42.

13.   Dochia, M., Sirghie, C., Kozłowski, R.M. and Roskwitalski, Z. (2012). Handbook of natural fibres: cotton fibres. Woodhead Publishing, Cambridge: pp. 11-23.

14.   Ismail, S. and Azha, S. F. (2018). Cotton cloth: Diversified applications beyond fashion and wearable cloth. Current Trend in Fashion Technology & Textile Engineering, 2(3): 39-45.

15.   IHS Markit (2019). Natural and man-made fibers overview. https://ihsmarkit.com/products/fibers-chemical-economics-handbook.html. [Access online 4 September 2021].

16.   Oliveira, R. N., Mancini, M. C., Oliveira, F. C. Sd, Passos, T. M., Quilty, B., Thiré, R. MdS. M., and McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21(3): 767–779.

17.   Okonkwo, S. N., Ohanuzua, C. B. C., Onuegbu, G. C., Obasi, H. C. and Nnorom, O. O. (2019). Extraction of natural dyes from Whitfieldia lateritia plant and its application on cotton fabric. International Journal of Textile Science and Engineering, 9(1): 1-4.

18.   Anburaj, R. and Jothiprakasam, V. (2017). Bioassay of tannin rich fraction and identification of compounds using UV–Vis, FTIR, and RP-HPLC. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(1): 432-445.

19.   Pujilestari, T. (2014). Pengaruh ekstraksi zat warna alam dan fiskasi terhadap ketahanan luntur warna pada kain batik katun. Dinamika Kerajinan Dan Batik, 31(1): 31-40.

20.   Uddin, M. G. (2015). Extraction of eco-friendly natural dyes from mango leaves and their application on silk fabric. Textiles and Clothing Sustainability, 1(1): 1-7.