Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 547 - 560

 

 

 

 

A SHORT REVIEW ON THE SYNTHESIS OF AZAMACROCYCLIC LIGAND: CONVENTIONAL AND NON-TEMPLATE METHODS

 

(Ulasan Pendek Sintesis Ligan Aza Makrosilik: Kaedah Konvensional dan Tanpa Templat)

 

Nur Halimatus Saadiah Abdullah1, Lailatun Nazirah Ozair1*, Bohari Mohd Yamin2

 

1Faculty of Science and Technology,

Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia

2Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  lailatunnazirah@usim.edu.my

 

 

Received: 21 June 2021; Accepted: 26 July 2021; Published:  29 August 2021

 

 

Abstract

Various methods have been developed for the synthesis of azamacrocyclic ligands and their derivatives, which varies from the selection of amino group, ionic compound, and solvent. Among the popular methods include the rigid group method, high dilution method, and the template metal effect method. Recently, researchers have considered the non-template method as a promising and effective approach to produce a higher yield of metal-free azamacrocyclic ligands compared to the conventional approaches. Hence, this review presented an overview of the synthesis and structure of azamacrocyclic compounds through conventional methods and the newly developed non-template method. The advantages and disadvantages related to each technique were also highlighted.

 

Keywords:  azamacrocyclic ligand, non-template method, cyclisation, metal ion

 

Abstrak

Pelbagai kaedah dikembangkan untuk sintesis ligan aza makrosilik dan terbitannya yang berbeza daripada pemilihan kumpulan amino, sebatian ion dan pelarut. Antara pelbagai kaedah yang terkenal termasuklah kaedah kumpulan tegar, kaedah percairan tinggi, dan kaedah kesan templat logam. Baru-baru ini, penyelidik telah mengenal pasti kaedah tanpa templat sebagai pendekatan berkesan untuk menghasilkan ligan aza makrosilik yang bebas logam dengan hasil yang tinggi, berbanding dengan kaedah konvensional. Oleh itu, ulasan ini membincangkan sintesis dan struktur sebatian aza makrosilik dengan kaedah konvensional dan tanpa templat. Di samping itu, kelebihan dan kekurangan setiap teknik juga dibincangkan untuk penambahbaikan pada masa hadapan.    

 

Kata kunci:  ligan aza makrosilik, kaedah tanpa templat, perkitaran, logam ion

 

References

1.      Curtis, N. F. (1968). Macrocyclic coordination compounds formed by condensation of metal-amine complexes with aliphatic carbonyl compounds. Coordination Chemistry Reviews, 3(1): 3-47.

2.      Pedersen, C. J. (1967). Cyclic polythers and their complexes with metals salts. Journal of the American Chemical Society, 89(I): 2495-2496.

3.      Chandra, S. and Gupta, L. K. (2005). Spectroscopic studies on Co(II), Ni(II) and Cu(II) complexes with a new macrocyclic ligand: 2,9-dipropyl-3,10-dimethyl-1,4,8,11-tetraaza-5,7:12,14-dibenzocyclotetradeca-1, 3,8,10-tetraene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 61(6): 1181-1188.

4.      Tseberlidis, G., Demonti, L., Pirovano, V., Scavini, M., Cappelli, S., Rizzato, S. and Caselli, A. (2019). Controlling selectivity in alkene oxidation: anion driven epoxidation or dihydroxylation catalysed by [iron(iii)(pyridine-containing ligand)] complexes. ChemCatChem, 11(19): 4907-4915.

5.      Chizhova, N. V., Ivanova, Y. B., Rusanov, A. I., Khrushkova, Y. V. and Mamardashvili, N. Z. (2019). Synthesis and spectral and fluorescent properties of metal complexes of octakis(4-flurophenyl)tetraazaporphyrins. Russian Journal of Organic Chemistry, 55(5): 655-661.

6.      Yamazaki, S. Ichi, Asahi, M., Taguchi, N. and Ioroi, T. (2019). Electrochemical analysis of the porphyrazine-induced enhancement of orr activity of pt catalysts for the development of porphyrazine-adsorbed Pt catalysts. Journal of Electroanalytical Chemistry, 848(113321): 3-10.

7.      Tahir, M. N., Abdulhamied, E., Nyayachavadi, A., Selivanova, M., Eichhorn, S. H. and Rondeau-Gagné, S. (2019). Topochemical polymerization of a nematic tetraazaporphyrin derivative to generate soluble polydiacetylene nanowires. Langmuir, 35(47):15158-15167.

8.      Boudebouz, I., Arrous, S., Plotnikov, E., Voronova, O. and Bakibaev, A. (2019). Synthesis and antioxidant activity of some new thioglycoluril derivatives. Journal of Sulfur Chemistry, 40(4): 389-399.

9.      Khabibullina, G. R., Zaynullina, F. T., Tyumkina, T. V., Yanybin, V. M. and Ibragimov, A. G. (2019). Catalytic aminomethylation of α,ω-diacetylenes with secondary diamines and aldehydes as an efficient approach to diaza alkatetraynes and tetraaza tetraacetylenic macrocycles. Russian Chemical Bulletin, 68(7): 1407-1413.

10.   Chen, J., Zhang, T., Liu, X. and Shen, L. (2019). Enantioselective synthesis of (S)-Γ-amino alcohols by Ru/Rh/Ir catalyzed asymmetric transfer hydrogenation (ATH) with tunable chiral tetraaza ligands in water. Catalysis Letters, 149(2): 601-609.

11.   Panchbhai, M. A. and Bhave, N. S. (2009). Novel Ni (II) tetraaza macrocyclic complex: Synthesis and characterization. International Journal of Chemical Sciences, 7(2): 997-1003.

12.   Savastano, M., Arranz-Mascarós, P., Bazzicalupi, C., Clares, M. P., Godino-Salido, M. L., Guijarro, L. and López-Garzón, R. (2017). Polyfunctional tetraaza-macrocyclic ligands: Zn(II), Cu(II) binding and formation of hybrid materials with multiwalled carbon nanotubes. ACS Omega, 2(7): 3868-3877.

13.   El-boraey, H. A., El-Salamony, M.E. and Hathout, A. A. (2016). Macrocyclic [N5] transition metal complexes: Synthesis, characterization and biological activities. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 86: 153-166.

14.   Ramadan, A. E. M. M., Shaban, S. Y., Khalil, S. M. E., Shebl, M. and El-Naem, R. A. S. (2017).  Synthesis and characterization of N3S2 donors macrocyclic copper (II) complexes. Catechol oxidase and phenoxazinone synthase biomimetic catalytic activity. Journal of the Chinese Advanced Materials Society, 5(4): 215-240.

15.   Yusuf, M. M. and Salga, M. S. (2019). Synthesis and study of the efficacies of tetraaza macrocyclic ligand for the adsorption of heavy metals from wastewater. Bayero Journal of Pure and Applied Sciences, 11(1): 126.

16.   Chaudhary, A. and Rawat, E. (2014). Macrocyclic assembly: A dive into the pecking order and applied aspects of multitalented metallomacrocycles. International Journal of Inorganic Chemistry, 2014: 1-30.

17.   Wankhede, D. S., Wagh, P. B. and Hangirgekar, S. P. (2015). Synthesis and characterization of tetraazamacrocyclic complexes using silica supported perchloric acid (HClO4:SiO2) as catalyst. Journal of Chemical and Pharmaceutical Research, 7(12): 1153-1159.

18.   Knops, P., Sendhoff, N., Mekelburger, H. B. and Vögtle, F. (1992). Cyclophanes I. Springer Berlin Heidelberg, Berlin. 161: pp. 1-36.

19.   Bhake, A., Shastri, S. and Limaye, N. (2014). A review on macrocyclic complexes. Chemical Science Review and Letters, 2(6): 449-455.

20.   Cole, R. J., Kirksey, J. W., Hill, R. K., Carlson, R. M. and Isidor, J. L. (1974). Nitrogen analogs of crown ethers. Journal of the American Chemical Society, 1(1): 2268-2270.

21.   Hoye, R. C., Hoye, R. C., Richman, J. E., Dantas, G. A., Lightbourne, M. F. and Scott Shinneman, L. (2001). Synthesis of polyazamacrocyclic compounds via modified richman-atkins cyclization of β-trimethylsilylethanesulfonamides. Journal of Organic Chemistry, 66(8): 2722-2725.

22.   Shakir, M. and Varkey, S. P. (1995). A new synthetic route for the preparation of a new series of 14-22-membered tetraoxomacrocyclic tetraamines and their transition metal complexes. Polyhedron, 14(9): 1117-1127.

23.   Yu, X. and Zhang, J. (2018). Macrocyclic polyamines: Synthesis and applications. Wiley-VCH Verlag GMbH & Co. KGaA: pp. 7-44.

24.   Rosen, W. and Busch, D. H. (1969). Nickel (II) complexes of cyclic tetradentate thioethers. Journal of the American Chemical Society, 91(17): 4694-4697.

25.   Travis, K. and Busch, D. H. (1974). Cobalt(III) and Rhodium(III) complexes of cyclic tetradentate thioethers. Inorganic Chemistry, 13(11), 2591-2597.

26.   Sues, P. E., Cai, K., Mcintosh, D. F. and Morris, R. H. (2014). Template effect and ligand substitution methods for the synthesis of iron catalysts: A two-part experiment for inorganic chemistry. Journal of Chemical Education, 92(2): 378-381.

27.   Cameron, J. H. (1995). Template synthesis of macrocyclic complexes: A laboratory project for advanced undergraduate students. Journal of Chemical Education, 72(11): 1033-1036.

28.   Arion, B. (1999). Template synthesis of macrocyclic compounds. Wiley-VCH Verlag GMbH: pp. 1-27.

29.   Haque, A., Ilmi, R., Al-Busaidi, I. J. and Khan, M. S. (2017). Coordination chemistry and application of mono- and oligopyridine-based macrocycles. Coordination Chemistry Reviews, 350: 320-339.

30.   Alam, M. M. (2011). Template synthesis of new type of macrocyclic molecule derived from pyridine-2, 6-decarboxaldehyde and 1,2-bis(2-aminoethoxy) ethane. Journal of Bangladesh Academy of Sciences, 35(1): 61-65.

31.   Edwards. F. and Hahn, P.G. (2011). Synthesis and coordination chemistry of macrocyclic ligands featuring NHC donor groups. The Royal Society of Chemistry, 40: 10278-10288.

32.   Truex, T. J. and Holm, R. H. (1971). Nontemplate synthesis of an unsaturated tetraaza[14] macrocycle and its metal(II) complexes. Journal of the American Chemical Society, 93(1): 285-286.

33.   Borisova, N. E., Reshetova, M. D. and Ustynyuk, Y. A. (2007). Metal-free methods in the synthesis of macrocyclic Schiff bases. Chemical Reviews, 107(1): 46-79.

34.   Owston, P. G., Peters, R., Ramsammy, E., Tasker, P. A. and Trotter, J. (1980). Non-template synthesis of “N4” macrocyclic imine ligands with variable ring sizes: The importance of intramolecular hydrogen-bonding. X-ray crystal structures of three macrocyclic and two open-chain ligands. Journal of the Chemical Society, Chemical Communications, (24): 1218-1220.

35.   Swamy, S. J., Veerapratap, B., Nagaraju, D., Suresh, K. and Someshwar, P. (2003). Non-template synthesis of “N4” di- and tetra-amide macrocylic ligands with variable ring sizes. Tetrahedron, 59(50): 10093-10096.

36.   Chandra, S., Tyagi, M. and Agrawal, S. (2010). Synthesis and characterization of a tetraaza macrocyclic ligand and its cobalt(II), Nickel(II) and Copper(II) complexes. Journal of the Serbian Chemical Society, 75(7): 935-941.

37.   Patil, N. and Akkasali, R. (2010). Non-template synthesis and antimicrobial activities of tetraazamacrocyclic ligands with variable ring sizes. International Journal of Pharma and Bio Sciences, 1(2): 1-6.

38.   Sen, I., Yildiz, C. B. and Azizoglu, A. (2013). Non template synthesis, characterization and theoretical study of tetraazamacrocycles. Ovidius University Annals of Chemistry, 23(1): 121-127.

39.   Nishat, N., Bhat, S. A., Kareem, A., Dhyani, S., Mohammad, A. and Mirza, A. U. (2018). Synthesis, characterization and biological analysis of transition metal complexes with macro cyclic ligands derived from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92(3–4): 395-409.

40.   Anisimova, N. A., Khristoforova, E. I. and Trishin, Y. G. (2015). Cyclocondensation of ethylenediamine with acetone and methyl ethyl ketone as a synthetic route to 14-membered azamacrocyclic compounds. Russian Journal of General Chemistry, 85(9): 2080-2086.

41.   Anisimova, N. A., Khristoforova, E. I. and Trishin, Y. G. (2016). Synthesis of azamacrocyclic compounds by cyclocondensation of aliphatic α,ω-diamines with acetone. Russian Journal of General Chemistry, 86(9): 2047-2051.

42.   Hassan, N. H., Ali, N. M., Yamin, B. M., Karim, N. H. A. and Ghani, N. A. A. (2014). Synthesis and characterization of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium diperchlorate copper(II) complex. Malaysian Journal of Analytical Sciences, 18(3): 562-571.

43.   Ali, N. M., Zaid, N. A. M., Karim, N. H. A., Yamin, B. M. and Hassan, N. H. (2018). Pengkompleksan 5,5,7,12,12,14-heksametil-1,4,8,11-tetraazasiklo tetraazadeka-7,14-dienium diperklorat dengan kuprum(II) asetat monohidrat dalam cecair ionik. Malaysian Journal of Analytical Sciences, 22(1): 27-34.

44.   Fairus, S., Yusoff, M., Yamin, B. M. and Leng, O. W. (2015). Synthesis, characterization, and antibacterial activity of Cu(II), Ni(II), and Zn(II) complexes of 14-membered macrocyclic tetraaza ligand. Oriental Journal of Chemistry, 31(3): 1751-1758.

45.   Chandra, S., Raizada, S. and Rani, S. (2008). Structural and spectral studies of palladium(II) and platinum(II) complexes derived from N,N,N,N-tetradentate macrocyclic ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 71(2): 720-724.

46.   Rossa, L. and Vögtle, F. (1983). Cyclophanes I. Springer Berlin Heidelberg, Berlin. 113: pp. 1-86.