Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 547 - 560
A SHORT REVIEW ON THE SYNTHESIS OF
AZAMACROCYCLIC LIGAND: CONVENTIONAL AND NON-TEMPLATE METHODS
(Ulasan Pendek Sintesis Ligan
Aza Makrosilik: Kaedah Konvensional dan Tanpa Templat)
Nur Halimatus Saadiah Abdullah1, Lailatun Nazirah
Ozair1*, Bohari Mohd Yamin2
1Faculty of Science and Technology,
Universiti
Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia
2Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: lailatunnazirah@usim.edu.my
Received: 21 June 2021;
Accepted: 26 July 2021; Published: 29
August 2021
Abstract
Various methods have
been developed for the synthesis of azamacrocyclic ligands and their
derivatives, which varies from the selection of amino group, ionic compound,
and solvent. Among the popular methods include the rigid group method, high
dilution method, and the template metal effect method. Recently, researchers
have considered the non-template method as a promising and effective approach
to produce a higher yield of metal-free azamacrocyclic ligands compared to the
conventional approaches. Hence, this review presented an overview of the
synthesis and structure of azamacrocyclic compounds through conventional
methods and the newly developed non-template method. The advantages and
disadvantages related to each technique were also highlighted.
Keywords:
azamacrocyclic
ligand, non-template method, cyclisation, metal ion
Abstrak
Pelbagai
kaedah dikembangkan untuk sintesis ligan aza makrosilik dan terbitannya yang
berbeza daripada pemilihan kumpulan amino, sebatian ion dan pelarut. Antara
pelbagai kaedah yang terkenal termasuklah kaedah kumpulan tegar, kaedah
percairan tinggi, dan kaedah kesan templat logam. Baru-baru ini, penyelidik
telah mengenal pasti kaedah tanpa templat sebagai pendekatan berkesan untuk
menghasilkan ligan aza makrosilik yang bebas logam dengan hasil yang tinggi,
berbanding dengan kaedah konvensional. Oleh itu, ulasan ini membincangkan
sintesis dan struktur sebatian aza makrosilik dengan kaedah konvensional dan
tanpa templat. Di samping itu, kelebihan dan kekurangan setiap teknik juga dibincangkan
untuk penambahbaikan pada masa hadapan.
Kata kunci: ligan aza makrosilik, kaedah tanpa templat, perkitaran, logam
ion
References
1. Curtis, N. F. (1968). Macrocyclic coordination
compounds formed by condensation of metal-amine complexes with aliphatic
carbonyl compounds. Coordination Chemistry Reviews, 3(1): 3-47.
2. Pedersen, C. J. (1967). Cyclic polythers and their
complexes with metals salts. Journal of the American Chemical Society,
89(I): 2495-2496.
3. Chandra, S. and Gupta, L. K. (2005). Spectroscopic
studies on Co(II), Ni(II) and Cu(II) complexes with a new macrocyclic ligand:
2,9-dipropyl-3,10-dimethyl-1,4,8,11-tetraaza-5,7:12,14-dibenzocyclotetradeca-1,
3,8,10-tetraene. Spectrochimica Acta - Part A: Molecular and Biomolecular
Spectroscopy, 61(6): 1181-1188.
4. Tseberlidis, G., Demonti, L., Pirovano, V., Scavini,
M., Cappelli, S., Rizzato, S. and Caselli, A. (2019). Controlling selectivity
in alkene oxidation: anion driven epoxidation or dihydroxylation catalysed by
[iron(iii)(pyridine-containing ligand)] complexes. ChemCatChem, 11(19):
4907-4915.
5. Chizhova, N. V., Ivanova, Y. B., Rusanov, A. I.,
Khrushkova, Y. V. and Mamardashvili, N. Z. (2019). Synthesis and spectral and
fluorescent properties of metal complexes of
octakis(4-flurophenyl)tetraazaporphyrins. Russian Journal of Organic
Chemistry, 55(5): 655-661.
6. Yamazaki, S. Ichi, Asahi, M., Taguchi, N. and Ioroi,
T. (2019). Electrochemical analysis of the porphyrazine-induced enhancement of
orr activity of pt catalysts for the development of porphyrazine-adsorbed Pt
catalysts. Journal of Electroanalytical Chemistry, 848(113321): 3-10.
7. Tahir, M. N., Abdulhamied, E., Nyayachavadi, A.,
Selivanova, M., Eichhorn, S. H. and Rondeau-Gagné, S. (2019). Topochemical
polymerization of a nematic tetraazaporphyrin derivative to generate soluble
polydiacetylene nanowires. Langmuir, 35(47):15158-15167.
8. Boudebouz, I., Arrous, S., Plotnikov, E., Voronova, O.
and Bakibaev, A. (2019). Synthesis and antioxidant activity of some new
thioglycoluril derivatives. Journal of Sulfur Chemistry, 40(4): 389-399.
9. Khabibullina, G. R., Zaynullina, F. T., Tyumkina, T.
V., Yanybin, V. M. and Ibragimov, A. G. (2019). Catalytic aminomethylation of
α,ω-diacetylenes with secondary diamines and aldehydes as an
efficient approach to diaza alkatetraynes and tetraaza tetraacetylenic
macrocycles. Russian Chemical Bulletin, 68(7): 1407-1413.
10. Chen, J., Zhang, T., Liu, X. and Shen, L. (2019).
Enantioselective synthesis of (S)-Γ-amino alcohols by Ru/Rh/Ir catalyzed
asymmetric transfer hydrogenation (ATH) with tunable chiral tetraaza ligands in
water. Catalysis Letters, 149(2): 601-609.
11. Panchbhai, M. A. and Bhave, N. S. (2009). Novel Ni
(II) tetraaza macrocyclic complex: Synthesis and characterization. International
Journal of Chemical Sciences, 7(2): 997-1003.
12. Savastano, M., Arranz-Mascarós, P., Bazzicalupi, C.,
Clares, M. P., Godino-Salido, M. L., Guijarro, L. and López-Garzón, R. (2017).
Polyfunctional tetraaza-macrocyclic ligands: Zn(II), Cu(II) binding and
formation of hybrid materials with multiwalled carbon nanotubes. ACS Omega,
2(7): 3868-3877.
13. El-boraey, H. A., El-Salamony, M.E. and Hathout, A. A.
(2016). Macrocyclic [N5] transition metal complexes: Synthesis,
characterization and biological activities. Journal of Inclusion Phenomena
and Macrocyclic Chemistry, 86: 153-166.
14. Ramadan, A. E. M. M., Shaban, S. Y., Khalil, S. M. E.,
Shebl, M. and El-Naem, R. A. S. (2017).
Synthesis and characterization of N3S2 donors
macrocyclic copper (II) complexes. Catechol oxidase and phenoxazinone synthase
biomimetic catalytic activity. Journal of the Chinese Advanced Materials
Society, 5(4): 215-240.
15. Yusuf, M. M. and Salga, M. S. (2019). Synthesis and
study of the efficacies of tetraaza macrocyclic ligand for the adsorption of
heavy metals from wastewater. Bayero Journal of Pure and Applied Sciences,
11(1): 126.
16. Chaudhary, A. and Rawat, E. (2014). Macrocyclic
assembly: A dive into the pecking order and applied aspects of multitalented
metallomacrocycles. International Journal of Inorganic Chemistry, 2014:
1-30.
17. Wankhede, D. S., Wagh, P. B. and Hangirgekar, S. P.
(2015). Synthesis and characterization of tetraazamacrocyclic complexes using
silica supported perchloric acid (HClO4:SiO2) as
catalyst. Journal of Chemical and Pharmaceutical Research, 7(12):
1153-1159.
18. Knops, P., Sendhoff, N., Mekelburger, H. B. and
Vögtle, F. (1992). Cyclophanes I. Springer Berlin Heidelberg, Berlin. 161: pp.
1-36.
19. Bhake, A., Shastri, S. and Limaye, N. (2014). A review
on macrocyclic complexes. Chemical Science Review and Letters, 2(6):
449-455.
20. Cole, R. J., Kirksey, J. W., Hill, R. K., Carlson, R.
M. and Isidor, J. L. (1974). Nitrogen analogs of crown ethers. Journal of
the American Chemical Society, 1(1): 2268-2270.
21. Hoye, R. C., Hoye, R. C., Richman, J. E., Dantas, G.
A., Lightbourne, M. F. and Scott Shinneman, L. (2001). Synthesis of
polyazamacrocyclic compounds via modified richman-atkins cyclization of
β-trimethylsilylethanesulfonamides. Journal of Organic Chemistry,
66(8): 2722-2725.
22. Shakir, M. and Varkey, S. P. (1995). A new synthetic
route for the preparation of a new series of 14-22-membered tetraoxomacrocyclic
tetraamines and their transition metal complexes. Polyhedron, 14(9):
1117-1127.
23. Yu, X. and Zhang, J. (2018). Macrocyclic polyamines:
Synthesis and applications. Wiley-VCH Verlag GMbH & Co. KGaA: pp. 7-44.
24. Rosen, W. and Busch, D. H. (1969). Nickel (II)
complexes of cyclic tetradentate thioethers. Journal of the American
Chemical Society, 91(17): 4694-4697.
25. Travis, K. and Busch, D. H. (1974). Cobalt(III) and
Rhodium(III) complexes of cyclic tetradentate thioethers. Inorganic
Chemistry, 13(11), 2591-2597.
26. Sues, P. E., Cai, K., Mcintosh, D. F. and Morris, R.
H. (2014). Template effect and ligand substitution methods for the synthesis of
iron catalysts: A two-part experiment for inorganic chemistry. Journal of
Chemical Education, 92(2): 378-381.
27. Cameron, J. H. (1995). Template synthesis of
macrocyclic complexes: A laboratory project for advanced undergraduate students.
Journal of Chemical Education, 72(11): 1033-1036.
28. Arion, B. (1999). Template synthesis of macrocyclic
compounds. Wiley-VCH Verlag GMbH: pp. 1-27.
29. Haque, A., Ilmi, R., Al-Busaidi, I. J. and Khan, M. S.
(2017). Coordination chemistry and application of mono- and oligopyridine-based
macrocycles. Coordination Chemistry Reviews, 350: 320-339.
30. Alam, M. M. (2011). Template synthesis of new type of
macrocyclic molecule derived from pyridine-2, 6-decarboxaldehyde and
1,2-bis(2-aminoethoxy) ethane. Journal of Bangladesh Academy of Sciences,
35(1): 61-65.
31. Edwards. F. and Hahn, P.G. (2011). Synthesis and
coordination chemistry of macrocyclic ligands featuring NHC donor groups. The
Royal Society of Chemistry, 40: 10278-10288.
32. Truex, T. J. and Holm, R. H. (1971). Nontemplate
synthesis of an unsaturated tetraaza[14] macrocycle and its metal(II)
complexes. Journal of the American Chemical Society, 93(1): 285-286.
33. Borisova, N. E., Reshetova, M. D. and Ustynyuk, Y. A.
(2007). Metal-free methods in the synthesis of macrocyclic Schiff bases. Chemical
Reviews, 107(1): 46-79.
34. Owston, P. G., Peters, R., Ramsammy, E., Tasker, P. A.
and Trotter, J. (1980). Non-template synthesis of “N4” macrocyclic imine
ligands with variable ring sizes: The importance of intramolecular
hydrogen-bonding. X-ray crystal structures of three macrocyclic and two
open-chain ligands. Journal of the Chemical Society, Chemical Communications,
(24): 1218-1220.
35.
Swamy, S. J.,
Veerapratap, B., Nagaraju, D., Suresh, K. and Someshwar, P. (2003).
Non-template synthesis of “N4” di- and tetra-amide macrocylic ligands with
variable ring sizes. Tetrahedron, 59(50): 10093-10096.
36. Chandra, S., Tyagi, M. and Agrawal, S. (2010).
Synthesis and characterization of a tetraaza macrocyclic ligand and its
cobalt(II), Nickel(II) and Copper(II) complexes. Journal of the Serbian
Chemical Society, 75(7): 935-941.
37. Patil, N. and Akkasali, R. (2010). Non-template
synthesis and antimicrobial activities of tetraazamacrocyclic ligands with
variable ring sizes. International Journal of Pharma and Bio Sciences,
1(2): 1-6.
38. Sen, I., Yildiz, C. B. and Azizoglu, A. (2013). Non
template synthesis, characterization and theoretical study of
tetraazamacrocycles. Ovidius University Annals of Chemistry, 23(1):
121-127.
39. Nishat, N., Bhat, S. A., Kareem, A., Dhyani, S.,
Mohammad, A. and Mirza, A. U. (2018). Synthesis, characterization and
biological analysis of transition metal complexes with macro cyclic ligands
derived from adipic acid, ethylenediamine with diethyloxalate and
diethylmalonate. Journal of Inclusion Phenomena and Macrocyclic Chemistry,
92(3–4): 395-409.
40. Anisimova, N. A., Khristoforova, E. I. and Trishin, Y.
G. (2015). Cyclocondensation of ethylenediamine with acetone and methyl ethyl
ketone as a synthetic route to 14-membered azamacrocyclic compounds. Russian
Journal of General Chemistry, 85(9): 2080-2086.
41. Anisimova, N. A., Khristoforova, E. I. and Trishin, Y.
G. (2016). Synthesis of azamacrocyclic compounds by cyclocondensation of
aliphatic α,ω-diamines with acetone. Russian Journal of
General Chemistry, 86(9): 2047-2051.
42. Hassan, N. H., Ali, N. M., Yamin, B. M., Karim, N. H.
A. and Ghani, N. A. A. (2014). Synthesis and characterization of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium
diperchlorate copper(II) complex. Malaysian Journal of Analytical
Sciences, 18(3): 562-571.
43. Ali, N. M., Zaid, N. A. M., Karim, N. H. A., Yamin, B.
M. and Hassan, N. H. (2018). Pengkompleksan
5,5,7,12,12,14-heksametil-1,4,8,11-tetraazasiklo tetraazadeka-7,14-dienium
diperklorat dengan kuprum(II) asetat monohidrat dalam cecair ionik. Malaysian
Journal of Analytical Sciences, 22(1): 27-34.
44. Fairus, S., Yusoff, M., Yamin, B. M. and Leng, O. W.
(2015). Synthesis, characterization, and antibacterial activity of Cu(II),
Ni(II), and Zn(II) complexes of 14-membered macrocyclic tetraaza ligand. Oriental
Journal of Chemistry, 31(3): 1751-1758.
45. Chandra, S., Raizada, S. and Rani, S. (2008).
Structural and spectral studies of palladium(II) and platinum(II) complexes
derived from N,N,N,N-tetradentate macrocyclic ligands. Spectrochimica Acta -
Part A: Molecular and Biomolecular Spectroscopy, 71(2): 720-724.
46. Rossa, L. and Vögtle, F. (1983). Cyclophanes I.
Springer Berlin Heidelberg, Berlin. 113: pp. 1-86.