Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 561 - 568

 

 

 

 

SYNTHESIS AND CHARACTERIZATION OF RUBBER SEED SHELL IMPREGNATED WITH CALCIUM OXIDE AS CATALYST FOR BIODIESEL PRODUCTION

 

(Sintesis dan Pencirian Kulit Biji Getah dengan Resapan Kalsium Oksida Sebagai Bahan Pemangkin Untuk Penghasilan Biodiesel)

 

Nurul Farhanah Zakaria1, Sarah Laila Mohd Jan1*, Siti Norhafiza Mohd Khazaai1,2, Mohd Lokman Ibrahim2,4 , Mohd Hasbi Ab. Rahim3 , Gaanty Pragas Maniam3

 

 1Faculty of Applied Sciences,

Universiti Teknologi MARA Cawangan Pahang, Kampus Jengka, 26400 Jengka, Pahang, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

4Centre of Nanomaterial Research, Institute of Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  sarahlaila@uitm.edu.my

 

 

Received: 30 April 2021; Accepted: 13 July 2021; Published:  29 August 2021

 

 

Abstract

Biomass can be manipulated as a promising heterogeneous catalyst that provides greener synthesis route for sustainable production of biodiesel.  The oven-dried  rubber seed shell (RSS) biomass was ground, and calcined at 700 °C for 4 hours. Later, RSS/CaO catalysts were prepared using the wet impregnated method with 1:4 ratios and calcined at 450 °C for 4 hours. The physicochemical properties were characterized by using thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). Methyl ester yield obtained was 68.6% by employing 10 wt.% of catalyst loading with 1:12 oil to methanol molar ratio at a temperature of 70 °C within 3 hours. Therefore, the present study verified that the RSS/CaO catalyst was one of the suitable catalysts for methyl ester production.

 

Keywords:  methyl ester, biomass, waste cooking oil

 

Abstrak

Biojisim boleh dimanipulasi sebagai bahan pemangkin heterogen harapan yang boleh menyediakan laluan sintesis lebih mesra alam sekitar untuk pengeluaran biodiesel yang lebih mampan. Kulit biji getah yang telah dikering dalam oven kemudiannya dikisar dan dikalsinasi pada suhu 700 °C selama 4 jam. Bahan pemangkin RSS/CaO disediakan dengan menggunakan kaedah resapan basah dengan nisbah 1:4 dan dikalsinasi pada suhu 450 °C selama 4 jam. Sifat fizikokimia dicirikan dengan menggunakan analisis termogravimetrik (TGA), spektoskopi infrmerah transformasi Fourier (FTIR) dan mikroskopi imbasan elektron-tenaga serakan sinar-X (SEM-EDX). Hasil metil ester yang diperoleh adalah 68.6% dengan menggunakan 10% berat pemangkin dengan nisbah molar minyak dan metanol 1:12 pada suhu 70 °C dalam 3 jam. Oleh itu, kajian ini mengesahkan bahawa bahan pemangkin RSS/CaO adalah salah satu pemangkin yang sesuai untuk pengeluaran metil ester.

 

Kata kunci:  metil ester, biojisim, sisa minyak masak

 

References

1.      Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H. and Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70: 1040-1051.

2.      Tang, Z. E., Lim, S., Pang, Y. L., Ong, H. C. and Lee, K. T. (2018). Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renewable and Sustainable Energy Reviews, 92: 235-253.

3.      Mendonça, I. M., Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C. S., Duvoisin Jr. and de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum meyer): Parameters optimization study. Renewable Energy, 130: 103-110.

4.      Chellappan, S. and Nair, V. (2018). Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chinese Journal of Chemical Engineering, 26: 2654-2663.

5.      Mazaheri, H., Ong, H. C., Masjuki, H. H., Amini, Z., Harrison, M. D., Wang, C. T., Kusumo, F. and Alwi, A. (2018). Rice bran oil based biodiesel production using calcium oxide catalyst derived from chicoreus brunneus shell. Energy, 144: 10-19.

6.      Hassan, S. N. A. M., Ishak, M. A. M., Ismail, K., Ali, S. N. and Yusop, M. F. (2014). Comparison study of rubber seed shell and kernel (Hevea brasiliensis) as raw material for bio-oil production. Energy Procedia. 52: 610-617.

7.      Khazaai, S. N. M., Maniam, G. P., Rahim, M. H. A., Yusoff, M. M. and Matsumura, Y. (2017).  Review on methyl ester production from inedible rubber seed oil under various catalysts. Industrial Crops and Production, 97: 191.

8.      Muthusamy, K., Nordin, N., Vesuvapateran, G., Ali, M., Mohd Annual, N. A., Harun, H. and Ullap, H. (2014). Exploratory study of rubber seed shell as partial coarse aggregate replacement in concrete. Research Journal of Applied Sciences, Engineering and Technology, 7: 1199-1202.

9.      Shah, B., Sulaimana, S., Jamal, P. and Alam, M. Z. (2014). Production of heterogeneous catalysts for biodiesel synthesis. International Journal Chemical Environmental Engineering, 5(2): 73-75.

10.   Al-Muhtaseb, A. A. H., Jamil, F., Al-Haj, L., Zar Myint, M. T., Mahmoud, E., Ahmad, M. N., Hasan, A. O. and Rafiq, S. (2018). Biodiesel production over a catalyst prepared from biomass-derived waste date pits. Biotechnology Reports, 20: 00284.

11.   Vadery, V., Narayanan, B. N., Ramakrishnan, R. M., Cherikkallinmel, S. K., Sugunan, S., Narayanan, D. P. and Sasidharan, S. (2014). Room temperature production of jatropha biodiesel over coconut husk ash. Energy, 70: 588-594.

12.   Helwani, Z., Fatra, W., Saputra, E. and Maulana, R. (2018). Preparation of CaO/fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production. IOP Conference Series: Materials Science and Engineering, 334: 012077.

13.   Ekebafe, L., Imanah, J. and Okieimen, F. (2010). Physico-mechanical properties of rubber seed shell carbon-filled natural rubber compounds. Chemical Industry and Chemical Engineering Quarterly, 16: 149-156.

14.   Shohaimi, N. A. M. and Marodzi, F. N. S. (2018). Transesterification of waste cooking oil in biodiesel production utilizing CaO/Al2O3 heterogeneous catalyst. Malaysian Journal Analytical Sciences,  22: 157-165.

15.   Onoji, S. E, Iyuke, S. E., Igbafe, A. I. and Daramola, M. O. (2017). Transesterification of rubber seed oil to biodiesel over a calcined waste rubber seed shell catalyst: Modeling and optimization of process variables. Energy Fuels, 31: 6109-6119.

16.   Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R. and Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion Managment, 63: 138-148.

17.   Lv, C., Liu, P., Yuan Z., Yan, F. and Luo, W. (2010). The nanometer magnetic solid base catalyst for production of biodiesel. Renewable Energy, 35: 1531-1536.

18.   Khan, N. B. A. and Yacob, A. R. (2017). Potassium hydroxide and calcium oxide activated carbon for transesterification reaction of biodiesel. eProceedings Chemistry, 2: 63-69.

19.   Reshad, A. S., Tiwari, P. and Goud, V. V. (2018). Thermo-chemical conversion of waste rubber seed shell to produce fuel and value-added chemicals. Journal Energy Insdustry, 91: 940-950.

20.   Neri, G., (2003). K- and Cs-FeV/Al2O3 soot combustion catalysts for diesel exhaust treatment. Applied Catalysis B: Environmental, 42(4): 381-391.