Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 561 - 568
SYNTHESIS AND CHARACTERIZATION OF RUBBER SEED SHELL IMPREGNATED
WITH CALCIUM OXIDE AS CATALYST FOR BIODIESEL PRODUCTION
(Sintesis dan Pencirian Kulit Biji Getah dengan Resapan Kalsium Oksida
Sebagai Bahan Pemangkin Untuk Penghasilan Biodiesel)
Nurul Farhanah Zakaria1, Sarah
Laila Mohd Jan1*, Siti Norhafiza Mohd
Khazaai1,2, Mohd Lokman Ibrahim2,4 ,
Mohd Hasbi Ab. Rahim3 , Gaanty Pragas Maniam3
1Faculty of Applied Sciences,
Universiti
Teknologi MARA Cawangan Pahang, Kampus Jengka, 26400 Jengka, Pahang, Malaysia
2Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Faculty of Industrial Sciences &
Technology,
Universiti
Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
4Centre of Nanomaterial Research,
Institute of Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: sarahlaila@uitm.edu.my
Received: 30 April 2021;
Accepted: 13 July 2021; Published: 29
August 2021
Abstract
Biomass can be manipulated
as a promising heterogeneous catalyst that provides greener synthesis route for
sustainable production of biodiesel. The oven-dried rubber seed shell (RSS) biomass was ground,
and calcined at 700 °C for 4 hours. Later, RSS/CaO catalysts were
prepared using the wet impregnated method with 1:4 ratios and calcined at 450
°C for 4 hours. The physicochemical properties were characterized by using
thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR)
and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). Methyl
ester yield obtained was 68.6% by employing 10 wt.% of catalyst loading with
1:12 oil to methanol molar ratio at a temperature of 70 °C within 3 hours.
Therefore, the present study verified that the RSS/CaO catalyst was one of the
suitable catalysts for methyl ester production.
Keywords:
methyl ester, biomass, waste cooking oil
Abstrak
Biojisim
boleh dimanipulasi sebagai bahan pemangkin heterogen harapan yang boleh
menyediakan laluan sintesis lebih mesra alam sekitar untuk pengeluaran
biodiesel yang lebih mampan. Kulit biji getah yang telah dikering dalam oven
kemudiannya dikisar dan dikalsinasi pada suhu 700 °C selama 4 jam.
Bahan pemangkin RSS/CaO disediakan dengan menggunakan kaedah resapan basah
dengan nisbah 1:4 dan dikalsinasi pada suhu 450 °C selama 4 jam. Sifat
fizikokimia dicirikan dengan menggunakan analisis termogravimetrik (TGA),
spektoskopi infrmerah transformasi Fourier (FTIR) dan mikroskopi imbasan
elektron-tenaga serakan sinar-X (SEM-EDX). Hasil metil ester yang diperoleh
adalah 68.6% dengan menggunakan 10% berat pemangkin dengan nisbah molar minyak
dan metanol 1:12 pada suhu 70 °C dalam 3 jam. Oleh itu, kajian ini mengesahkan
bahawa bahan pemangkin RSS/CaO adalah salah satu pemangkin yang sesuai untuk
pengeluaran metil ester.
Kata kunci: metil
ester, biojisim, sisa minyak masak
References
1.
Abdullah, S. H. Y.
S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H. and Endut, A.
(2017). A review of biomass-derived heterogeneous catalyst for a sustainable
biodiesel production. Renewable and
Sustainable Energy Reviews, 70: 1040-1051.
2.
Tang, Z. E., Lim,
S., Pang, Y. L., Ong, H. C. and Lee, K. T. (2018). Synthesis of biomass as
heterogeneous catalyst for application in biodiesel production: State of the
art and fundamental review. Renewable and
Sustainable Energy Reviews, 92: 235-253.
3.
Mendonça, I. M.,
Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C.
S., Duvoisin Jr. and de Freitas, F. A. (2019). New heterogeneous catalyst for
biodiesel production from waste tucumã peels (Astrocaryum aculeatum
meyer): Parameters optimization study. Renewable
Energy, 130: 103-110.
4.
Chellappan, S. and
Nair, V. (2018). Synthesis, optimization and characterization of biochar based
catalyst from sawdust for simultaneous esterification and transesterification. Chinese
Journal of Chemical Engineering, 26: 2654-2663.
5.
Mazaheri, H., Ong, H. C., Masjuki, H. H., Amini, Z., Harrison, M. D.,
Wang, C. T., Kusumo, F. and Alwi, A. (2018). Rice bran oil based biodiesel
production using calcium oxide catalyst derived from chicoreus brunneus shell. Energy, 144: 10-19.
6.
Hassan, S. N. A. M., Ishak, M. A. M., Ismail, K., Ali, S. N. and Yusop, M.
F. (2014). Comparison study of rubber seed shell and kernel (Hevea brasiliensis) as raw material for
bio-oil production. Energy Procedia.
52: 610-617.
7.
Khazaai, S. N. M.,
Maniam, G. P., Rahim, M. H. A., Yusoff, M. M. and Matsumura, Y. (2017). Review on methyl ester production from
inedible rubber seed oil under various catalysts. Industrial Crops and Production, 97: 191.
8.
Muthusamy, K.,
Nordin, N., Vesuvapateran, G., Ali, M., Mohd Annual, N. A., Harun, H. and
Ullap, H. (2014). Exploratory study of rubber seed shell as partial coarse
aggregate replacement in concrete. Research
Journal of Applied Sciences, Engineering and Technology, 7: 1199-1202.
9.
Shah, B., Sulaimana,
S., Jamal, P. and Alam, M. Z. (2014). Production of heterogeneous catalysts for
biodiesel synthesis. International Journal Chemical Environmental
Engineering, 5(2): 73-75.
10.
Al-Muhtaseb, A. A.
H., Jamil, F., Al-Haj, L., Zar Myint, M. T., Mahmoud, E., Ahmad, M. N., Hasan,
A. O. and Rafiq, S. (2018). Biodiesel production over a catalyst prepared from
biomass-derived waste date pits. Biotechnology
Reports, 20: 00284.
11.
Vadery, V., Narayanan, B. N.,
Ramakrishnan, R. M., Cherikkallinmel, S. K., Sugunan, S., Narayanan, D. P. and
Sasidharan, S. (2014). Room temperature production of jatropha biodiesel over
coconut husk ash. Energy, 70:
588-594.
12.
Helwani, Z., Fatra,
W., Saputra, E. and Maulana, R. (2018). Preparation of CaO/fly ash as a
catalyst inhibitor for transesterification process off palm oil in biodiesel
production. IOP Conference Series:
Materials Science and Engineering, 334: 012077.
13.
Ekebafe, L., Imanah,
J. and Okieimen, F. (2010). Physico-mechanical properties of rubber seed shell
carbon-filled natural rubber compounds. Chemical
Industry and Chemical Engineering Quarterly, 16: 149-156.
14.
Shohaimi, N. A. M.
and Marodzi, F. N. S. (2018). Transesterification of waste cooking oil in
biodiesel production utilizing CaO/Al2O3 heterogeneous
catalyst. Malaysian Journal Analytical
Sciences, 22: 157-165.
15.
Onoji, S. E, Iyuke,
S. E., Igbafe, A. I. and Daramola, M. O. (2017). Transesterification of rubber
seed oil to biodiesel over a calcined waste rubber seed shell catalyst:
Modeling and optimization of process variables. Energy Fuels, 31: 6109-6119.
16.
Abbaszaadeh, A.,
Ghobadian, B., Omidkhah, M. R. and Najafi, G. (2012). Current biodiesel
production technologies: A comparative review. Energy Conversion Managment, 63: 138-148.
17.
Lv, C., Liu, P.,
Yuan Z., Yan, F. and Luo, W. (2010). The nanometer magnetic solid base catalyst
for production of biodiesel. Renewable
Energy, 35: 1531-1536.
18.
Khan, N. B. A. and
Yacob, A. R. (2017). Potassium hydroxide and calcium oxide activated carbon for
transesterification reaction of biodiesel. eProceedings
Chemistry, 2: 63-69.
19.
Reshad, A. S.,
Tiwari, P. and Goud, V. V. (2018). Thermo-chemical conversion of waste rubber
seed shell to produce fuel and value-added chemicals. Journal Energy Insdustry, 91: 940-950.
20.
Neri, G., (2003). K-
and Cs-FeV/Al2O3 soot combustion catalysts for diesel
exhaust treatment. Applied Catalysis B:
Environmental, 42(4): 381-391.