Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 532 - 545
DEVELOPMENT
OF EDIBLE CHITOSAN FILM INCORPORATED WITH POMEGRANATE PEEL EXTRACT FOR THE
PACKAGING OF BEEF
(Penghasilan Filem Kitosan yang Boleh Dimakan yang
Digabungkan dengan Ekstrak Kulit Buah Delima untuk Pembungkusan Daging Lembu)
Seah Jia Min1, Ianne Kong1, Enis
Mudiliar Rajan1, Pui Liew Phing1*, Yus Aniza Yusof2,3  
1Department of Food
Science with Nutrition, Faculty of Applied Sciences, 
UCSI University, 56000
Kuala Lumpur.
2Department of Process and
Food Engineering, Faculty of Engineering 
3Laboratory of Halal
Services, Halal Products Research
Institute
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. 
*Corresponding
author:  puilp@ucsiuniversity.edu.my
Received:  20 May 2021;
Accepted: 17 june 2021; Published:  27
June 2021
Abstract
The aim of this research was
to produce a chitosan-based edible film with pomegranate peel extract.
Different chitosan concentration (1-2% w/v) and pomegranate peel extract (0%-6%
w/v) were used to produce an edible film, and physical (thickness, moisture content,
water-solubility, and total color change), mechanical (tensile strength and
elongation at break), chemical (Fourier Transform Infrared) and antimicrobial
properties of the edible films were investigated. The optimized edible film was
applied to beef samples for a 7 days storage at 4 °C. When the concentration of
the pomegranate peel extract increases from 1 to 6% (w/v), the thickness, water
solubility, and total color difference of the film also increases. The chitosan
film added with pomegranate peel extract was effective in inhibiting the Streptococcus
aureus (SA) growth as
compared to Pseudomonas aeruginosa (PA). In addition, an increasing in
chitosan concentration (from 1% to 2%) reduced the water solubility of
pomegranate peel extract film from 41.42% to 33.02%. Films with 2% (w/v)
chitosan have the highest tensile strength (12.67 MPa) while the highest elongation
at break (10.21%) was exhibited by the film with 1.5% (w/v) chitosan and 4%
(w/v) pomegranate peel extract. The optimal concentration of chitosan and
pomegranate peel extract of the film was 1.5% (w/v) and 4% (w/v), respectively.
Moreover, shelf life of the beef sample was increased from 4 days to 7 days
with the application of the pomegranate peel extract chitosan film.
Keywords:  film, antimicrobial, chitosan,
pomegranate peel extract, beef
Abstrak
Tujuan penyelidikan ini adalah untuk
menghasilkan plastik yang boleh dimakan berasaskan kitosan dengan ekstrak kulit
buah delima. Kepekatan kitosan yang berbeza (1-2% w/v) dan ekstrak kulit buah
delima (0%-6% w/v) digunakan untuk menghasilkan plastik yang boleh dimakan, dan
fizikal (ketebalan, kandungan kelembapan, kelarutan air, dan jumlah perubahan
warna), mekanikal (kekuatan tegangan dan pemanjangan maksima), sifat kimia
(inframerah transformasi Fourier) dan antimikrob plastik yang boleh dimakan
telah dikaji. Plastik yang dioptimum, telah digunakan untuk sampel daging lembu
untuk simpanan 7 hari pada 4 °C.  Apabila
kepekatan ekstrak kulit buah delima meningkat dari 1 hingga 6% (w/ v),
ketebalan, kelarutan air, dan jumlah perbezaan warna plastik juga meningkat. Plastik
kitosan yang ditambah dengan ekstrak kulit buah delima berkesan dalam
menghalang pertumbuhan Streptococcus
aureus (SA) berbanding Pseudomonas
aeruginosa (PA). Di samping itu, peningkatan dalam kepekatan kitosan (dari
1% hingga 2%) mengurangkan kelarutan air plastik ekstrak kulit buah delima
daripada 41.42% kepada 33.02%. Plastik dengan 2% (w/v) kitosan mempunyai
kekuatan tegangan tertinggi (12.67 MPa) manakala pemanjangan maksima (10.21%)
dipamerkan oleh plastik 1.5% (w/v) kitosan dan 4% (w/v) ekstrak kulit buah
delima. Kepekatan optimum kitosan dan ekstrak kulit buah delima adalah 1.5%
(w/v) dan 4% (w/v), masing-masing. Selain itu, jangka hayat sampel daging lembu
telah ditingkatkan dari 4 hari kepada 7 hari dengan aplikasi plastik
kitosan-ekstrak kulit buah delima.
Kata kunci:  plastik,
antimikrob, kitosam, ekstrak kulit buah delima, daging lembu
References
1.     
Ghaani, M. (2016). An overview
of the intelligent packaging technologies in the food sector. Trends
in Food Science & Technology, (51): 1-11. 
2.     
Brunazzi, G., Parisi, S.
and Pereno, A. (2014). The importance of packaging design for the chemistry of
food products. Springer Briefs in
Molecular Science: pp. 1-3.
3.     
Rizzolo, A. (2016).
Volatile compound composition and antioxidant activity of cooked ham slices
packed in propolis- based active packaging. Food Packaging and Shelf Life,
8(16): 41-49. 
4.     
Maisanaba, S.
(2016).  A new advance in active
packaging incorporated with essential oils or their main components for food
preservation. International Journal of Molecular Sciences, 33(5): 447-515. 
5.     
Ponce, A. G. (2008).
Antimicrobial and antioxidant activities of edible coatings enriched with natural
plant extracts: In vitro and In vivo studies. Postharvest
Biology and Technology, 49(2): 294-300. 
6.     
Sivarooban, T.,
Hettiarachchy, N. and Johnson, M. (2008). Physical and antimicrobial properties
of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food
Research International, 41(8): 781-785. 
7.     
Alkan, D. and
Yemenicioğlu. (2015). A potential application of natural phenolic
antimicrobials and edible film technology against bacterial plant pathogens. Food
Hydrocolloids, (55): 1-10.
8.     
Alexandre, E. (2016).
Gelatin-based films reinforced with montmorillonite and activated with
nanoemulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10
(10): 87-96.
9.     
Rinaudo, M. (2006).
Chitin and chitosan: Properties and applications. Progress in Polymer Science,
31(7): 603-632. 
10.  
Lee, Y. Y. and Phing, P.
L. (2020). Development of milk protein edible films incorporated with Lactobacillus
rhamnosus GG. Bioresources, 15:
6960-6973. 
11.  
Matan, N. (2012).
Antimicrobial activity of edible film incorporated with essential oils to
preserve dried fish (Decapterus maruadsi).
International
Food Research Journal, 19(4): 1733-1738. 
12.  
Choong, K. Y. (2019).
Antibacterial properties of chitosan edible films incorporated with musk lime
extract for the preservation of squids. Malaysian Journal of Analytical Sciences,
23(6): 914-925. 
13.  
Jaiswal, V.,
Dermarderosian, A. and Porter, J. (2010). Anthocyanins and polyphenol oxidase
from dried arils of pomegranate (Punica
Granatum L.). Food Chemistry, 118(1): 11-16. 
14.  
Masci, A. (2016).
Evaluation of different extraction methods from pomegranate whole fruit or
peels and the antioxidant and antiproliferative activity of the polyphenolic
fraction. Food Chemistry, 202 (4):59-69. 
15.  
Celiksoy, V. and Heard,
C. (2021). Antimicrobial potential  of   pomegranate   extracts.   Access from https://www.intechopen.com/online-first/
antimicrobial-potential-of-pomegranate-extracts. [Access online 14 April 2021].
16.  
Dahham, S. S. (2010).
Studies on antibacterial and antifungal activity of pomegranate (Punica Granatum L.). American-Eurasion
Journal Agriculture and Environmental Science, 9(3): 273-281.
17.  
Reid, R. (2017). The
microbiology of beef carcasses and primals during chilling and commercial
storage. Food Microbiology, 61(9): 50-57. 
18.  
Kerry, J. (2012).
Advances in meat, poultry, and seafood packaging. Woodhead Publishing, Cambridge.
1-4.
19.  
Buncic, S. (2014).
Microbial pathogen control in the beef chain: Recent research advances. Meat
Science, 97(3): 288-297. 
20.  
Radha K. K. (2014).
Antimicrobial and antioxidant effects of spice extracts on the shelf life
extension of raw chicken meat. International Journal of Food Microbiology,
171(14): 32-40.  
21.  
Panichayupakaranant, P.,
Tewtrakul, S. and Yuenyongsawad, S. (2010). Antibacterial, anti-inflammatory,
and anti-allergic activities of standardised pomegranate rind extract. Food
Chemistry, 123(2): 400-403. 
22.  
Al-zoreky, N. (2009).
Antimicrobial activity of pomegranate (Punica
Granatum L.) fruit peels. International Journal of Food Microbiology,
134(3): 244-248. 
23.  
Remya, S. (2015). Effect
of chitosan based active packaging film on the keeping quality of chilled
stored barracuda fish. Journal of Food Science and Technology,
53(1): 685-693.
24.  
Chan, H. M. (2020).
Investigation of properties of polysaccharide-based edible film incorporated
with functional Melastoma malabathricum extract. Carpathian Journal of Food
Science & Technology, 12(1): 120-133. 
25.  
Ma, Q., Zhang, Y. and
Zhong, Q. (2016).  Physical and
antimicrobial properties of chitosan films incorporated with lauric arginate,
cinnamon oil, and ethylene diamine tetraacetate. Food Science and Technology,
65(6): 173-179. 
26.  
Kuan, Y. (2020).
Physicochemical properties of sodium alginate edible film incorporated with
mulberry (Morus australis) leaf extract. Pertanika Journal of Tropical
Agricultural Science, 43(3): 359-376. 
27.  
Dick, M., Costa, T. M.
H., Gomaa, A., Subirade, M., Rios, A. de O. and Flores, S. H. (2015). Edible
film production from chia seed mucilage: Effect of glycerol concentration on
its physicochemical and mechanical properties. Materials Science and
Engineering, 33(4):
1819-1841.
28.  
Pranoto, Y., Rakshit, S.
and Salokhe, V. (2005). Enhancing the antimicrobial activity of chitosan films
by incorporating garlic oil, potassium sorbate and nisin. Food Science and Technology,
38(8): 859-865. 
29.  
Fernandez-pan, I., Royo,
M. and Ignacio Mate, J. (2012). Antimicrobial activity of whey protein isolate
edible films with essential oils against food spoilers and foodborne pathogens.
Journal
of Food Science, 77(7): 383-390. 
30.  
Remya, S. (2015). Effect
of chitosan based active packaging film on the keeping quality of chilled
stored barracuda fish. Journal of Food Science and Technology,
53(1): 685-693.
31.  
Emiroglu, Z. (2010).
Antimicrobial activity of soy edible films incorporated with thyme and oregano
essential oils on fresh ground beef patties. Meat Science, 86(2):
283-288.  
32.  
Oussalah, M. (2004).
Antimicrobial and antioxidant effects of milk protein-based film containing
essential oils for the preservation of whole beef muscle. Journal of Agricultural and
Food Chemistry, 52(18): 5598-5605. 
33.  
Singh, T., Chatli, M. and
Sahoo, J. (2014). Development of chitosan based edible films: process
optimization using response surface methodology. Journal of Food Science and
Technology, 52(5): 2530-2543. 
34.  
Rubilar, J. (2013). Physico-mechanical
properties of chitosan films with carvacrol and grape seed extract. Journal
of Food Engineering, 115(4): 466-474. 
35.  
Pereda, M. (2011).
Chitosan-gelatin composites and bi-layer films with potential antimicrobial
activity. Food Hydrocolloids, 25(7): 1372-1381. 
36.  
Bourtoom, T. and Chinnan,
M. S. (2008). Preparation and properties of rice starch-chitosan blend
biodegradable film. Food Science and Technology, 41(9):
1633-1641. 
37.  
Laohakunjit, N. and
Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier
properties of rice starch film. Starch
Starke, 56(8): 348-356.
38.  
Ojagh, S. (2010). Effect
of chitosan coatings enriched with cinnamon oil on the quality of refrigerated
rainbow trout. Food Chemistry, 120(1): 193-198.
39.  
Maizura, M. (2007). Antibacterial
activity and mechanical properties of partially hydrolyzed sago starch/alginate
edible film containing lemongrass oil. Journal of Food Science, 72(6):
324-330. 
40.  
Zhang, P., Zhao, Y. and
Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti:
Effect of plasticizer type and concentration. Carbohydrate Polymers, 153(3): 345-355. 
41.  
Jurenka, J. (2008).
Therapeutic applications of pomegranate (Punica
Granatum L.): A review: Alternative Medicine Review,
13(2): 128-144.
42.  
Rivero, S., García, M. A.
and Pinotti. (2010). A crosslinking capacity of tannic acid in plasticized
chitosan films. Carbohydrate Polymers, 82(2): 270-276. 
43.  
Zivanovic, S., Li, J.,
Davidson, P. and Kit. (2007). Physical, mechanical, and antibacterial
properties of Chitosan/PEO blend films. Biomacromolecules, 8(5):
1505-1510.
44.  
Ashassi-sorkhabi, H.
(2015). Pomegranate (Punica Granatum)
peel extract as a green corrosion inhibitor for mild steel in hydrochloric acid
solution. International Journal of Corrosion, 2015: 1-6. 
45.  
Tee, Y. B. (2017).
Chemical, physical, and barrier properties of edible film from flaxseed
mucilage. Bioresources, 12(3): 6656-6664.
46.  
Huang, Y. (2014). Effect
of carbon coating on cycle performance of lifepoc composite cathodes using
tween80 as carbon source. Electrochimica Acta, 130(14):
740-747.
47.  
Ghosh, T. and Jasti, B.
(2005). Theory and practice of contemporary pharmaceutics. CRC Press Boca Raton: pp. 68-69. 
48.  
Liu, N. (2006). Effect of
MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers,
64(1): 60-65.
49.  
Jung, E. (2010).
Antibacterial activity of chitosan with different degrees of deacetylation and
viscosities. International Journal of Food Science & Technology, 45(4):
676-682.
50.  
Kumar, M. N. R. (2000). A
review of chitin and chitosan applications. Reactive and Functional Polymers,
46(1): 1-27. 
51.  
Pagliarulo, C. (2016).
Inhibitory effect of pomegranate (Punica
Granatum L.) polyphenol extracts on the bacterial growth and survival of
clinical isolates of pathogenic Staphylococcus
aureus and Escherichia coli. Food
Chemistry, 190(2): 824-831. 
52.  
Bender, A. (1992). Meat
and meat products in human nutrition in developing countries. FAO Food and
Nutrition Paper; 53: 1-91. 
53.  
Kenawi, M., Aghlul, M.
and Abdel-salam, R. (2011). Effect of two natural antioxidants in combination
with edible packaging on the stability of low-fat beef product stored under
frozen condition. Biotechnology in Animal Husbandry, 27(3): 345-356.
54.  
Hayrapetyan, H.,
Hazeleger, W. and Beumer, R. (2012). Inhibition of Listeria monocytogenes
by pomegranate (Punica Granatum L.)
peel extract in meat pate at different temperatures. Food Control, 23(1):
66-72.