Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 532 - 545

 

 

 

 

DEVELOPMENT OF EDIBLE CHITOSAN FILM INCORPORATED WITH POMEGRANATE PEEL EXTRACT FOR THE PACKAGING OF BEEF

 

(Penghasilan Filem Kitosan yang Boleh Dimakan yang Digabungkan dengan Ekstrak Kulit Buah Delima untuk Pembungkusan Daging Lembu)

 

Seah Jia Min1, Ianne Kong1, Enis Mudiliar Rajan1, Pui Liew Phing1*, Yus Aniza Yusof2,3 

 

1Department of Food Science with Nutrition, Faculty of Applied Sciences,

UCSI University, 56000 Kuala Lumpur.

2Department of Process and Food Engineering, Faculty of Engineering

3Laboratory of Halal Services, Halal Products Research Institute

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

 

*Corresponding author:  puilp@ucsiuniversity.edu.my

 

 

Received:  20 May 2021; Accepted: 17 june 2021; Published:  27 June 2021

 

 

Abstract

The aim of this research was to produce a chitosan-based edible film with pomegranate peel extract. Different chitosan concentration (1-2% w/v) and pomegranate peel extract (0%-6% w/v) were used to produce an edible film, and physical (thickness, moisture content, water-solubility, and total color change), mechanical (tensile strength and elongation at break), chemical (Fourier Transform Infrared) and antimicrobial properties of the edible films were investigated. The optimized edible film was applied to beef samples for a 7 days storage at 4 °C. When the concentration of the pomegranate peel extract increases from 1 to 6% (w/v), the thickness, water solubility, and total color difference of the film also increases. The chitosan film added with pomegranate peel extract was effective in inhibiting the Streptococcus aureus (SA) growth as compared to Pseudomonas aeruginosa (PA). In addition, an increasing in chitosan concentration (from 1% to 2%) reduced the water solubility of pomegranate peel extract film from 41.42% to 33.02%. Films with 2% (w/v) chitosan have the highest tensile strength (12.67 MPa) while the highest elongation at break (10.21%) was exhibited by the film with 1.5% (w/v) chitosan and 4% (w/v) pomegranate peel extract. The optimal concentration of chitosan and pomegranate peel extract of the film was 1.5% (w/v) and 4% (w/v), respectively. Moreover, shelf life of the beef sample was increased from 4 days to 7 days with the application of the pomegranate peel extract chitosan film.

 

Keywords:  film, antimicrobial, chitosan, pomegranate peel extract, beef

 

Abstrak

Tujuan penyelidikan ini adalah untuk menghasilkan plastik yang boleh dimakan berasaskan kitosan dengan ekstrak kulit buah delima. Kepekatan kitosan yang berbeza (1-2% w/v) dan ekstrak kulit buah delima (0%-6% w/v) digunakan untuk menghasilkan plastik yang boleh dimakan, dan fizikal (ketebalan, kandungan kelembapan, kelarutan air, dan jumlah perubahan warna), mekanikal (kekuatan tegangan dan pemanjangan maksima), sifat kimia (inframerah transformasi Fourier) dan antimikrob plastik yang boleh dimakan telah dikaji. Plastik yang dioptimum, telah digunakan untuk sampel daging lembu untuk simpanan 7 hari pada 4 °C.  Apabila kepekatan ekstrak kulit buah delima meningkat dari 1 hingga 6% (w/ v), ketebalan, kelarutan air, dan jumlah perbezaan warna plastik juga meningkat. Plastik kitosan yang ditambah dengan ekstrak kulit buah delima berkesan dalam menghalang pertumbuhan Streptococcus aureus (SA) berbanding Pseudomonas aeruginosa (PA). Di samping itu, peningkatan dalam kepekatan kitosan (dari 1% hingga 2%) mengurangkan kelarutan air plastik ekstrak kulit buah delima daripada 41.42% kepada 33.02%. Plastik dengan 2% (w/v) kitosan mempunyai kekuatan tegangan tertinggi (12.67 MPa) manakala pemanjangan maksima (10.21%) dipamerkan oleh plastik 1.5% (w/v) kitosan dan 4% (w/v) ekstrak kulit buah delima. Kepekatan optimum kitosan dan ekstrak kulit buah delima adalah 1.5% (w/v) dan 4% (w/v), masing-masing. Selain itu, jangka hayat sampel daging lembu telah ditingkatkan dari 4 hari kepada 7 hari dengan aplikasi plastik kitosan-ekstrak kulit buah delima.

 

Kata kunci:  plastik, antimikrob, kitosam, ekstrak kulit buah delima, daging lembu

 

References

1.      Ghaani, M. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, (51): 1-11.

2.      Brunazzi, G., Parisi, S. and Pereno, A. (2014). The importance of packaging design for the chemistry of food products. Springer Briefs in Molecular Science: pp. 1-3.

3.      Rizzolo, A. (2016). Volatile compound composition and antioxidant activity of cooked ham slices packed in propolis- based active packaging. Food Packaging and Shelf Life, 8(16): 41-49.

4.      Maisanaba, S. (2016).  A new advance in active packaging incorporated with essential oils or their main components for food preservation. International Journal of Molecular Sciences, 33(5): 447-515.

5.      Ponce, A. G. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and In vivo studies. Postharvest Biology and Technology, 49(2): 294-300.

6.      Sivarooban, T., Hettiarachchy, N. and Johnson, M. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8): 781-785.

7.      Alkan, D. and Yemenicioğlu. (2015). A potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids, (55): 1-10.

8.      Alexandre, E. (2016). Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10 (10): 87-96.

9.      Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7): 603-632.

10.   Lee, Y. Y. and Phing, P. L. (2020). Development of milk protein edible films incorporated with Lactobacillus rhamnosus GG. Bioresources, 15: 6960-6973.

11.   Matan, N. (2012). Antimicrobial activity of edible film incorporated with essential oils to preserve dried fish (Decapterus maruadsi). International Food Research Journal, 19(4): 1733-1738.

12.   Choong, K. Y. (2019). Antibacterial properties of chitosan edible films incorporated with musk lime extract for the preservation of squids. Malaysian Journal of Analytical Sciences, 23(6): 914-925.

13.   Jaiswal, V., Dermarderosian, A. and Porter, J. (2010). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica Granatum L.). Food Chemistry, 118(1): 11-16.

14.   Masci, A. (2016). Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry, 202 (4):59-69.

15.   Celiksoy, V. and Heard, C. (2021). Antimicrobial potential  of   pomegranate   extracts.   Access from https://www.intechopen.com/online-first/ antimicrobial-potential-of-pomegranate-extracts. [Access online 14 April 2021].

16.   Dahham, S. S. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica Granatum L.). American-Eurasion Journal Agriculture and Environmental Science, 9(3): 273-281.

17.   Reid, R. (2017). The microbiology of beef carcasses and primals during chilling and commercial storage. Food Microbiology, 61(9): 50-57.

18.   Kerry, J. (2012). Advances in meat, poultry, and seafood packaging. Woodhead Publishing, Cambridge. 1-4.

19.   Buncic, S. (2014). Microbial pathogen control in the beef chain: Recent research advances. Meat Science, 97(3): 288-297.

20.   Radha K. K. (2014). Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. International Journal of Food Microbiology, 171(14): 32-40. 

21.   Panichayupakaranant, P., Tewtrakul, S. and Yuenyongsawad, S. (2010). Antibacterial, anti-inflammatory, and anti-allergic activities of standardised pomegranate rind extract. Food Chemistry, 123(2): 400-403.

22.   Al-zoreky, N. (2009). Antimicrobial activity of pomegranate (Punica Granatum L.) fruit peels. International Journal of Food Microbiology, 134(3): 244-248.

23.   Remya, S. (2015). Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. Journal of Food Science and Technology, 53(1): 685-693.

24.   Chan, H. M. (2020). Investigation of properties of polysaccharide-based edible film incorporated with functional Melastoma malabathricum extract. Carpathian Journal of Food Science & Technology, 12(1): 120-133.

25.   Ma, Q., Zhang, Y. and Zhong, Q. (2016).  Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylene diamine tetraacetate. Food Science and Technology, 65(6): 173-179.

26.   Kuan, Y. (2020). Physicochemical properties of sodium alginate edible film incorporated with mulberry (Morus australis) leaf extract. Pertanika Journal of Tropical Agricultural Science, 43(3): 359-376.

27.   Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. de O. and Flores, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Materials Science and Engineering, 33(4): 1819-1841.

28.   Pranoto, Y., Rakshit, S. and Salokhe, V. (2005). Enhancing the antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. Food Science and Technology, 38(8): 859-865.

29.   Fernandez-pan, I., Royo, M. and Ignacio Mate, J. (2012). Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. Journal of Food Science, 77(7): 383-390.

30.   Remya, S. (2015). Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. Journal of Food Science and Technology, 53(1): 685-693.

31.   Emiroglu, Z. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2): 283-288. 

32.   Oussalah, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52(18): 5598-5605.

33.   Singh, T., Chatli, M. and Sahoo, J. (2014). Development of chitosan based edible films: process optimization using response surface methodology. Journal of Food Science and Technology, 52(5): 2530-2543.

34.   Rubilar, J. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115(4): 466-474.

35.   Pereda, M. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25(7): 1372-1381.

36.   Bourtoom, T. and Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. Food Science and Technology, 41(9): 1633-1641.

37.   Laohakunjit, N. and Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch Starke, 56(8): 348-356.

38.   Ojagh, S. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1): 193-198.

39.   Maizura, M. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch/alginate edible film containing lemongrass oil. Journal of Food Science, 72(6): 324-330.

40.   Zhang, P., Zhao, Y. and Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydrate Polymers, 153(3): 345-355.

41.   Jurenka, J. (2008). Therapeutic applications of pomegranate (Punica Granatum L.): A review: Alternative Medicine Review, 13(2): 128-144.

42.   Rivero, S., García, M. A. and Pinotti. (2010). A crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate Polymers, 82(2): 270-276.

43.   Zivanovic, S., Li, J., Davidson, P. and Kit. (2007). Physical, mechanical, and antibacterial properties of Chitosan/PEO blend films. Biomacromolecules, 8(5): 1505-1510.

44.   Ashassi-sorkhabi, H. (2015). Pomegranate (Punica Granatum) peel extract as a green corrosion inhibitor for mild steel in hydrochloric acid solution. International Journal of Corrosion, 2015: 1-6.

45.   Tee, Y. B. (2017). Chemical, physical, and barrier properties of edible film from flaxseed mucilage. Bioresources, 12(3): 6656-6664.

46.   Huang, Y. (2014). Effect of carbon coating on cycle performance of lifepoc composite cathodes using tween80 as carbon source. Electrochimica Acta, 130(14): 740-747.

47.   Ghosh, T. and Jasti, B. (2005). Theory and practice of contemporary pharmaceutics. CRC Press Boca Raton: pp. 68-69.

48.   Liu, N. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 64(1): 60-65.

49.   Jung, E. (2010). Antibacterial activity of chitosan with different degrees of deacetylation and viscosities. International Journal of Food Science & Technology, 45(4): 676-682.

50.   Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1): 1-27.

51.   Pagliarulo, C. (2016). Inhibitory effect of pomegranate (Punica Granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli. Food Chemistry, 190(2): 824-831.

52.   Bender, A. (1992). Meat and meat products in human nutrition in developing countries. FAO Food and Nutrition Paper; 53: 1-91.

53.   Kenawi, M., Aghlul, M. and Abdel-salam, R. (2011). Effect of two natural antioxidants in combination with edible packaging on the stability of low-fat beef product stored under frozen condition. Biotechnology in Animal Husbandry, 27(3): 345-356.

54.   Hayrapetyan, H., Hazeleger, W. and Beumer, R. (2012). Inhibition of Listeria monocytogenes by pomegranate (Punica Granatum L.) peel extract in meat pate at different temperatures. Food Control, 23(1): 66-72.