Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 415 - 431

 

 

 

 


 


RECENT ADVANCES IN AGRICULTURAL WASTE-BASED ADSORBENTS FOR THE REMOVAL OF POLLUTANTS IN WATER (2017-2020)

 

(Kemajuan Terkini dalam Penjerap Berasaskan Sisa Pertanian untuk Penyingkiran Bahan Pencemar dalam Air (2017-2020))

 

Lim Yen Yee1, Norsahirutiara Mohd Asrul1, Fatin Farhanim Kamarulzaman1, Timothy Gandu Ali1, Nur Shahz Ereena Zulkifli1, Amirah Farhan Kamaruddin1,2,3, Nursyafreena Attan1, Mohamad Afiq Mohamed Huri1, Aemi Syazwani Abdul Keyon1,4*

 

1Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia

2Department of Materials,

University of Manchester, Sackville Street Building, Manchester, M1 3BB

3Manchester Institute of Biotechnology,

University of Manchester, 131 Princess Street, Manchester, M1 7DN

4Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research,

Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia

 

*Corresponding author:  aemi@utm.my

 

 

Received: 11 March 2021; Accepted: 31 May 2021; Published:  27 June 2021

 

 

Abstract

Rapid human activities result in the increasing production of pollutants from both industrial processes and agricultural practices, which negatively impact the environment and human health. Most of chemical pollutants are discharged either intentionally or accidentally via water bodies. Therefore, various pollutants removal techniques have been developed including utilization of agricultural waste as adsorbents. Agricultural waste-based adsorbents are easily prepared, cheap and moderately to highly efficient. A good understanding of agricultural waste-based adsorbents would be beneficial for future research improvements as well as industrial applications. Thus, this review aims at shedding light on recent advancements (from year 2017-2020) in the preparation, characterizations and application of agricultural waste-based adsorbents for removal of different types of chemical pollutants in water and wastewater.

 

Keywords:  agriculture waste, adsorbent, pollutants removal, water, wastewater

 

Abstrak

Kegiatan manusia yang giat mengakibatkan peningkatan penghasilan bahan pencemar dari kedua-dua proses industri dan amalan pertanian yang memberi kesan negatif terhadap alam sekitar dan kesihatan manusia. Kebanyakan bahan pencemar kimia disingkir secara sengaja atau tidak sengaja melalui takungan air. Oleh itu, pelbagai teknik penyingkiran bahan pencemar telah dikembangkan termasuk penggunaan sisa pertanian sebagai penjerap. Penjerap berasaskan sisa pertanian mudah disediakan, murah dan daripada sederhana hingga sangat cekap. Pemahaman yang baik tentang bahan penjerap berasaskan sisa pertanian akan bermanfaat untuk peningkatan penyelidikan masa hadapan dan juga aplikasi industri. Oleh itu, tinjauan ini bertujuan untuk menjelaskan kemajuan terkini (dari tahun 2017-2020) dalam penyediaan, pencirian dan penggunaan penjerap berasaskan sisa pertanian untuk penyingkiran pelbagai jenis bahan pencemar kimia di dalam air dan air sisa.

 

Kata kunci:  sisa pertanian, penjerap, penyingkiran bahan pencemar, air, air sisa

 

References

1.      Fu, F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management,  92(3): 407-418.

2.      World Health Organization (2003). Arsenic in Drinking-Water: Background Document for Development of Who Guidelines for Drinking-Water Quality, in Background Document for Development of WHO Guidelines for Drinking-Water Quality: Geneva.

3.      Hill, M.K. (2010). Understanding Environmental Pollution. Cambridge University Press: pp. 425.

4.      World Health Organization (2004). Copper in Drinking-Water. Background Document for Preparation of Who Guidelines for Drinking-Water Quality, in Background Document for Development of WHO Guidelines for Drinking-Water Quality: Geneva.

5.      World Health Organization (2005). Nickel in Drinking-Water Background Document for Preparation of Who Guidelines for Drinking-Water Quality, in Background Document for Development of WHO Guidelines for Drinking-Water Quality: Geneva.

6.      Paulino, A. T., Minasse, F. A., Guilherme, M. R., Reis, A. V., Muniz, E. C. and Nozaki, J. (2006). Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. Journal of Colloid and Interface Science,  301(2): 479-487.

7.    World Organization (2004). Cadmium in Drinking-Water: Background Document for Development of Who Guidelines for Drinking-Water Quality, in Background  Document  for Development of WHO Guidelines for Drinking-Water Quality: Geneva.

8.    World Health Organization (2003). Lead in Drinking-Water: Background Document for Development of Who Guidelines for Drinking-Water Quality. World Health Organization., in Background Document for Development of WHO Guidelines for Drinking-Water Quality: Geneva.

9.    Canfield, R. L., Henderson Jr, C. R., Cory-Slechta, D. A., Cox, C., Jusko, T. A. and Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. New England Journal of Medicine, 348(16): 1517-1526.

10.  Witek-Krowiak, A., Szafran, R. G. and Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265(1-3): 126-134.

11.  Mittal, A., Kurup, L. and Gupta, V. K. (2005). Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of amaranth from aqueous solutions. Journal of Hazardous Materials, 117(2-3): 171-178.

12.  Viswanathan, B. (2009). Pollution control strategies: A chemist's perspective, in pollution control in dye industry. National Centre For Catalysis Research Indian Institute of Technology: Chennai. p. 1-16.

13.  Campos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A. and Gübitz, G. M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2-3): 131-139.

14.  Rangabhashiyam, S., Anu, N. and Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, 1(4): 629-641.

15.  Nestmann, E. R., Douglas, G. R., Matula, T. I., Grant, C. E. and Kowbel, D. J. (1979). Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Cancer Research, 39(11): 4412-4417.

16.  Srivastava, S., Sinha, R. and Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology,  66(3): p. 319-329.

17.  Dos Reis, G. S., Adebayo, M. A., Sampaio, C. H., Lima, E. C., Thue, P. S., de Brum, I. A., Dias, S. I. P. & Pavan, F. A. (2016). Removal of phenolic compounds from aqueous solutions using sludge-based activated carbons prepared by conventional heating and microwave-assisted pyrolysis. Water, Air, & Soil Pollution,  228(1): 33.

18.  Schowalter, T. D. (2016). Insect ecology: An ecosystem approach. Massachusetts: Academic press.

19.  Anku, W.W., Mamo, M. A. and Govender, P. P. (2017). Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. Phenolic compounds-natural sources, importance and applications, ed. M. Soto-Hernández, M. Palma-Tenango, and R. García-Mateos. InTechOpen: London. 420-443.

20.  USEPA (2000). Integrated Risk Information System (Iris) on 2,4,6-Trichlorophenol. Available from: https://iris.epa.gov/static/pdfs/0122_summary.pdf. [ Access online 23/5/2021].

21.  Harcombe, G., Harrington, S., Lester, M., Lindsay, M., Mak, D., Neaves, K., Philippe, D. and Tan. H. (2010). Environmental health practitioner manual: A resource manual for environmental health practitioners working with aboriginal and Torres Strait Islander communities. Department of Health: Perth.

22.  Li, Z. and Jennings, A. (2017). Worldwide regulations of standard values of pesticides for human health risk control: A review. International Journal of Environmental Research and Public Health,  14(7): 826.

23.  World Health Organization and I.P.o.C. Safety. (2010). The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization: Geneva.

24.  Zhang, Y. and Pagilla, K. (2010). Treatment of malathion pesticide wastewater with nanofiltration and photo-fenton oxidation. Desalination, 263(1-3): 36-44.

25.  Blair, A., Ritz, B., Wesseling, C. and Beane Freeman, L. (2015). Pesticides and human health. Occupational and Environmental Medicine, 72(2): 81-82.

26.  Karri, R. R., Sahu, J. and Jayakumar, N. (2017). Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. Journal of the Taiwan Institute of Chemical Engineers,  80: 472-487.

27.  Ramírez, E. E. P., de la Luz Asunción, M., Rivalcoba, V. S., Hernández, A. L. M. and Santos, C. V. (2017). Removal of phenolic compounds from water by adsorption and photocatalysis. Phenolic compounds-natural sources, importance and applications, ed. Soto-Hernández, M., Palma-Tenango, M. and García-Mateos, R. IntechOpen: London.

28.  Chen, J., Lin, Y. and Kuo, W. (2013). Pesticide residue removal from vegetables by ozonation. Journal of Food Engineering,  114(3): 404-411.

29.  Lhomme, L., S. Brosillon, and D. Wolbert. (2008). Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere, 70(3): 381-386.

30.  Quiroz, M. A., Bandala, E. R. and Martínez-Huitle, C. A. (2011). Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media. Pesticides-formulations, effects, fate, ed. Stoytcheva, M. IntechOpen: London.

31.  Leite, A. B., Saucier, C., Lima, E. C., Dos Reis, G. S., Umpierres, C. S., Mello, B. L., Shirmardi, M. Dias, S . L. P. and Sampaio, C. H. (2018). Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds. Environmental Science and Pollution Research, 25(8): 7647-7661.

32.  Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V. and Krishnaiah, A. (2014). Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids and Surfaces B: Biointerfaces,  114: 75-81.

33.  Bahar, M.M., Mahbub, K. R. Naidu, R. and Megharaj, M. (2018). As(V) removal from aqueous solution using a low-cost adsorbent coir pith ash: Equilibrium and kinetic study. Environmental Technology & Innovation,  9: 198-209.

34   Semerjian, L. (2018). Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. Environmental Technology & Innovation,  12: 91-103.

35.  da Silva, A. J. F., de Alencar Moura, M. C. P., da Silva Santos, E., Pereira, J. E. S. and de Barros Neto, E. L. (2018). Copper removal using carnauba straw powder: Equilibrium, kinetics, and thermodynamic studies. Journal of Environmental Chemical Engineering,  6(6): 6828-6835.

36.  Masoumi, A., Hemmati, K. and Ghaemy, M. (2016). Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water. Chemosphere,  146: 253-262.

37.  Zhou, J., Liu, Y., Zhou, X., Ren, J. and Zhong, C. (2018). Magnetic multi-porous bio-adsorbent modified with amino siloxane for fast removal of Pb(II) from aqueous solution. Applied Surface Science,  427: 976-985.

38.  Dai, L., Li, Y., Liu, R., Si, C. and Ni. Y. (2019). Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium(III) removal. International Journal of Biological Macromolecules, 132: 478-486.

39.  Wen, T., Wang, J., Yu, S., Chen, Z., Hayat, T. and Wang, X. (2017). Magnetic porous carbonaceous material produced from tea waste for efficient removal of as (V), Cr (VI), humic acid, and dyes. ACS Sustainable Chemistry & Engineering,  5(5): 4371-4380.

40.  Shen, K. and Gondal. M. (2017). Removal of hazardous rhodamine dye from water by adsorption onto exhausted coffee ground. Journal of Saudi Chemical Society, 21: 120-127.

41.  Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A. and Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry,  10: S3229-S3238.

42.  Al-Zaben, M. I. and Mekhamer. W. K. (2017). Removal of 4-chloro-2-methyl phenoxy acetic acid pesticide using coffee wastes from aqueous solution. Arabian Journal of Chemistry, 10: S1523-S1529.

43.  Essandoh, M., Wolgemuth, D., Pittman, C. U., Mohan, D. Jr. and Mlsna, T (2017). Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere,  174: 49-57.

44.  Siva Kumar, N., Asif, M., Al-Hazzaa, M. I. and Ibrahim, A. A. (2018). Biosorption of 2,4,6-trichlorophenol from aqueous medium using agro-waste: Pine (Pinus densiflora Sieb) bark powder. Acta Chimica Slovenica,  65(1): 10.

45.  Siva Kumar, N., Asif, M. and Al-Hazzaa, M. I. (2018). Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: Kinetics and equilibrium studies. Environmental Science and Pollution Research,  25(22): 21949-21960.

46.  Karri, R. R., Jayakumar, N. and Sahu, J. (2017). Modelling of fluidised-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon. Journal of Molecular Liquids,  231: 249-262.

47.  Prashanthakumar, T., Kumar, S. A. and Sahoo, S. K. (2018). A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials. Journal of Environmental Chemical Engineering,  6(1): 1434-1442.

48.  Leite, A. J., Sophia A, C., Thue, P. S., dos Reis, G. S., Dias, S. L., Lima, E. C., Vaghetti, J. C. P. and de Alencar, W. S. (2017). Activated carbon from avocado seeds for the removal of phenolic compounds from aqueous solutions. Desalination and Water Treatment,  71: 168-181.

49.  Umpierres, C. S., Thue, P. S., Lima, E. C., Reis, G. S. D., de Brum, I. A., Alencar, W. S. D. and Dotto, G. L. (2018). Microwave-activated carbons from tucumã (astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environmental Technology,  39(9): 1173-1187.

50.  Sarker, N. and Fakhruddin. A. N. M. (2017). Removal of phenol from aqueous solution using rice straw as adsorbent. Applied Water Science, 7(3): 1459-1465.

51.  Qu, J., Meng, X., You, H., Ye, X. and Du, Z.(2017). Utilization of rice husks functionalized with xanthates as cost-effective biosorbents for optimal Cd(II) removal from aqueous solution via response surface methodology. Bioresource Technology, 241: 1036-1042.

52.  Manzoor, Q., Sajid, A., Hussain, T., Iqbal, M., Abbas, M. and Nisar, J. (2019). Efficiency of immobilized zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater. Journal of Materials Research and Technology,  8(1): 75-86.

53.  Faheem, Du, J., Bao, J., Hassan, M. A., Irshad, S., Talib, M. A. and Zheng, H. (2020). Efficient capture of phosphate and cadmium using biochar with multifunctional amino and carboxylic moieties: Kinetics and mechanism. Water, Air, & Soil Pollution,  231(1): 25.

54.  Abu Bakar, A. A., Wan Mazlan, W. N. R., Akbar, N. A., Badrealam, S. and Muhammad Ali, K. A. (2019). Agriculture Waste from Banana Peel as Low Cost Adsorbent in Treating Methylene Blue from Batik Textile waste water effluents. Journal of Physics: Conference Series,  1349: 012078.

55.  Sivakumar, S., Muthirulan, P. and Meenakshi S. M. (2019). Adsorption kinetic and isotherm studies of azure a on various activated carbons derived from agricultural wastes. Arabian Journal of Chemistry,  12(7): 1507-1514.

56.  Al-Ghouti, M. A. and Sweleh, A. O. (2019). Optimizing textile dye removal by activated carbon prepared from olive stones. Environmental Technology & Innovation,  16: 100488.

57.  Akhayere, E., Essien, E. A. and Kavaz, D. (2019). Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environmental Science and Pollution Research, 26(25): 25802-25813.

58.  Jang, H. M. and Kan, E. (2019). Engineered biochar from agricultural waste for removal of tetracycline in water. Bioresource Technology,  284: 437-447.

59.  Benvenuti, J., Giraldi Fisch, A., Zimnoch Dos Santos, J. H. and Gutterres, M. (2020). Hybrid sol–gel silica adsorbent material based on grape stalk applied to cationic dye removal. Environmental Progress & Sustainable Energy: e13398.

60.  Bhattacharya, A. K. and Venkobachar, C. (1984). Removal of cadmium (II) by low cost adsorbents. Journal of Environmental Engineering,  110(1): 110-122.

61.  Ferro-García, M. A., Rivera-Utrilla, J., Rodríguez-Gordillo, J. and Bautista-Toledo, I. (1988). Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon,  26(3): 363-373.

62.  Deshicar, A. M., Bokade, S. S. and Dara, S. S. (1990). Modified Hardwickia binata bark for adsorption of mercury (II) from water. Water Research,  24(8): 1011-1016.

63.  Okieimen, F.E. and Onyenkpa, V. U. (1989). Removal of heavy metal ions from aqueous solutions with melon (Citrullus vulgaris) seed husks. Biological Wastes, 29(1): 11-16.

64.  Gosset, T., Trancart, J.-L. and Thévenot, D. R. (1986). Batch metal removal by peat. kinetics and thermodynamics. Water Research, 20(1): 21-26.

65.  Mahindrakar, K.V. and Rathod, V. K. (2018). Utilization of banana peels for removal of strontium (II) from water. Environmental Technology & Innovation, 2018: 371-383.

66.  Ahmad, A. and Hameed. B. (2009). Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon. Journal of Hazardous materials, 172(2-3): 1538-1543.

67.  Jain, S. and Jayaram. R. V. (2010). Removal of basic dyes from aqueous solution by low-cost adsorbent: wood apple shell (Feronia acidissima). Desalination, 250(3): 921-927.

68.  Plaza, M., González, A., Pevida, C., Pis, J., and Rubiera, F. (2012). Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Applied Energy, 99: 272-279.

69.  Agriculture, U.S.D. (2019). Coffee: World Markets and Trade [Access online 1/3/2020].

70.  Suresh, C., Reddy, D. H. K., Harinath, Y., Naik, B. R., Seshaiah, K. and Reddy, A. V. R. (2014). Development of wood apple shell (Feronia acidissima) powder biosorbent and its application for the removal of Cd(II) from aqueous solution. Scientific World Journal, 2014: 154809-154809.

71.  Das, S., Dash, S. K.and Parida, K. M. (2018). Kinetics, isotherm, and thermodynamic study for ultrafast adsorption of azo dye by an efficient sorbent: Ternary Mg/(Al + Fe) layered double hydroxides. ACS Omega, 3(3): 2532-2545.

72.  Mandal, A., Singh, N. and Nain, L. (2017). Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes, 52(9): 671-682.

73.  Chen, J.Y., Lin, Y. J. and Kuo, W. C. (2013). Pesticide residue removal from vegetables by ozonation. Journal of Food Engineering, 114(3): 404-411.

74.  Iizuka, T., Yahata, M. and Shimizu, A. (2013). Potential mechanism involved in removal of hydrophobic pesticides from vegetables by hydrostatic pressure. Journal of Food Engineering,  119(1): 1-6.

75.  Zhu, Y., Zhang, T., Xu, D., Wang, S., Yuan, Y., He, S. and Cao, Y. (2019). The removal of pesticide residues from Pakchoi (Brassica Rape L. Ssp. Chinensis) by ultrasonic treatment. Food Control, 95: 176-180.

76.  Ramrakhiani, L., Ghosh, S., Mandal, A. K. and Majumdar, S. (2019). Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation. Chemical Engineering Journal, 361: 1063-1077.

77.  Nguyen, H.V., Nguyen, C. D., Tran, T. V., Hau, H. D., Nguyen, N. T. and Gummert, M. (2016). Energy efficiency, greenhouse gas emissions, and cost of rice straw collection in the Mekong River Delta of Vietnam. Field Crops Research, 198: 16-22.