Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 399 - 414
ADDITION OF GLYCEROL AND
SODIUM CHLORIDE INTO Garcinia atroviridis CHITOSAN FILM, AND ITS
APPLICATION FOR WRAPPING OF CHICKEN MEAT 
(Penambahan Gliserol dan Natrium Klorida
Pada Garcinia atroviridis Filem Kitosan dan Aplikasinya Pada
Pembungkusan Daging Ayam)
S-Navin Sivanasvaran, Ianne
Kong, Hui-Ling Tan,  Liew-Phing Pui*
Department
of Food Science and Nutrition, Faculty of Applied Sciences, 
UCSI
University, 56000 Cheras, Kuala Lumpur, Malaysia
*Corresponding
author:  puilp@ucsiuniversity.edu.my
Received: 28 February 2021; Accepted: 22 May 2021;
Published:  27 June 2021
Abstract
Glycerol and sodium chloride (NaCl) have a
strengthening effect that can be incorporated into edible films to enhance
their mechanical properties. This study evaluates the
effects of glycerol (0.5-2.0% v/v) and NaCl (5.0-10.5 mM w/v) on the physical,
mechanical, and antimicrobial properties of chitosan film incorporated with Garcinia
atroviridis. Storage
tests were conducted on chicken meat that were wrapped with and without the
film. The moisture content, water solubility, and elongation at break of film
with 1.5% (v/v) glycerol and 10 mM (w/v) NaCl was the highest. The increment of
glycerol and NaCl reduced thickness, tensile strength, and Young’s modulus. The
total color difference of the film with 0.5% (v/v) glycerol and 0 mM (w/v) NaCl
was highest and showed the greatest inhibition against Pseudomonas
aeruginosa and Staphylococcus aureus. The pH of the control
increased whereas the pH of chicken meat wrapped with the film decreased as the
number of storage days increased. In conclusion, film with 1.5% (v/v) glycerol
and 10 mM (w/v) NaCl might be a suitable film because it demonstrated the
highest elongation at break and a prolonged shelf life for the chicken meat of
at least 15 days, which was longer than of the control.
Keywords:  glycerol, sodium chloride, edible film, chitosan, Garcinia atroviridis
Abstrak
Gliserol
dan natrium klorida (NaCl), yang mempunyai kesan pengukuhan, dapat dimasukkan
ke dalam filem yang boleh dimakan, untuk meningkatkan sifat mekanikal filem
yang boleh dimakan. Tujuan kajian ini adalah untuk menilai kesan gliserol
(0.5-2.0% v/v), dan NaCl (5.0-10.5 mM w/v) terhadap sifat fizikal, mekanikal,
dan antimikrob filem kitosan yang diperbadankan dengan Garcinia atroviridis.
Ujian penyimpanan dilakukan pada daging ayam yang dibungkus dengan dan tanpa
filem. Kandungan kelembapan, kelarutan air, dan pemanjangan pada pemecahan
filem dengan gliserol 1.5% (v/v), NaCl 10 mM (w/v) adalah yang tertinggi.
Peningkatan gliserol dan NaCl mengurangkan ketebalan, kekuatan tegangan, dan
pekali Young. Perbezaan warna keseluruhan filem dengan 0.5% (v/v) gliserol dan
0 mM (w/v) NaCl adalah tertinggi dan ia menunjukkan penghambatan terbesar
terhadap Pseudomonas aeruginosa dan Staphylococcus aureus.
Pengawalan pH meningkat sedangkan pH daging ayam yang dibungkus dengan filem
menurun ketika hari penyimpanan meningkat. Kesimpulannya, filem dengan gliserol
1.5% (v/v) dan NaCl 10 mM (w/v) mungkin merupakan filem yang sesuai kerana ia
mempunyai pemanjangan tertinggi pada pemecahan dan jangka hayat daging ayam
yang berpanjangan sekurang-kurangnya 15 hari yang lebih lama daripada kawalan.
Kata kunci:  gliserol, natrium klorida, filem boleh
dimakan, kitosan, Garcinia atroviridis
References
1.      Voidarou, C., Vassos, D., Rozos, G., Alexopoulos, A.,
Plessas, S., Tsinas, A., Skoufou, M., Stavropoulou, E. and Bezirtzoglou, E.
(2011). Microbial challenges of poultry meat production. Anaerobe,
17(6): 341-343.
2.      Mihindukulasuriya, S. D. F. and Lim, L. T. (2014).
Nanotechnology development in food packaging: A review. Trends in Food
Science & Technology, 40(2): 149-167.
3.      Lee, Y. Y., Yusof, Y. A. and Pui, L. P. (2020).
Development of milk protein edible films incorporated with Lactobacillus
rhamnosus GG. BioResources, 15(3): 6960-6973.
4.      Kuan, Y. L., Sivanasvaran, S. N., Pui, L. P., Yusof,
Y. A. and Senphan, T. (2020). Physicochemical properties of sodium alginate
edible film incorporated with mulberry (Morus australis) leaf extract. Pertanika
Journal of Tropical Agricultural Science, 43(3): 359-376.
5.      Okcu, Z., Yavuz, Y. and Kerse, S. (2018). Edible film
and coating in fruits and vegetables. Alinteri Journal of Agriculture
Sciences, 33(2): 221–226.
6.      Zaman, N. B. K., Lin, N. K. and Phing, P. L. (2018).
Chitosan film incorporated with Garcinia atroviridis  for  the
 packaging  of  Indian
mackerel (Rastrelliger kanagurta). Ciência e Agrotecnologia,
42(6): 666-675.
7.      Ahmed, S., Ahmad, M. and Ikram, S. (2014). Chitosan: A
natural antimicrobial agent-a review. Journal of Applicable Chemistry,
3(2): 493-503.
8.      Tan, H., Ma, R., Lin, C., Liu, Z. and Tang, T. (2013).
Quaternized chitosan as an antimicrobial agent: antimicrobial activity,
mechanism of action and biomedical applications in orthopedics. International
Journal of Molecular Sciences, 14(1): 1854-1869.
9.      Kasai, D., Chougale, R., Masti, S., Chalannavar, R.,
Malabadi, R. B., Gani, R. and Gouripur, G. (2019). An investigation into the
influence of filler Piper nigrum leaves extract on physicochemical and
antimicrobial properties of chitosan/poly (vinyl alcohol) blend films. Journal
of Polymers and the Environment, 27(3): 472-488.
10.   Sogut, E. and Seydim, A. C. (2018). The effects of
chitosan and grape seed extract-based edible films on the quality of vacuum
packaged chicken breast fillets. Food Packaging and Shelf Life, 18:
13-20.
11.   Khare, A. K., Abraham, R. J., Rao, V. A., Babu, R. N.
and Ruban, W. (2017). Effect of chitosan and cinnamon oil edible coating on
shelf life of chicken fillets under refrigeration conditions. Indian Journal
of Animal Research, 51(3): 603-610.
12.   Al‐Mansoub, M. A., Asmawi, M. Z. and Murugaiyah,
V. (2014). Effect of extraction solvents and plant parts used on the
antihyperlipidemic and antioxidant effects of Garcinia atroviridis: A
comparative study. Journal of the Science of Food and Agriculture,
94(8): 1552-1558.
13.   Basri, D. F., Sharif, R., Morat, P. and Latip, J.
(2005). Evaluation of antimicrobial activities of the crude extracts from Garcinia
atroviridis and Solanum torvum. Malaysian Journal of Science,
24(1): 233-238.
14.   Nordin, N., Othman, S. H., Rashid, S. A. and Basha, R.
K. (2020). Effects of glycerol and thymol on physical, mechanical, and thermal
properties of corn starch films. Food Hydrocolloids, 106: 105884-105892.
15.   Tonny, W., Tuhin, M. O., Islam, R. and Khan, R. A.
(2014). Fabrication and characterization of biodegradable packaging films using
starch and chitosan: Effect of glycerol. Journal of Chemical Engineering and
Chemistry Research, 1(5): 343-352.
16.   Choi, W. S., Patel, D. and Han, J. H. (2016). Effects
of pH and salts on physical and mechanical properties of pea starch films. Journal
of Food Science, 81(7): 1716-1725.
17.   Tan, Q., Kan, Y., Huang, H., Wu, W. and Lu, X. (2020).
Probing the molecular interactions of chitosan films in acidic solutions with
different salt ions. Coatings, 10(11): 1052-1066.
18.   Chan, H. M., Nyam, K. L., Yusof, Y. A. and Pui, L. P.
(2020). Investigations of properties of polysaccharide-based edible film
incorporated with functional Melastoma malabathricum extract. Carpathian
Journal of Food Science & Technology, 12(1): 120-133.
19.   Lim, L.I., Tan, H.L. and Pui, L.P. (2021). Development
and characterization of alginate-based edible film incorporated with hawthorn
berry (Crataegus pinnatifida) extract. Journal of Food Measurement
and Characterization, 15: 2540-2548.
20.   Higueras, L., López-Carballo, G., Hernández-Muñoz, P.,
Gavara, R. and Rollini, M. (2013). Development of a novel antimicrobial film
based on chitosan with LAE (ethyl-Nα-dodecanoyl-L-arginate) and its
application to fresh chicken. International Journal of Food Microbiology,
165(3): 339-345.
21.   Tantasuttikul,
A., Kijroongrojana, K. and Benjakul, S. (2011). Quality indices of squid (Photololigo
duvaucelii) and cuttlefish (Sepia aculeata) stored in ice. Journal
of Aquatic Food Product Technology, 20 (2): 129-147.
22.   Dehghani, S., Hosseini, S. V. and Regenstein, J. M.
(2018). Edible films and coatings in seafood preservation: A review. Food
Chemistry, 240: 505-513.
23.   Rangel Marrón M, Montalvo Paquini C,  Palou 
E. and Lopez Malo  A. (2013).
Optimization  of  the moisture 
content,  thickness,  water solubility  and 
water  vapor  permeability 
of  sodium  alginate 
edible  films. Recent  Advances 
in  Chemical  Engineering, Biochemistry and Computational
Chemistry, 72-78.
24.   Arham, R., Salengke, S., Metusalach, M. and Mulyati,
M. T. (2018). Optimization of agar and glycerol concentration in the
manufacture of edible film. International Food Research Journal, 25(5):
1845-1851.
25.   Singh, T. P., Chatli, M. K. and Sahoo, J. (2015).
Development of chitosan based edible films: Process optimization using response
surface methodology. Journal of Food Science and Technology, 52(5):
2530-2543.
26.   Peng, Y., Wang, Q., Shi, J., Chen, Y. and Zhang, X.
(2020). Optimization and release evaluation for tea polyphenols and chitosan
composite films with regulation of glycerol and tween. Food Science and
Technology, 40(1): 162-170.
27.   Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., de
Oliveira Rios, A. and Flôres, S. H. (2015). Edible film production from chia
seed mucilage: Effect of glycerol concentration on its physicochemical and
mechanical properties. Carbohydrate Polymers, 130: 198-205.
28.   Cerqueira, M. A., Souza, B. W., Teixeira, J. A. and
Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical
properties of polysaccharide films–A comparative study. Food Hydrocolloids,
27(1): 175-184.
29.   Yang, M., Shi, J. and Xia, Y. (2018). Effect of SiO2,
PVA, and glycerol concentrations on chemical and mechanical properties of
alginate-based films. International Journal of Biological Macromolecules,
107: 2686-2694.
30.   Basiak, E., Lenart, A. and Debeaufort, F. (2018). How
glycerol and water contents affect the structural and functional properties of
starch-based edible films. Polymers, 10(4): 412-430. 
31.   Kang, H. J. and Min, S. C. (2010). Potato peel-based
biopolymer film development using high-pressure homogenization, irradiation,
and ultrasound. LWT-Food Science and Technology, 43(6): 903-909.
32.   Arham, R., Mulyati, M. T., Metusalach, M. and
Salengke, S. (2016). Physical and mechanical properties of agar based edible
film with glycerol plasticizer. International Food Research Journal,
23(4): 1669-1675.
33.   Adamu, A. D., Jikan, S. S., Talip, B. H. A.,
Badarulzaman, N. A. and Yahaya, S. (2017). Effect of glycerol on the properties
of tapioca starch film. Materials Science Forum, 888: 239-243. 
34.   Leceta, I., Guerrero, P. and De La Caba, K. (2013).
Functional properties of chitosan-based films. Carbohydrate Polymers,
93(1): 339-346.
35.   Prateepchanachai, S., Thakhiew, W., Devahastin, S. and
Soponronnarit, S. (2017). Mechanical properties improvement of chitosan films
via the use of plasticizer, charge modifying agent and film solution
homogenization. Carbohydrate Polymers, 174: 253-261.
36.   Liu, H., Adhikari, R., Guo, Q. and Adhikari, B.
(2013). Preparation and characterization of glycerol plasticized (high-amylose)
starch–chitosan films. Journal of Food Engineering, 116(2): 588-597.
37.   Aguirre, A., Borneo, R. and León, A. E. (2013).
Properties of triticale protein films and their relation to
plasticizing–antiplasticizing effects of glycerol and sorbitol. Industrial
Crops and Products, 50: 297-303.
38.   Souza, A. C., Benze, R. F. E. S., Ferrão, E. S.,
Ditchfield, C., Coelho, A. C. V. and Tadini, C. C. (2012). Cassava starch
biodegradable films: Influence of glycerol and clay nanoparticles content on
tensile and barrier properties and glass transition temperature. LWT-Food
Science and Technology,  46(1):
110-117. 
39.   Kusumaningtyas, R. D., Putri, R. D., Badriah, N. and
Faizah, F. E. (2018). Preparation and characterization of edible film from
sorghum starch with glycerol and sorbitol as plasticizers. Journal of
Engineering Science and Technology, 13: 47-55.
40.  
Zhang, X., Liu,
J., Yong, H., Qin, Y., Liu, J. and Jin, C. (2020). Development of antioxidant
and antimicrobial packaging films based on chitosan and mangosteen (Garcinia
mangostana L.) rind powder. International Journal of Biological
Macromolecules, 145: 1129-1139.
41.   Radha krishnan, K., Babuskin, S., Azhagu Saravana
Babu, P., Sasikala, M., Sabina, K., Archana, G., Sivarajan, M. and Sukumar, M.
(2014). Antimicrobial and antioxidant effects of spice extracts on the shelf
life extension of raw chicken meat. International Journal of Food
Microbiology, 171: 32-40.
42.   Cortez‐Vega, W. R., Pizato, S. and Prentice, C.
(2012). Quality of raw chicken breast stored at 5C and packaged under different
modified atmospheres. Journal of Food Safety, 32(3): 360-368.
43.   Bazargani-Gilani, B., Aliakbarlu, J. and Tajik, H.
(2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria
multiflora Boiss essential oil on the shelf-life of chicken meat during
refrigerated storage. Innovative Food Science & Emerging Technologies,
29: 280-287.
44.   Yasin, R., Samiullah, K., Fazal, R. M., Hussain, S.,
Mahboob, S., Al‐Ghanim, K. A., Al-Misned, F. A. and Ahmed, Z. (2020).
Combined effect of probiotics on prolonging the shelf life of GIFT tilapia
fillets. Aquaculture Research, 51(12): 5151-5162.
45.   Venkatachalam, K. and Lekjing, S. (2020). A
chitosan-based edible film with clove essential oil and nisin for improving the
quality and shelf life of pork patties in cold storage. RSC Advances,
10(30): 17777-17786.
46.   Remya, S., Mohan, C. O., Bindu, J., Sivaraman, G. K.,
Venkateshwarlu, G. and Ravishankar, C. N. (2016). Effect of chitosan based
active packaging film on the keeping quality of chilled stored barracuda fish. Journal
of Food Science and Technology, 53(1): 685-693.
47.   Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M. and
Sahari, J. (2015). Effect of plasticizer type and concentration on tensile,
thermal and barrier properties of biodegradable films based on sugar palm (Arenga
pinnata) starch. Polymers, 7(6): 1106-1124.
48.   Prateepchanachai, S., Thakhiew, W., Devahastin, S. and
Soponronnarit, S. (2017). Mechanical properties improvement of chitosan films
via the use of plasticizer, charge modifying agent and film solution
homogenization. Carbohydrate Polymers, 174: 253-261.