Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 399 - 414

 

 

 

 


 

 


ADDITION OF GLYCEROL AND SODIUM CHLORIDE INTO Garcinia atroviridis CHITOSAN FILM, AND ITS APPLICATION FOR WRAPPING OF CHICKEN MEAT

 

(Penambahan Gliserol dan Natrium Klorida Pada Garcinia atroviridis Filem Kitosan dan Aplikasinya Pada Pembungkusan Daging Ayam)

 

S-Navin Sivanasvaran, Ianne Kong, Hui-Ling Tan,  Liew-Phing Pui*

 

Department of Food Science and Nutrition, Faculty of Applied Sciences,

UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia

 

*Corresponding author:  puilp@ucsiuniversity.edu.my

 

 

Received: 28 February 2021; Accepted: 22 May 2021; Published:  27 June 2021

 

 

Abstract

Glycerol and sodium chloride (NaCl) have a strengthening effect that can be incorporated into edible films to enhance their mechanical properties. This study evaluates the effects of glycerol (0.5-2.0% v/v) and NaCl (5.0-10.5 mM w/v) on the physical, mechanical, and antimicrobial properties of chitosan film incorporated with Garcinia atroviridis. Storage tests were conducted on chicken meat that were wrapped with and without the film. The moisture content, water solubility, and elongation at break of film with 1.5% (v/v) glycerol and 10 mM (w/v) NaCl was the highest. The increment of glycerol and NaCl reduced thickness, tensile strength, and Young’s modulus. The total color difference of the film with 0.5% (v/v) glycerol and 0 mM (w/v) NaCl was highest and showed the greatest inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. The pH of the control increased whereas the pH of chicken meat wrapped with the film decreased as the number of storage days increased. In conclusion, film with 1.5% (v/v) glycerol and 10 mM (w/v) NaCl might be a suitable film because it demonstrated the highest elongation at break and a prolonged shelf life for the chicken meat of at least 15 days, which was longer than of the control.

 

Keywords:  glycerol, sodium chloride, edible film, chitosan, Garcinia atroviridis

 

Abstrak

Gliserol dan natrium klorida (NaCl), yang mempunyai kesan pengukuhan, dapat dimasukkan ke dalam filem yang boleh dimakan, untuk meningkatkan sifat mekanikal filem yang boleh dimakan. Tujuan kajian ini adalah untuk menilai kesan gliserol (0.5-2.0% v/v), dan NaCl (5.0-10.5 mM w/v) terhadap sifat fizikal, mekanikal, dan antimikrob filem kitosan yang diperbadankan dengan Garcinia atroviridis. Ujian penyimpanan dilakukan pada daging ayam yang dibungkus dengan dan tanpa filem. Kandungan kelembapan, kelarutan air, dan pemanjangan pada pemecahan filem dengan gliserol 1.5% (v/v), NaCl 10 mM (w/v) adalah yang tertinggi. Peningkatan gliserol dan NaCl mengurangkan ketebalan, kekuatan tegangan, dan pekali Young. Perbezaan warna keseluruhan filem dengan 0.5% (v/v) gliserol dan 0 mM (w/v) NaCl adalah tertinggi dan ia menunjukkan penghambatan terbesar terhadap Pseudomonas aeruginosa dan Staphylococcus aureus. Pengawalan pH meningkat sedangkan pH daging ayam yang dibungkus dengan filem menurun ketika hari penyimpanan meningkat. Kesimpulannya, filem dengan gliserol 1.5% (v/v) dan NaCl 10 mM (w/v) mungkin merupakan filem yang sesuai kerana ia mempunyai pemanjangan tertinggi pada pemecahan dan jangka hayat daging ayam yang berpanjangan sekurang-kurangnya 15 hari yang lebih lama daripada kawalan.

 

Kata kunci:  gliserol, natrium klorida, filem boleh dimakan, kitosan, Garcinia atroviridis

 

References

1.      Voidarou, C., Vassos, D., Rozos, G., Alexopoulos, A., Plessas, S., Tsinas, A., Skoufou, M., Stavropoulou, E. and Bezirtzoglou, E. (2011). Microbial challenges of poultry meat production. Anaerobe, 17(6): 341-343.

2.      Mihindukulasuriya, S. D. F. and Lim, L. T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science & Technology, 40(2): 149-167.

3.      Lee, Y. Y., Yusof, Y. A. and Pui, L. P. (2020). Development of milk protein edible films incorporated with Lactobacillus rhamnosus GG. BioResources, 15(3): 6960-6973.

4.      Kuan, Y. L., Sivanasvaran, S. N., Pui, L. P., Yusof, Y. A. and Senphan, T. (2020). Physicochemical properties of sodium alginate edible film incorporated with mulberry (Morus australis) leaf extract. Pertanika Journal of Tropical Agricultural Science, 43(3): 359-376.

5.      Okcu, Z., Yavuz, Y. and Kerse, S. (2018). Edible film and coating in fruits and vegetables. Alinteri Journal of Agriculture Sciences, 33(2): 221–226.

6.      Zaman, N. B. K., Lin, N. K. and Phing, P. L. (2018). Chitosan film incorporated with Garcinia atroviridis  for  the  packaging  of  Indian mackerel (Rastrelliger kanagurta). Ciência e Agrotecnologia, 42(6): 666-675.

7.      Ahmed, S., Ahmad, M. and Ikram, S. (2014). Chitosan: A natural antimicrobial agent-a review. Journal of Applicable Chemistry, 3(2): 493-503.

8.      Tan, H., Ma, R., Lin, C., Liu, Z. and Tang, T. (2013). Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. International Journal of Molecular Sciences, 14(1): 1854-1869.

9.      Kasai, D., Chougale, R., Masti, S., Chalannavar, R., Malabadi, R. B., Gani, R. and Gouripur, G. (2019). An investigation into the influence of filler Piper nigrum leaves extract on physicochemical and antimicrobial properties of chitosan/poly (vinyl alcohol) blend films. Journal of Polymers and the Environment, 27(3): 472-488.

10.   Sogut, E. and Seydim, A. C. (2018). The effects of chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets. Food Packaging and Shelf Life, 18: 13-20.

11.   Khare, A. K., Abraham, R. J., Rao, V. A., Babu, R. N. and Ruban, W. (2017). Effect of chitosan and cinnamon oil edible coating on shelf life of chicken fillets under refrigeration conditions. Indian Journal of Animal Research, 51(3): 603-610.

12.   Al‐Mansoub, M. A., Asmawi, M. Z. and Murugaiyah, V. (2014). Effect of extraction solvents and plant parts used on the antihyperlipidemic and antioxidant effects of Garcinia atroviridis: A comparative study. Journal of the Science of Food and Agriculture, 94(8): 1552-1558.

13.   Basri, D. F., Sharif, R., Morat, P. and Latip, J. (2005). Evaluation of antimicrobial activities of the crude extracts from Garcinia atroviridis and Solanum torvum. Malaysian Journal of Science, 24(1): 233-238.

14.   Nordin, N., Othman, S. H., Rashid, S. A. and Basha, R. K. (2020). Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocolloids, 106: 105884-105892.

15.   Tonny, W., Tuhin, M. O., Islam, R. and Khan, R. A. (2014). Fabrication and characterization of biodegradable packaging films using starch and chitosan: Effect of glycerol. Journal of Chemical Engineering and Chemistry Research, 1(5): 343-352.

16.   Choi, W. S., Patel, D. and Han, J. H. (2016). Effects of pH and salts on physical and mechanical properties of pea starch films. Journal of Food Science, 81(7): 1716-1725.

17.   Tan, Q., Kan, Y., Huang, H., Wu, W. and Lu, X. (2020). Probing the molecular interactions of chitosan films in acidic solutions with different salt ions. Coatings, 10(11): 1052-1066.

18.   Chan, H. M., Nyam, K. L., Yusof, Y. A. and Pui, L. P. (2020). Investigations of properties of polysaccharide-based edible film incorporated with functional Melastoma malabathricum extract. Carpathian Journal of Food Science & Technology, 12(1): 120-133.

19.   Lim, L.I., Tan, H.L. and Pui, L.P. (2021). Development and characterization of alginate-based edible film incorporated with hawthorn berry (Crataegus pinnatifida) extract. Journal of Food Measurement and Characterization, 15: 2540-2548.

20.   Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Gavara, R. and Rollini, M. (2013). Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-L-arginate) and its application to fresh chicken. International Journal of Food Microbiology, 165(3): 339-345.

21.   Tantasuttikul, A., Kijroongrojana, K. and Benjakul, S. (2011). Quality indices of squid (Photololigo duvaucelii) and cuttlefish (Sepia aculeata) stored in ice. Journal of Aquatic Food Product Technology, 20 (2): 129-147.

22.   Dehghani, S., Hosseini, S. V. and Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240: 505-513.

23.   Rangel Marrón M, Montalvo Paquini C,  Palou  E. and Lopez Malo  A. (2013). Optimization  of  the moisture  content,  thickness,  water solubility  and  water  vapor  permeability  of  sodium  alginate  edible  films. Recent  Advances  in  Chemical  Engineering, Biochemistry and Computational Chemistry, 72-78.

24.   Arham, R., Salengke, S., Metusalach, M. and Mulyati, M. T. (2018). Optimization of agar and glycerol concentration in the manufacture of edible film. International Food Research Journal, 25(5): 1845-1851.

25.   Singh, T. P., Chatli, M. K. and Sahoo, J. (2015). Development of chitosan based edible films: Process optimization using response surface methodology. Journal of Food Science and Technology, 52(5): 2530-2543.

26.   Peng, Y., Wang, Q., Shi, J., Chen, Y. and Zhang, X. (2020). Optimization and release evaluation for tea polyphenols and chitosan composite films with regulation of glycerol and tween. Food Science and Technology, 40(1): 162-170.

27.   Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., de Oliveira Rios, A. and Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130: 198-205.

28.   Cerqueira, M. A., Souza, B. W., Teixeira, J. A. and Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films–A comparative study. Food Hydrocolloids, 27(1): 175-184.

29.   Yang, M., Shi, J. and Xia, Y. (2018). Effect of SiO2, PVA, and glycerol concentrations on chemical and mechanical properties of alginate-based films. International Journal of Biological Macromolecules, 107: 2686-2694.

30.   Basiak, E., Lenart, A. and Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4): 412-430.

31.   Kang, H. J. and Min, S. C. (2010). Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT-Food Science and Technology, 43(6): 903-909.

32.   Arham, R., Mulyati, M. T., Metusalach, M. and Salengke, S. (2016). Physical and mechanical properties of agar based edible film with glycerol plasticizer. International Food Research Journal, 23(4): 1669-1675.

33.   Adamu, A. D., Jikan, S. S., Talip, B. H. A., Badarulzaman, N. A. and Yahaya, S. (2017). Effect of glycerol on the properties of tapioca starch film. Materials Science Forum, 888: 239-243.

34.   Leceta, I., Guerrero, P. and De La Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93(1): 339-346.

35.   Prateepchanachai, S., Thakhiew, W., Devahastin, S. and Soponronnarit, S. (2017). Mechanical properties improvement of chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization. Carbohydrate Polymers, 174: 253-261.

36.   Liu, H., Adhikari, R., Guo, Q. and Adhikari, B. (2013). Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. Journal of Food Engineering, 116(2): 588-597.

37.   Aguirre, A., Borneo, R. and León, A. E. (2013). Properties of triticale protein films and their relation to plasticizing–antiplasticizing effects of glycerol and sorbitol. Industrial Crops and Products, 50: 297-303.

38.   Souza, A. C., Benze, R. F. E. S., Ferrão, E. S., Ditchfield, C., Coelho, A. C. V. and Tadini, C. C. (2012). Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Science and Technology,  46(1): 110-117.

39.   Kusumaningtyas, R. D., Putri, R. D., Badriah, N. and Faizah, F. E. (2018). Preparation and characterization of edible film from sorghum starch with glycerol and sorbitol as plasticizers. Journal of Engineering Science and Technology, 13: 47-55.

40.   Zhang, X., Liu, J., Yong, H., Qin, Y., Liu, J. and Jin, C. (2020). Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. International Journal of Biological Macromolecules, 145: 1129-1139.

41.   Radha krishnan, K., Babuskin, S., Azhagu Saravana Babu, P., Sasikala, M., Sabina, K., Archana, G., Sivarajan, M. and Sukumar, M. (2014). Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. International Journal of Food Microbiology, 171: 32-40.

42.   Cortez‐Vega, W. R., Pizato, S. and Prentice, C. (2012). Quality of raw chicken breast stored at 5C and packaged under different modified atmospheres. Journal of Food Safety, 32(3): 360-368.

43.   Bazargani-Gilani, B., Aliakbarlu, J. and Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innovative Food Science & Emerging Technologies, 29: 280-287.

44.   Yasin, R., Samiullah, K., Fazal, R. M., Hussain, S., Mahboob, S., Al‐Ghanim, K. A., Al-Misned, F. A. and Ahmed, Z. (2020). Combined effect of probiotics on prolonging the shelf life of GIFT tilapia fillets. Aquaculture Research, 51(12): 5151-5162.

45.   Venkatachalam, K. and Lekjing, S. (2020). A chitosan-based edible film with clove essential oil and nisin for improving the quality and shelf life of pork patties in cold storage. RSC Advances, 10(30): 17777-17786.

46.   Remya, S., Mohan, C. O., Bindu, J., Sivaraman, G. K., Venkateshwarlu, G. and Ravishankar, C. N. (2016). Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. Journal of Food Science and Technology, 53(1): 685-693.

47.   Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M. and Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6): 1106-1124.

48.   Prateepchanachai, S., Thakhiew, W., Devahastin, S. and Soponronnarit, S. (2017). Mechanical properties improvement of chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization. Carbohydrate Polymers, 174: 253-261.