Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 432 - 445
CO2-EFFERVESCENT
TABLET-ASSISTED DISPERSIVE LIQUID-LIQUID MICROEXTRACTION WITH CENTRAL COMPOSITE
DESIGN FOR PRE-CONCENTRATION OF ACETAMINOPHEN DRUG: METHOD DEVELOPMENT,
VALIDATION AND GREEN ASSESSMENT PROFILE
(Tablet Berbuak-CO2
Berbantukan Sebaran Pengekstrakan Mikro Cecair-Cecair dengan Reka Bentuk Komposit Berpusat untuk Kepekatan Awalan
Dadah Acetaminophen: Pembangunan Kaedah, Validasi dan Profil Penilaian Hijau)
Priya Murugan, Sarveishwhary
Rajendran, Saw Hong Loh, Marinah Mohd Ariffin, Wan Mohd Afiq Wan Mohd Khalik*
Faculty of Science and
Marine Environment, 
Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Malaysia
*Corresponding author:  wan.afiq@umt.edu.my
Received:  15 April 2021; Accepted: 2 June 2021;
Published:  27 June 2021
Abstract
This
study discovered the extraction procedure of acetaminophen from water samples
using the effervescent tablet-assisted dispersive liquid-liquid microextraction
(DLLME) method. The effervescent tablet that is composed of sodium dihydrogen
phosphate (proton donor) and sodium carbonate (CO2 source) was
formulated using the wet granulation technique. In this study, high performance
liquid chromatography coupled with ultraviolet visible detection (HPLC-UV) was
used for qualitative and quantitative analysis of the targeted analyte. The
chromatographic separation was conducted in less than 6 min (Rt 5.10
min) using a non-polar C18 column and an isocratic elution
(methanol: water of 40: 60 (v/v)) at a controlled flowrate of 1 mL min-1.
Optimum wavelength was set at 264 nm. Main variables that influenced the
extraction efficiency namely the amount of extraction solvent (X1),
the number of tablets consumed (X2) and the effect of extraction
temperature (X3) were tested during optimization work. Operation
setting for extraction procedure was optimized using a 23 full
factorial central composite design, CCD (STATISTICA Version 10). The values of
optimum extraction condition were set as 215 µL of extraction solvent, 5 pieces
of tablets and 47 °C extraction temperature. Under optimal condition, a good
linearity with determination coefficient R2 = 0.995 was obtained.
Extraction recoveries at spiked concentrations (500 ng mL-1 and 100
ng mL-1) were recorded ranging from 83% to 94.1%. The detection and
quantification limits of the proposed method were calculated at 8.62 ng mL-1
and 28 ng mL-1, respectively. In terms of the precision method, the
relative standard deviation was recorded ˂ 5%. Real analysis samples were
performed, which fortified with commercial drugs dissolved in 80 mL of
deionized water. The concentration levels were determined at 5.60 mg L-1
(sample A) and 5.47 mg L-1 (sample B) respectively.
 
Keywords:
 analgesic drug, CO2-effervescence,
central composite design, liquid phase microextraction
Abstrak
Kajian ini meneroka prosedur
pengekstrakan bagi acetaminophen dari sampel air mengunakan kaedah tablet
berbuak berbantukan sebaran pengekstrakan mikro cecair-cecair (DLLME). Tablet
berbuak terdiri dari sodium dihidrogen fosfat (penderma proton) dan sodium
karbonat (sumber CO2) di formulasi mengunakan teknik penggranulan
basah. Dalam kajian ini, kromatografi cecair berprestasi tinggi gabungan
pengesan ultralembayung nampak (HPLC-UV) telah digunapakai bagi analisis
kuantitatif dan kualitatif terhadap analit sasaran. Pemisahan kromatografi
berlaku dalam masa kurang 6 min (Rt 5.10 min) mengunakan turus tak
berkutub C18 dan elusi isokratik (metanol: air 40:60 (v/v)) pada
kawalan aliran 1 mL min-1. Panjang gelombang optimum ditetapkan pada
264 nm. Pemboleh ubah utama yang mempengaruhi keberkesanan pengekstrakan
seperti jumlah pelarut pengekstrak (X1), bilangan tablet yang digunakan
(X2) dan kesan perubahan suhu (X3) diuji semasa kerja
pengoptimuman. Tetapan operasi bagi prosedur pengekstrakan bagi pengoptimuman
mengunakan reka bentuk komposit berpusat, CCD (STATISTICA versi 10). Nilai yang
diperolehi bagi keadaan optimum ialah pelarut pengekstrakan 215 µL, 5 biji
tablet dan tetapan suhu 47 °C. Kelinearan yang baik dengan pekali regresi R2
= 0.995 telah diperolehi pada keadaan optimum. Perolehan semula pengekstrakan
pada kepekatan yang dipaku (500
ng mL-1 dan 100 ng mL-1) telah
merekodkan nilai julat 83%-94.1%. Had pengesanan dan pengkuantitian bagi kaedah
yang dibangunkan dihitung masing-masing pada 8.62 ng mL-1 dan 28 ng mL-1.
Bagi
aspek kejituan kaedah, sisihan piawai relatif telah direkodkan < 5%.
Analisis sampel sebenar telah dijalakan dengan penambahan dadah komersial yang
dilarut dalam 80 mL air ternyah ion. Kepekatan telah ditentukan masing-masing
pada 5.60 mg L-1 (sampel A) dan 5.47 mg L-1 (sampel B). 
Kata kunci:  dadah
analgesik, CO2-berbuak, reka bentuk komposit berpusat, pengekstrakan
mikro fasa cecair
References
1.     
Lasarte-Aragonés,
G., Lucena, R., Cárdenas, S. and Valcárcel, M. (2014). Effervescence assisted
dispersive liquid–liquid microextraction with extractant removal by magnetic
nanoparticles. Analytica Chimica Acta,
807: 61-66.
2.     
Jiang,
W., Chen, X., Liu, F., You, X. and Xue, J. (2014). Effervescence‐assisted
dispersive liquid–liquid microextraction using a solid effervescent agent as a
novel dispersion technique for the analysis of fungicides in apple juice. Journal of Separation Science, 37(21):
3157-3163.
3.     
Piao,
H., Jiang, Y., Qin, Z., Tao, S., Ma, P., Sun, Y. and Song, D. (2020).
Development of a novel acidic task-specific ionic liquid-based effervescence-assisted
microextraction method for determination of triazine herbicides in tea
beverage. Talanta, 208: 120414.
4.     
Shishov,
A., Sviridov, I., Timofeeva, I., Chibisova, N., Moskvin, L. and Bulatov, A.
(2017). An effervescence tablet-assisted switchable solvent-based
microextraction: On-site preconcentration of steroid hormones in water samples
followed by HPLC-UV determination. Journal
of Molecular Liquids, 247: 246-253.
5.     
Wang,
X., Wu, L., Cao, J., Hong, X., Ye, R., Chen, W. and Yuan, T. (2016). Magnetic
effervescent tablet-assisted ionic liquid dispersive liquid–liquid
microextraction of selenium for speciation in foods and beverages. Food Additives & Contaminants: Part A,
33(7): 1190-1199.
6.     
Zhou,
P., Zheng, R., Zhang, W., Liu, W., Li, Y., Wang, H. and Wang, X. (2019).
Development of an effervescent tablet microextraction method using NiFe2O4-based
magnetic nanoparticles for preconcentration/extraction of heavy metals prior to
ICP-MS analysis of seafood. Journal of
Analytical Atomic Spectrometry, 34(3): 598-606.
7.     
Vakh,
C., Pochivalov, A., Andruch, V., Moskvin, L. and Bulatov, A. (2016). A fully
automated effervescence-assisted switchable solvent-based liquid phase
microextraction procedure: liquid chromatographic determination of ofloxacin in
human urine samples. Analytica Chimica
Acta, 907: 54-59.
8.     
Gao,
M., Wang, J., Song, X., He, X., Dahlgren, R. A., Zhang, Z. and Wang, X. (2018).
An effervescence-assisted switchable fatty acid-based microextraction with
solidification of floating organic droplet for determination of
fluoroquinolones and tetracyclines in seawater, sediment, and seafood. Analytical and Bioanalytical Chemistry,
410(11): 2671-2687.
9.     
Fadzil,
F. N. I. M., Loh, S. H., Ariffin, M. M. and Khalik, W. M. A. W. M. (2020).
Development of effervescent-assisted liquid phase microextraction using
1-dodecanol for determination of ketoprofen drug in water. ASM Science Journal, 13: 1-8.
10.  
Shishov,
A., Gerasimov, A., Nechaeva, D., Volodina, N., Bessonova, E. and Bulatov, A.
(2020). An effervescence-assisted dispersive liquid–liquid microextraction
based on deep eutectic solvent decomposition: Determination of ketoprofen and
diclofenac in liver. Microchemical
Journal, 156: 104837.
11.  
Tazulazhar,
N., Loh, S. H., Ariffin, M. M. and Khalik, W. M. A. W. M. (2021). Optimization
of effervescent tablet-assisted dispersive liquid-liquid microextraction with
central composite design for preconcentration of stimulant drug. Sains Malaysiana, 50(1): 109-121.
12.  
Liu,
X., Shen, Z., Wang, P., Liu, C., Zhou, Z. and Liu, D. (2014). Effervescence assisted
on-site liquid phase microextraction for the determination of five triazine
herbicides in water. Journal of
Chromatography A, 1371: 58-64.
13.  
Moghadam,
A. G., Rajabi, M., Hemmati, M. and Asghari, A. (2017). Development of
effervescence-assisted liquid phase microextraction based on fatty acid for
determination of silver and cobalt ions using micro-sampling flame atomic
absorption spectrometry. Journal of
Molecular Liquids, 242: 1176-1183.
14.  
Jing,
X., Cheng, X., Zhao, W., Wang, H. and Wang, X. (2020). Magnetic effervescence
tablet-assisted switchable hydrophilicity solvent-based liquid phase
microextraction of triazine herbicides in water samples. Journal of Molecular Liquids, 306: 112934.
15.  
Medinskaia,
K., Vakh, C., Aseeva, D., Andruch, V., Moskvin, L. and Bulatov, A. (2016). A
fully automated effervescence assisted dispersive liquid–liquid microextraction
based on a stepwise injection system. Determination of antipyrine in saliva
samples. Analytica Chimica Acta, 902:
129-134.
16.  
Villaroel,
E., Silva-Agredo, J., Petrier, C., Taborda, G. and Torres-Palma, R. A. (2014).
Ultrasonic degradation of acetaminophen in water: effect of sonochemical
parameters and water matrix. Ultrasonics
Sonochemistry, 21(5): 1763-1769.
17.  
Montaseri,
H. and Forbes, P. B. (2018). Analytical techniques for the determination of
acetaminophen: A review. TrAC Trends in
Analytical Chemistry, 108: 122-134.
18.  
Lima,
D. R., Hosseini-Bandegharaei, A., Thue, P. S., Lima, E. C., de Albuquerque, Y.
R., dos Reis, G. S., and Tran, H. N. (2019). Efficient acetaminophen removal
from water and hospital effluents treatment by activated carbons derived from
Brazil nutshells. Colloids and Surfaces
A: Physicochemical and Engineering Aspects, 583: 123966.
19.  
Mashayekh-Salehi,
A., Moussavi, G. and Yaghmaeian, K. (2017). Preparation, characterization and
catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for
ozonation of acetaminophen as an emerging water contaminant. Chemical Engineering Journal, 310:
157-169.
20.  
Salvatierra-stamp,
V., Muñiz-Valencia, R., Jurado, J. M. and Ceballos-Magaña, S. G. (2018). Hollow
fiber liquid phase microextraction combined with liquid chromatography-tandem
mass spectrometry for the analysis of emerging contaminants in water samples. Microchemical Journal, 140: 87-95.
21.  
Yao,
C., Li, T., Twu, P., Pitner, W. R. and Anderson, J. L. (2011). Selective
extraction of emerging contaminants from water samples by dispersive
liquid–liquid microextraction using functionalized ionic liquids. Journal of Chromatography A, 1218(12):
1556-1566.
22.  
Yu,
H., Merib, J. and Anderson, J. L. (2016). Faster dispersive liquid-liquid
microextraction methods using magnetic ionic liquids as solvents. Journal of Chromatography A, 1463:
11-19.
23.  
Moeder,
M., Schrader, S., Winkler, M. and Popp, P. (2000). Solid-phase
microextraction–gas chromatography–mass spectrometry of biologically active
substances in water samples. Journal of
Chromatography A, 873(1): 95-106.
24.  
Moliner-Martínez,
Y., Prima-Garcia, H., Ribera, A., Coronado, E. and Campíns-Falcó, P. (2012).
Magnetic in-tube solid phase microextraction. Analytical Chemistry, 84(16): 7233-7240.
25.  
Asati,
A., Satyanarayana, G. N. V. and Patel, D. K. (2017). Comparison of two
microextraction methods based on solidification of floating organic droplet for
the determination of multiclass analytes in river water samples by liquid
chromatography tandem mass spectrometry using central composite design. Journal of Chromatography A, 1513:
157-171.
26.  
Gałuszka,
A., Migaszewski, Z. M., Konieczka, P. and Namieśnik, J. (2012). Analytical
eco-scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37:
61-72.
27.  
Mohamed,
H. M. and Lamie, N. T. (2016). Analytical eco-scale for assessing the greenness
of a developed RP-HPLC method used for simultaneous analysis of combined
antihypertensive medications. Journal of
AOAC International, 99(5): 1260-1265.
28.  
Tobiszewski,
M., Marć, M., Gałuszka, A. and Namieśnik, J. (2015). Green
chemistry metrics with special reference to green analytical chemistry. Molecules, 20(6): 10928-10946.
29.  
Pena-Pereira,
F., Wojnowski, W. and Tobiszewski, M. (2020). AGREE—Analytical GREEnness Metric
Approach and Software. Analytical
Chemistry, 92(14): 10076-10082.
30.  
Gamal,
M., Naguib, I. A., Panda, D. S. and Abdallah, F. F. (2021). Comparative study
of four greenness assessment tools for selection of greenest analytical method
for assay of hyoscine N-butyl bromide. Analytical
Methods, 13(3): 369-380.
31.  
Zeng,
H., Qiao, K., Li, X., Yang, M., Zhang, S., Lu, R. and Zhou, W. (2017).
Dispersive liquid–liquid microextraction based on the solidification of deep
eutectic solvent for the determination of benzoylureas in environmental water
samples. Journal of Separation Science,
40(23): 4563-4570.
32.  
Khodadoust,
S. and Ghaedi, M. (2013). Optimization of dispersive liquid–liquid
microextraction with central composite design for preconcentration of
chlordiazepoxide drug and its determination by HPLC‐UV. Journal of Separation Science, 36(11):
1734-1742.
33.  
Granberg,
R. A. and Rasmuson, Å. C. (1999). Solubility of paracetamol in pure solvents. Journal of Chemical & Engineering Data,
44(6): 1391-1395.
34.  
Ojeda,
C. B. and Rojas, F. S. (2011). Separation and preconcentration by dispersive
liquid–liquid microextraction procedure: recent applications. Chromatographia, 74(9-10): 651.
35.  
Jafarinejad,
M., Ezoddin, M., Lamei, N., Abdi, K., Babhadi‐Ashar, N., Pirooznia, N.
and Akhgari, M. (2020). Effervescent tablet‐assisted demulsified
dispersive liquid–liquid microextraction based on solidification of floating
organic droplet for determination of methadone in water and biological samples
prior to GC‐flame ionization and GC‐MS. Journal of Separation Science, 43(16): 3266-3274.