Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 432 - 445

 

 

 

 


CO2-EFFERVESCENT TABLET-ASSISTED DISPERSIVE LIQUID-LIQUID MICROEXTRACTION WITH CENTRAL COMPOSITE DESIGN FOR PRE-CONCENTRATION OF ACETAMINOPHEN DRUG: METHOD DEVELOPMENT, VALIDATION AND GREEN ASSESSMENT PROFILE

 

(Tablet Berbuak-CO2 Berbantukan Sebaran Pengekstrakan Mikro Cecair-Cecair dengan Reka Bentuk Komposit Berpusat untuk Kepekatan Awalan Dadah Acetaminophen: Pembangunan Kaedah, Validasi dan Profil Penilaian Hijau)

 

Priya Murugan, Sarveishwhary Rajendran, Saw Hong Loh, Marinah Mohd Ariffin, Wan Mohd Afiq Wan Mohd Khalik*

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia

 

*Corresponding author:  wan.afiq@umt.edu.my

 

 

Received:  15 April 2021; Accepted: 2 June 2021; Published:  27 June 2021

 

 

Abstract

This study discovered the extraction procedure of acetaminophen from water samples using the effervescent tablet-assisted dispersive liquid-liquid microextraction (DLLME) method. The effervescent tablet that is composed of sodium dihydrogen phosphate (proton donor) and sodium carbonate (CO2 source) was formulated using the wet granulation technique. In this study, high performance liquid chromatography coupled with ultraviolet visible detection (HPLC-UV) was used for qualitative and quantitative analysis of the targeted analyte. The chromatographic separation was conducted in less than 6 min (Rt 5.10 min) using a non-polar C18 column and an isocratic elution (methanol: water of 40: 60 (v/v)) at a controlled flowrate of 1 mL min-1. Optimum wavelength was set at 264 nm. Main variables that influenced the extraction efficiency namely the amount of extraction solvent (X1), the number of tablets consumed (X2) and the effect of extraction temperature (X3) were tested during optimization work. Operation setting for extraction procedure was optimized using a 23 full factorial central composite design, CCD (STATISTICA Version 10). The values of optimum extraction condition were set as 215 µL of extraction solvent, 5 pieces of tablets and 47 °C extraction temperature. Under optimal condition, a good linearity with determination coefficient R2 = 0.995 was obtained. Extraction recoveries at spiked concentrations (500 ng mL-1 and 100 ng mL-1) were recorded ranging from 83% to 94.1%. The detection and quantification limits of the proposed method were calculated at 8.62 ng mL-1 and 28 ng mL-1, respectively. In terms of the precision method, the relative standard deviation was recorded ˂ 5%. Real analysis samples were performed, which fortified with commercial drugs dissolved in 80 mL of deionized water. The concentration levels were determined at 5.60 mg L-1 (sample A) and 5.47 mg L-1 (sample B) respectively.

 

Keywords:  analgesic drug, CO2-effervescence, central composite design, liquid phase microextraction

 

 

Abstrak

Kajian ini meneroka prosedur pengekstrakan bagi acetaminophen dari sampel air mengunakan kaedah tablet berbuak berbantukan sebaran pengekstrakan mikro cecair-cecair (DLLME). Tablet berbuak terdiri dari sodium dihidrogen fosfat (penderma proton) dan sodium karbonat (sumber CO2) di formulasi mengunakan teknik penggranulan basah. Dalam kajian ini, kromatografi cecair berprestasi tinggi gabungan pengesan ultralembayung nampak (HPLC-UV) telah digunapakai bagi analisis kuantitatif dan kualitatif terhadap analit sasaran. Pemisahan kromatografi berlaku dalam masa kurang 6 min (Rt 5.10 min) mengunakan turus tak berkutub C18 dan elusi isokratik (metanol: air 40:60 (v/v)) pada kawalan aliran 1 mL min-1. Panjang gelombang optimum ditetapkan pada 264 nm. Pemboleh ubah utama yang mempengaruhi keberkesanan pengekstrakan seperti jumlah pelarut pengekstrak (X1), bilangan tablet yang digunakan (X2) dan kesan perubahan suhu (X3) diuji semasa kerja pengoptimuman. Tetapan operasi bagi prosedur pengekstrakan bagi pengoptimuman mengunakan reka bentuk komposit berpusat, CCD (STATISTICA versi 10). Nilai yang diperolehi bagi keadaan optimum ialah pelarut pengekstrakan 215 µL, 5 biji tablet dan tetapan suhu 47 °C. Kelinearan yang baik dengan pekali regresi R2 = 0.995 telah diperolehi pada keadaan optimum. Perolehan semula pengekstrakan pada kepekatan yang dipaku (500 ng mL-1 dan 100 ng mL-1) telah merekodkan nilai julat 83%-94.1%. Had pengesanan dan pengkuantitian bagi kaedah yang dibangunkan dihitung masing-masing pada 8.62 ng mL-1 dan 28 ng mL-1. Bagi aspek kejituan kaedah, sisihan piawai relatif telah direkodkan < 5%. Analisis sampel sebenar telah dijalakan dengan penambahan dadah komersial yang dilarut dalam 80 mL air ternyah ion. Kepekatan telah ditentukan masing-masing pada 5.60 mg L-1 (sampel A) dan 5.47 mg L-1 (sampel B).

 

Kata kunci:  dadah analgesik, CO2-berbuak, reka bentuk komposit berpusat, pengekstrakan mikro fasa cecair

 

References

1.      Lasarte-Aragonés, G., Lucena, R., Cárdenas, S. and Valcárcel, M. (2014). Effervescence assisted dispersive liquid–liquid microextraction with extractant removal by magnetic nanoparticles. Analytica Chimica Acta, 807: 61-66.

2.      Jiang, W., Chen, X., Liu, F., You, X. and Xue, J. (2014). Effervescence‐assisted dispersive liquid–liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. Journal of Separation Science, 37(21): 3157-3163.

3.      Piao, H., Jiang, Y., Qin, Z., Tao, S., Ma, P., Sun, Y. and Song, D. (2020). Development of a novel acidic task-specific ionic liquid-based effervescence-assisted microextraction method for determination of triazine herbicides in tea beverage. Talanta, 208: 120414.

4.      Shishov, A., Sviridov, I., Timofeeva, I., Chibisova, N., Moskvin, L. and Bulatov, A. (2017). An effervescence tablet-assisted switchable solvent-based microextraction: On-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination. Journal of Molecular Liquids, 247: 246-253.

5.      Wang, X., Wu, L., Cao, J., Hong, X., Ye, R., Chen, W. and Yuan, T. (2016). Magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction of selenium for speciation in foods and beverages. Food Additives & Contaminants: Part A, 33(7): 1190-1199.

6.      Zhou, P., Zheng, R., Zhang, W., Liu, W., Li, Y., Wang, H. and Wang, X. (2019). Development of an effervescent tablet microextraction method using NiFe2O4-based magnetic nanoparticles for preconcentration/extraction of heavy metals prior to ICP-MS analysis of seafood. Journal of Analytical Atomic Spectrometry, 34(3): 598-606.

7.      Vakh, C., Pochivalov, A., Andruch, V., Moskvin, L. and Bulatov, A. (2016). A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples. Analytica Chimica Acta, 907: 54-59.

8.      Gao, M., Wang, J., Song, X., He, X., Dahlgren, R. A., Zhang, Z. and Wang, X. (2018). An effervescence-assisted switchable fatty acid-based microextraction with solidification of floating organic droplet for determination of fluoroquinolones and tetracyclines in seawater, sediment, and seafood. Analytical and Bioanalytical Chemistry, 410(11): 2671-2687.

9.      Fadzil, F. N. I. M., Loh, S. H., Ariffin, M. M. and Khalik, W. M. A. W. M. (2020). Development of effervescent-assisted liquid phase microextraction using 1-dodecanol for determination of ketoprofen drug in water. ASM Science Journal, 13: 1-8.

10.   Shishov, A., Gerasimov, A., Nechaeva, D., Volodina, N., Bessonova, E. and Bulatov, A. (2020). An effervescence-assisted dispersive liquid–liquid microextraction based on deep eutectic solvent decomposition: Determination of ketoprofen and diclofenac in liver. Microchemical Journal, 156: 104837.

11.   Tazulazhar, N., Loh, S. H., Ariffin, M. M. and Khalik, W. M. A. W. M. (2021). Optimization of effervescent tablet-assisted dispersive liquid-liquid microextraction with central composite design for preconcentration of stimulant drug. Sains Malaysiana, 50(1): 109-121.

12.   Liu, X., Shen, Z., Wang, P., Liu, C., Zhou, Z. and Liu, D. (2014). Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water. Journal of Chromatography A, 1371: 58-64.

13.   Moghadam, A. G., Rajabi, M., Hemmati, M. and Asghari, A. (2017). Development of effervescence-assisted liquid phase microextraction based on fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry. Journal of Molecular Liquids, 242: 1176-1183.

14.   Jing, X., Cheng, X., Zhao, W., Wang, H. and Wang, X. (2020). Magnetic effervescence tablet-assisted switchable hydrophilicity solvent-based liquid phase microextraction of triazine herbicides in water samples. Journal of Molecular Liquids, 306: 112934.

15.   Medinskaia, K., Vakh, C., Aseeva, D., Andruch, V., Moskvin, L. and Bulatov, A. (2016). A fully automated effervescence assisted dispersive liquid–liquid microextraction based on a stepwise injection system. Determination of antipyrine in saliva samples. Analytica Chimica Acta, 902: 129-134.

16.   Villaroel, E., Silva-Agredo, J., Petrier, C., Taborda, G. and Torres-Palma, R. A. (2014). Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix. Ultrasonics Sonochemistry, 21(5): 1763-1769.

17.   Montaseri, H. and Forbes, P. B. (2018). Analytical techniques for the determination of acetaminophen: A review. TrAC Trends in Analytical Chemistry, 108: 122-134.

18.   Lima, D. R., Hosseini-Bandegharaei, A., Thue, P. S., Lima, E. C., de Albuquerque, Y. R., dos Reis, G. S., and Tran, H. N. (2019). Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583: 123966.

19.   Mashayekh-Salehi, A., Moussavi, G. and Yaghmaeian, K. (2017). Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chemical Engineering Journal, 310: 157-169.

20.   Salvatierra-stamp, V., Muñiz-Valencia, R., Jurado, J. M. and Ceballos-Magaña, S. G. (2018). Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples. Microchemical Journal, 140: 87-95.

21.   Yao, C., Li, T., Twu, P., Pitner, W. R. and Anderson, J. L. (2011). Selective extraction of emerging contaminants from water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids. Journal of Chromatography A, 1218(12): 1556-1566.

22.   Yu, H., Merib, J. and Anderson, J. L. (2016). Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. Journal of Chromatography A, 1463: 11-19.

23.   Moeder, M., Schrader, S., Winkler, M. and Popp, P. (2000). Solid-phase microextraction–gas chromatography–mass spectrometry of biologically active substances in water samples. Journal of Chromatography A, 873(1): 95-106.

24.   Moliner-Martínez, Y., Prima-Garcia, H., Ribera, A., Coronado, E. and Campíns-Falcó, P. (2012). Magnetic in-tube solid phase microextraction. Analytical Chemistry, 84(16): 7233-7240.

25.   Asati, A., Satyanarayana, G. N. V. and Patel, D. K. (2017). Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using central composite design. Journal of Chromatography A, 1513: 157-171.

26.   Gałuszka, A., Migaszewski, Z. M., Konieczka, P. and Namieśnik, J. (2012). Analytical eco-scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37: 61-72.

27.   Mohamed, H. M. and Lamie, N. T. (2016). Analytical eco-scale for assessing the greenness of a developed RP-HPLC method used for simultaneous analysis of combined antihypertensive medications. Journal of AOAC International, 99(5): 1260-1265.

28.   Tobiszewski, M., Marć, M., Gałuszka, A. and Namieśnik, J. (2015). Green chemistry metrics with special reference to green analytical chemistry. Molecules, 20(6): 10928-10946.

29.   Pena-Pereira, F., Wojnowski, W. and Tobiszewski, M. (2020). AGREE—Analytical GREEnness Metric Approach and Software. Analytical Chemistry, 92(14): 10076-10082.

30.   Gamal, M., Naguib, I. A., Panda, D. S. and Abdallah, F. F. (2021). Comparative study of four greenness assessment tools for selection of greenest analytical method for assay of hyoscine N-butyl bromide. Analytical Methods, 13(3): 369-380.

31.   Zeng, H., Qiao, K., Li, X., Yang, M., Zhang, S., Lu, R. and Zhou, W. (2017). Dispersive liquid–liquid microextraction based on the solidification of deep eutectic solvent for the determination of benzoylureas in environmental water samples. Journal of Separation Science, 40(23): 4563-4570.

32.   Khodadoust, S. and Ghaedi, M. (2013). Optimization of dispersive liquid–liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC‐UV. Journal of Separation Science, 36(11): 1734-1742.

33.   Granberg, R. A. and Rasmuson, Å. C. (1999). Solubility of paracetamol in pure solvents. Journal of Chemical & Engineering Data, 44(6): 1391-1395.

34.   Ojeda, C. B. and Rojas, F. S. (2011). Separation and preconcentration by dispersive liquid–liquid microextraction procedure: recent applications. Chromatographia, 74(9-10): 651.

35.   Jafarinejad, M., Ezoddin, M., Lamei, N., Abdi, K., Babhadi‐Ashar, N., Pirooznia, N. and Akhgari, M. (2020). Effervescent tablet‐assisted demulsified dispersive liquid–liquid microextraction based on solidification of floating organic droplet for determination of methadone in water and biological samples prior to GC‐flame ionization and GC‐MS. Journal of Separation Science, 43(16): 3266-3274.