Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 388 - 398

 

 

 

 


 

CLASSIFICATION  MODEL  FOR  DETECTION  AND DISCRIMINATION OF INEDIBLE PLASTIC ADULTERATED PALM COOKING OIL USING ATR-FTIR SPECTROSCOPY COMBINED WITH PRINCIPAL COMPONENT ANALYSIS

 

 (Model Pengkelasan bagi Pengesanan dan Pengasingan Produk Cemaraduk Plastik dalam Minyak Masak Sawit Menggunakan Spektroskopi ATR-FTIR dengan Gabungan Analisis Komponen Prinsipal)

 

Dzulkiflee Ismail1, Aliyalina Rahimi1, Wan Rosli Wan Ishak2, Naji Arafat Mahat3, Wan Nur Syuhaila Mat Desa1*

 

1 Forensic Science Programme, School of Health Sciences

2 Nutrition Programme, School of Health Sciences

Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

3Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author:  wannurs@usm.my

 

 

Received: 17 March 2021; Accepted: 28 May 2021; Published:  27 June 2021

 

 

Abstract

Adulteration of edible oil by replacing or admixing cheaper or waste oil is an irresponsible act motivated by profiteering. A more sinister act of dissolving inedible plastic materials in hot oil during frying to enhance the crispiness and prolong the shelf life of deep-fried snacks has been alleged. In this study, a protocol using ATR-FTIR spectroscopy combined with principal component analysis (PCA) for detection of inedible plastic materials in palm cooking oil is presented. To achieve this, palm cooking oil samples purchased from convenience stores were heated and adulterated either with low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP). The resultant spectra from 4000-600 cm-1 were subjected to direct visual examinations prior to PCA. Detection of plastic materials in the samples from direct visual examinations of the resultant spectra was difficult as all samples revealed similar spectra dominated by major absorption bands at 2922 cm-1, 2853 cm-1, 1740 cm-1, 1465 cm-1, 1377 cm-1 and 721 cm-1, which were typical of triacylglycerols. Despite the similarities, the detection was possible when the resultant spectra were subjected to PCA. The results demonstrated the potential of ATR-FTIR spectroscopy combined with PCA for the detection of inedible plastic adulterated palm cooking oil.

 

Keywords:  ATR-FTIR spectroscopy, cooking oil, adulteration, polyethylene, polypropylene

 

Abstrak

Cemaraduk minyak makan dengan menggantikan atau mencampurkan bersama minyak murah atau minyak sisa adalah tindakan tidak bertanggungjawab didorong oleh sikap meraih keuntungan. Tindakan yang lebih tidak bertanggungjawab adalah melarutkan plastik tidak boleh dimakan ke dalam minyak panas semasa menggoreng bertujuan untuk meningkatkan kerangupan dan memanjangkan jangka hayat makanan gorengan telah diperkatakan. Kajian ini membentangkan protokol menggunakan kaedah spektroskopi ATR-FTIR yang digabungkan bersama analisis komponen prinsipal (PCA) untuk mengesan bahan plastik tidak boleh dimakan dalam minyak sawit goreng. Untuk mencapai matlamat ini, sampel minyak masak sawit dibeli dari kedai serbaneka telah dipanaskan dan diadukkan bersama polietilena ketumpatan rendah (LDPE), polietilena ketumpatan tinggi (HDPE) atau polipropilena (PP). Spektra inframerah yang diperoleh dari 4000-600 cm-1 telah diperiksa terlebih dahulu melalui kaedah pemeriksaan visual langsung sebelum PCA. Pengesanan bahan plastik tidak boleh dimakan dalam semua sampel melalui kaedah pemeriksaan visual dari spektra inframerah yang dihasilkan adalah sukar berikutan kesemua sampel menghasilkan spektra serupa dengan jalur penyerapan utama tipikal triasilgliserol pada 2922 cm-1, 2853cm-1, 1740 cm-1, 1465 cm- 1, 1377 cm-1 dan 721 cm-1. Walaupun terdapat persamaan, pengesanan dilakukan dengan jayanya menggunakan PCA. Hasil kajian menunjukkan potensi penggabungan spektroskopi ATR-FTIR bersama PCA untuk pengesanan plastik tidak boleh dimakan teraduk dalam minyak masak sawit.

 

Kata kunci:  spektroskopi ATR-FTIR, minyak masak, pengadukan, polietilena, polipropilena

 

References

1.      Almeida, D. T., Viana, T. V., Costa, M. M., Silva, C. S. and Feitosa, S., (2019). Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Science and Technology39 (Suppl. 1): 211-217.

2.      Daily Express, (2014), Plastic Materials used in frying banana fritters? http://www.dailyexpress. com.my/news.cfm?NewsID=94247. [Accessed online 23 November 2020].

3.      Ram, P., Tapos, K., Md.Saiful, I., Mohammad, A. H., Md. Mahfuzar, R. and Mahabubur, R. M. (2018). Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh. International Journal of Health, 6(1): 1-5.

4.      Zuleyha, E. (2021) Melamine exposure from the weaning period causes apoptosis, inflammation and damage to the blood-brain barrier. Journal of Chemical Neuroanatomy, 113(1): 1-9.

5.      Yaman, N. and Velioglu, S. D. (2019). Use of attenuated total reflectance—Fourier transform infrared (ATR-FTIR) spectroscopy in combination with multivariate methods for the rapid determination of the adulteration of grape, carob and mulberry Pekmez. Foods, 8(7): 231-233.

6.      Smith, R. (2019), Food fraud and adulteration detection using FTIR spectroscopy, food safety tech., https://foodsafetytech.com/feature_article/ food-fraud-and-adulteration-detection-using-ftir-spectroscopy /2/ [Access online 12 November 2020].

7.      Meng, P., Suqin, S. and Qun, Z., (2018) a simple and portable screening method for adulterated olive oils using the hand‐held FTIR spectrometer and chemometrics tools. Journal of Food Science, 83(6): 1605-1612.

8.      Bingning L., Haixia W., Qiaojiao Z., Ouyang J. and Wu, Y., (2015), Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chemistry, 181 (1): 25-30.

9.      Nurrulhidayah, A., Rohman, A., Amin, I., Shuhaimi, M., Khatib, A. (2013). Analysis of chicken fat as adulterant in butter using Fourier transform infrared spectroscopy and chemometrics. Grasas y Aceitas, 64 (4): 395-355.

10.   Wu, Z., Li, H. and Tu, D. (2015). Application of Fourier transform infrared (FT-IR) spectroscopy combined with chemometrics for analysis of rapeseed oil adulterated with refining and purificating waste cooking oil. Food Analytical Methods, 8(10): 2581-2587.

11.   Rohman, A., Che Man, Y. B., Hashim, P. and Ismail, A. (2011). FTIR spectroscopy combined with chemometrics for analysis of lard adulteration in some vegetable oils. CyTA - Journal of Food, 9(2): 96-101.

12.   Skoog, D. A., West, D. M, Holler, F. M. and Crouch, S. R. (2020). Fundamentals of Analytical Chemistry: 10th Ed., Saunders College Publications. Philadelphia:  pp 746-759.

13.   Nur Farah Dina, A., Foo K. H, Naji A. M., Wan Nur Syuhaila M. D, Mohd Rahim K., Mohammad Afiq M. H., Hasmerya M. and Dzulkiflee I., (2021). Counterfeit one hundred Malaysian ringgit banknotes discrimination using chemical imaging inspection and pattern recognition. Australian Journal of Forensic Sciences, 53(3); 1-15.

14.   Asensio, R.C., Moya, M. S. A., Roja, J. M., and Gomez, M. (2009). Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Analytical and Bioanalytical Chemistry, 395(7): 2081-2096.

15.   Association of Official Analytical Chemists, AOAC (2019). Official Methods of Analysis., 21st edition USAAOAC International.

16.   Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan J. A. (2008). Introduction to spectroscopy. Cengage Learning, Stamford: pp. 31-35.

17.   Moinuddin S. (2011). Municipal waste plastic conversion into different category liquid hydrocarbon fuel, chemistry, emission control, radioactive pollution and indoor air quality, Nicolas Mazzeo, IntechOpen https://www.intechopen.com/ books/chemistry-emission-control-radioactive-pollution-and-indoor-air-quality/municipal-waste-plastic-conversion-into-different-category-liquid-hydrocarbon-fuel [Access online 20 February 2021].

18.   Lerma-García, M. J., Ramis-Ramos, G., Herrero-Martínez, J. M. and Simó-Alfonso, I. E. F. (2010). Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chemistry, 118 (1): 78-83.

19.   Rohman, A. and Che Man, Y. B. (2011). The use of Fourier transform mid infrared (FT-MIR) Spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chemistry, 129(2): 583-588.