Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 376 - 387
SITE-SELECTIVE
CARBOXYMETHYLATION OF CHITOSAN UNDER HETEROGENEOUS CONDITIONS
(Penentuan Tapak bagi Proses Pengkarboksimetil pada Kitosan dalam Keadaan
Heterogen)
Nur Ellina Annisa Salehuddin1,
Nurul Adilah Rodzali1, Ku Halim Ku Bulat2, Nadhratun
Naiim Mobarak1*
1 Department
of Chemical Sciences,
Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2School
of Fundamental Science
Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
*Corresponding
author:  nadhratunnaiim@ukm.edu.my
Received: 11 March 2021; Accepted: 22 May 2021; Published:  27 June 2021
Abstract
The
substitution sites on chitosan are affected by the presence of a base. Herein,
the effects of pH on the site-selective carboxymethylation of chitosan were
investigated. Carboxymethyl chitosan was synthesized by reacting chitosan with
monochloroacetic acid at different pH under heterogeneous conditions. Fourier
transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy
confirmed that carboxymethylation was successful, with the appearance of peaks
around 1326-1320 cm−1 (C–N groups) and 1257-1253 cm−1
(C–O–C groups) and allowed differentiation between the carboxymethyl substitution
sites on chitosan. Additionally, the peaks at approximately 3.28 and 4.12 ppm
in the 1H nuclear magnetic resonance (NMR) spectra confirmed that
substitution occurred at amine and hydroxyl groups, respectively. Overall, the
carboxymethylation of chitosan under heterogeneous conditions at pH 8.5-11 gave
O-substitution, at pH 12-13 gave N,O-substitution, and at pH 14 gave
N-substitution. This pH dependence of the site-selective substitution of
chitosan is important for polymer electrolyte application.
Keywords:
 carboxymethyl chitosan, pH effect,
substitution site, heterogeneous conditions
Abstrak
Tapak penggantian kitosan dipengaruhi
oleh kehadiran bes. Dalam kajian ini, kesan pH terhadap tapak penggantian
pengkarboksimetil kitosan telah dikaji. Karboksimetil kitosan disintesis
melalui tindak balas kitosan dengan asid monokloroasetik pada pH berbeza dalam
keadaan heterogen. Spektroskopi inframerah transformasi Fourier (ATR-FTIR)
mengesahkan bahawa karboksimetilasi telah berjaya dilakukan dengan kemunculan
puncak sekitar 1326–1320 cm−1 (kumpulan C–N) dan 1257–1253 cm−1
(kumpulan C–O–C), yang menunjukkan perbezaan tapak penggantian karboksimetil
pada kitosan. Selain itu, puncak sekitar 3.28 dan 4.12 ppm dalam spektrum
resonans magnetik nukleus (1H NMR) mengesahkan bahawa penggantian
berlaku pada kumpulan amina dan hidroksil. Secara keseluruhan, karboksimetilasi
kitosan dalam keadaan heterogen pada pH 8.5-11 memberikan penggantian pada
tapak O, pH 12-13 memberikan penggantian pada tapak N dan O, dan pH 14
memberikan penggantian pada tapak N. Kebergantungan tapak pemilihan untuk
penggantian kitosan dengan pH ini adalah penting untuk aplikasi elektrolit
polimer.
Kata kunci:  karboksimetil
kitosan, kesan pH, tapak penggantian, keadaan heterogen
References
1.     
Zhao,
D., Yu, S., Sun, B., Gao, S., Guo, S. and Zhao, K. (2018). Biomedical
applications of chitosan and its derivative nanoparticles. Polymers, 10(4):
462.
2.     
Wang,
W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z. and Zhao, K. (2020). Chitosan
derivatives and their application in biomedicine. International Journal
of Molecular Sciences, 21(2): 487.
3.     
Kalliola,
S., Repo, E., Srivastava, V., Zhao, F., Heiskanen, J. P., Sirviö, J. A.,
Liimatainen, H. and Sillanpää, M. (2018). Carboxymethyl chitosan
and its hydrophobically modified derivative as pH-switchable emulsifiers. Langmuir, 34(8):
2800-2806.
4.     
Rayung,
M., Aung, M. M., Azhar, S. C., Abdullah, L. C., Su’ait, M. S., Ahmad, A., and
Jamil, S. N. A. M. (2020). Bio-based polymer electrolytes for electrochemical
devices: Insight into the ionic conductivity performance. Materials, 13(4):
838.
5.     
Zhang,
E., Xing, R., Liu, S., Li, K., Qin, Y., Yu, H., and Li, P. (2017). Comparison
in docetaxel-loaded nanoparticles based on three different carboxymethyl
chitosans. International Journal of Biological Macromolecules, 101:
1012–1018.
6.     
Aranaz,
I., Acosta, N., Civera, C., Elorza, B., Mingo, J., Castro, C., Gandía, M. D. L.
L. and Caballero, A. H. (2018). Cosmetics and cosmeceutical applications of
chitin, chitosan and their derivatives. Polymers, 10(2): 213.
7.     
Jimtaisong,
A. and Saewan, N. (2014). Utilization of carboxymethyl chitosan in cosmetics. International
Journal of Cosmetic Science, 36(1): 12–21.
8.     
Zhong,
H., He, A., Lu, J., Sun, M., He, J. and Zhang, L. (2016). Carboxymethyl
chitosan/conducting polymer as water-soluble composite binder for LiFePO4
cathode in lithium ion batteries. Journal of Power Sources, 336:
107-114.
9.     
Sun, S.
and Wang, A. (2006). Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan.
Journal of Hazardous Materials, 131(1–3): 103-111.
10.  
Mi, Y.,
Su, R., Fan, D., Zhu, X. and Zhang, W. (2013). Preparation of N,O-carboxymethyl
chitosan coated alginate microcapsules and their application to Bifidobacterium
Longum BIOMA 5920. Materials Science and Engineering: C, 33(5):
3047-3053. 
11.  
Muzzarelli,
R. A. A., Tanfani, F., Emanuelli, M. and Mariotti, S. (1982).
N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: Novel chelating
polyampholytes obtained from chitosan glyoxylate. Carbohydrate Research,
107(2): 199-214.
12.  
Nudga,
L. A., Plisko, E. A. and Danilov, S. N. (1973). N-alkylation of chitosan. Zhurnal
Obshchei Khimii, 43(12): 2756-2760.
13.  
An, N.
T., Dung, P. L., Thien, D. T., Dong, N. T. and Nhi, T. T. Y. (2008). An
improved method for synthesizing N,N′-dicarboxymethylchitosan. Carbohydrate
Polymers, 73(2): 261-264.
14.  
An, N.
T., Dung, P. L., Thien, D. T., Dong, N. T. and Nhi, T. T. Y. (2009).
Water-soluble N-carboxymethylchitosan derivatives: preparation, characteristics
and its application. Carbohydrate Polymers, 75(3): 489-497.
15.  
Nikmawahda,
H. T., Sugita, P., and Arifin, B. (2015). Synthesis and characterization of
n-alkylchitosan as well as its potency as a paper coating material. Advances
in Applied Science Research, 6(2): 141-149.
16.  
Sashiwa,
H., Shigemasa, Y., and René, R. (2000). Novel N-alkylation of chitosan via
michael type reaction. Chemistry Letters, 29(8): 862-863.
17.  
Sun, G.,
Chen, X., Li, Y., Zheng, B., Gong, Z., Sun, J., Chen, H., Li, J. and Lin, W.
(2008). Preparation of H-oleoyl-carboxymethyl-chitosan and the function as a
coagulation agent for residual oil in aqueous system. Frontiers of Materials
Science in China, 2(1): 105-112.
18.  
Leong,
K. H., Chung, L. Y., Noordin, M. I., Mohamad, K., Nishikawa, M., Onuki, Y.,
Morishita, M., and Takayama, K. (2011). Carboxymethylation of kappa-carrageenan
for intestinal-targeted delivery of bioactive macromolecules. Carbohydrate
Polymers, 83(4): 1507-1515. 
19.  
Singh,
R. K. and Khatri, O. P. (2012). A scanning electron microscope based new method
for determining degree of substitution of sodium carboxymethyl cellulose. Journal
of Microscopy, 246(1): 43-52.
20.  
Elomaa,
M., Asplund, T., Soininen, P., Laatikainen, R., Peltonen, S., Hyvärinen, S. and
Urtti, A. (2004). Determination of the degree of substitution of acetylated
starch by hydrolysis, 1H NMR and TGA/IR. Carbohydrate Polymers,
57(3): 261-267.
21.  
Aggeryd,
I., and Olin, Å. (1985). Determination of the degree of substitution of sodium
carboxymethylcellulose by potentiometric titration and use of the extended
henderson-hasselbalch equation and the simplex method for the evaluation. Talanta,
32(8A): 645-649.
22.  
Liu, J.,
Zhang, X., Kennedy, J. F., Jiang, M., Cai, Q. and Wu, X. (2019). Chitosan
induces resistance to tuber rot in stored potato caused by Alternaria
tenuissima. International Journal of Biological Macromolecules, 140:
851-857.
23.  
Mobarak,
N. N., Ahmad, A., Abdullah, M. P., Ramli, N. and Rahman, M. Y. A. (2013). Conductivity
enhancement via chemical modification of chitosan based green polymer
electrolyte. Electrochimica Acta, 92: 161-167.
24.  
Lusiana,
R. A., Siswanta, D. and Mudasir, M. (2014). Modifying surface charge of
chitosan membrane by N,O-carboxymethyl chitosan blended with poly(vinyl
alcohol). International Journal of Advances in Chemical Engineering and
Biological Sciences, 1(1): 16-20.
25.  
Hirai,
A., Odani, H. and Nakajima, A. (1991). Determination of degree of deacetylation
of chitosan by 1H NMR spectroscopy. Polymer Bulletin, 26(1):
87-94.
26.  
Muzzarelli,
R. A. A., Ilari, P., and Petrarulo, M. (1994). Solubility and structure of
N-carboxymethylchitosan. International Journal of Biological Macromolecules,
16(4): 177-180.
27.  
Prabaharan,
M. and Gong, S. (2008). Novel thiolated carboxymethyl
chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery
carriers. Carbohydrate Polymers, 73 (1): 117-125.
28.  
Chen, X.
G. and Park, H. J. (2003). Chemical characteristics of o-carboxymethyl
chitosans related to the preparation conditions. Carbohydrate Polymers,
53(4): 355-359.
29.  
Bukzem,
A. L., Signini, R., Dos Santos, D. M., Lião, L. M. and Ascheri, D. P. R.
(2016). Optimization of carboxymethyl chitosan synthesis using response surface
methodology and desirability function. International Journal of
Biological Macromolecules, 85: 615-624.
30.  
Mourya,
V. ., Inamdar, N. N. and Tiwari, A. (2010). Carboxymethyl chitosan and its
applications. Advanced Materials Letters, 1(1): 11-33.
31.  
Pranowo,
H. D., Mulya, F., Aziz, H. A, and Santoso, G. A. (2018). Study of substituent
effect on properties of platinum(II) porphyrin semiconductor using density
functional theory. Indonesian Journal of Chemistry, 18(4): 742-748.
32.  
Lu, X.,
Xue, J. Q., Wang, Y. J., Mao, W. B., Wu, M. and Li, J. X. (2010). Theoretical
studies on the chemical structure of carboxymethyl chitosan. Advanced
Materials Research, 160-162: 1822-1827.