Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 363 - 375
THE
ELECTROCHEMICAL BEHAVIOUR OF Au-PEDOT/rGO MODIFIED ELECTRODE IN URIC ACID
(Sifat
Elektrokimia Elektrod Bermodifikasi Komposit Au-PEDOT/rGO dalam Asid Urik)
Farhanini
Yusoff1*, Mohd Faris Rosdidi1, Azleen Rashidah Mohd Rosli1,
Syara Kassim2, Noor Aniza Harun2, Noorashikin Md Saleh3 
1Faculty of Science and Marine Environment
2Advanced Nano Materials (ANoMa) Research
Group, Faculty of Science and Marine Environment
Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
3Research
Centre for Sustainable Process Technology, Department of Chemical Engineering, 
Faculty
of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author:  farhanini@umt.edu.my
Received: 28 March 2021; Accepted: 23 May 2021;
Published:  27 June 2021
Abstract
The development of gold nanoparticle/poly(3,4-ethylene
dioxythiophene)/reduced graphene oxide (denoted as Au-PEDOT/rGO) sensor is
necessary for the detection of UA as the irregular amount of UA in the human
body may cause several diseases such as gout, heart disease, kidney stone and
hypertension. In this work, Au-PEDOT/rGO nanocomposite was synthesized by a
facile chemical technique. The morphology, composition, and structure of
Au-PEDOT/rGO composite were confirmed by FTIR, SEM, and XRD characterization.
FTIR spectrum showed the presence of C-O-C stretching and C-S stretching of the
thiophene ring. The attachment of Au with PEDOT and rGO was confirmed by SEM.
XRD analysis showed the presence of Au(111), Au(200), Au(220), Au(311) and
Au(222) corresponding to Au-PEDOT/rGO composite. This proved that Au-PEDOT/rGO
has been successfully synthesized. The electrochemical behavior of
Au-PEDOT/rGO/GCE was evaluated by cyclic voltammetry (CV) in 1.0 M KCl with 5
mM K4[Fe(CN)6] and the results demonstrated that
Au-PEDOT/rGO/GCE has a better electrical conductivity for detection of UA in
the real sample. DPV measurements showed a linear relationship between oxidation
peak current and concentration of UA in phosphate buffer (pH 7) over the
concentration range 0.10 µM until 25.0 µM. The limit of detection of UA is 0.05
µM, and the limit of quantification of UA is 0.22 µM. Thus, Au-PEDOT/rGO
electrode composite is a worthy alternative for the detection of UA in human’s
urine.
Keywords:
 conducting
polymer, gold nanoparticles, reduced graphene oxide, uric acid
Abstrak
Pembangunan
sensor buat zarah nano aurum/poli(3,4-etilenadioxitiofena/grafin oksida
terturun (dilabel sebagai Au-PEDOT/rGO) adalah diperlukan untuk pengesanan UA
kerana jumlah UA yang tidak normal dalam tubuh manusia boleh menyebabkan
beberapa kondisi penyakit seperti gout, penyakit jantung, batu ginjal dan darah
tinggi. Dalam kajian ini, komposit nano Au-PEDOT/rGO telah disinthesis melalui
teknik kimia mudah. Morfologi, komposisi, dan struktur komposit Au-PEDOT/rGO
telah disahkan melalui teknik pencirian FTIR, SEM, dan XRD. Spektrum FTIR
menunjukkan kehadiran regangan C-O-C dan regangan C-S bagi ikatan tiofena
manakala penggabungan Au kepada lembaran PEDOT dan rGO telah dibuktikan melalui
SEM. Analisis XRD menunjukkan kehadiran Au(111), Au(200), Au(220), Au (311) dan
Au(222) sepadan dengan komposit Au-PEDOT/rGO. Keputusan tersebut telah
mengesahkan bahawa Au-PEDOT/rGO telah berjaya disintesis. Sifat elektrokimia
Au-PEDOT/rGO telah dinilai melalui voltammetri berkitar (CV) di dalam 1.0 M KCl
bersama dengan 5 mM K4[Fe(CN)6]
dan hasil kajian menunjukkan bahawa Au-PEDOT/rGO memiliki konduksi elektrik
yang bagus untuk pengesanan UA di dalam sample nyata. Analisis DPV menunjukkan
hubungan linear antara puncak pengoksidaan arus dan kepekatan UA di dalam
penimbal fosfat (pH 7) diantara julat kepekatan 0.10 µM hingga 25.0 µM. Had
pengesanan yang diukur bagi UA ialah 0.05 µM manakala had pengukuran UA adalah
0.22 µM. Oleh
itu, komposit Au-PEDOT/rGO merupakan alternatif yang berbaloi untuk mengesan UA
dalam air kencing manusia.
Kata
kunci:  polimer
pengalir, zarah nano aurum, grafin oksida terturun, asid urik
References
1.      Yu,
H., Zhang, Z., Shen, T., Jiang, J., Chang, D. and Pan, H. (2018). Sensitive determination of uric acid by using
graphene quantum dots as a new substrate for immobilisation of uric oxidase.
IET Nanobiotechnology, 12(23): 191-195.
2.      Soares,
F., Paula, F. D. S., Franco, D. L., Torres, W. and Ferreira, L. F. (2017).
Electrochemical detection of uric acid using graphite screen-printed electrodes
modified with prussian blue/poly(4-aminosalicylic acid)/uricase. Journal of
Electroanalytical Chemistry, 806: 172-179.
3.      Ndrepepa,
G. (2018) Uric acid and cardiovascular disease. Clinica Chimica Acta,
484(3): 150-163.
4.      Black,
C. N., Bot, M., Peter, G., Snieder, H. and Penninxm B. W. J. H. (2017). Uric
acid in major depressive and anxiety disorders. Journal of Affective
Disorders, 225: 684-690.
5.      Kand,
R., Drábková,
P. and Hampl, R. (2011). The determination of ascorbic acid and uric acid in
human seminal plasma using an HPLC with UV detection. Journal of
Chromatography B, 879: 2834-2839.
6.      Long,
Q., Fang, A., Wen, Y., Li, H., Zhang, Y. and Yao, S. (2016). Biosensors and
bioelectronic rapid and highly-sensitive uric acid sensing based on enzymatic
catalysis-induced upconversion inner filter effect. Biosensors and
Bioelectronic, 86: 109-114.
7.      Wei,
Y., Liu, Y., Xiu, Z., Wang, S., Chen, B., Zhang, D. and Fang, Y. (2020).
Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel
electrochemical sensor based on palladium nanoparticles/reduced graphene oxide
nanocomposite. International Journal of Analytical Chemistry, 1-13.
8.      Su,
C. H., Sun, C. L. and Liao, Y. L. (2017). Printed combinatorial sensors for
simultaneous detection of ascorbic acid, uric acid, dopamine and nitrite. ACS
Omega, 2(8): 4245-4252.
9.      Tukimin,
N., Abdullah, J. and Sulaiman, Y. (2018). Electrodeposition of
poly(3,4-ethylenedioxy thiophene)/reduced graphene oxide/manganese dioxide for
simultaneous detection od uric acid, dopamine and ascorbic acid. Journal of
Electroanalytical Chemistry, 820: 74-81.
10.   Muhamad,
N. B., Khairul, W. M. and Yusoff, F. (2019). Synthesis and characterization of
poly(3,4-ethylenedioxythiophene) functionalized graphene with gold
nanoparticles as a potential oxygen reduction electrocatalyts. Journal of
Solid State Chemistry, 275(4): 30-37.
11.   Li,
Y., Du, Y., Dou, Y., Cai, K. and Xu, J. (2017). PEDOT-based thermoelectric
nanocomposites- a mini review. Synthetic Metals, 226: 119-128.
12.   Lawal,
A. T. (2019). Graphene-based nano composites and their applications. A review. Biosensors
and Bioelectronics, 2019: 111384.
13.   Rosli,
A. R., Loh, S. H. and Yusoff, F. (2019). Synthesis and characterization of
magnetic fe3o4/reduced graphene oxide and its application
in determination of dopamine. Asian Journal of Chemistry, 31(12):
2785-2792.
14.   Berisha,
L., Shabani, E., Maloku, A., Jashari, G. and Arbneshi, T. (2020).
Electrochemical determination of dopamine and uric acid in blood serum using
anionic surfactants at carbon paste electrodes. Malaysian Journal of
Analytical Sciences, 24(1): 97-106.
15.   Jin
W. and Maduraiveeran, G. (2017). Electrochemical detection of chemical
pollutants based on gold nanomaterials. Trends in Environmental
Analytical  Chemistry, 14(4): 28-36.
16.   Harun,
N. A., Kassim, S., Tahrin, R. A. A. and Rusdi, N. F. (2018). Bimetallic (Au-Ag)
in 3D hot spots as highly sensitive substrate for high performance
surface-enhanced raman scattering (SERS). ASM Science Journal, 11(1):
86-95.
17.   Kassim,
S., Padmanabhan, S. C., Salaun, M. and Pemble, M. E. (2011). PMMA gold
metallodielectric photonic crystals and inverse opals: preparation and optical
properties. AIP Conference Proceeding, 263: 1-4.
18.   Kaur,
M., Kaur, H., and Kukkar, D. (2018). Synthesis and characterization of graphene
oxide using modified Hummer’s method. AIP Conference Proceeding, 1953(1):
030180.
19.   Johra,
F. T. and Jung, W. (2016). Low temperature synthesis of RGO-Au nanocomposite
for apparently reduced time and its application as a chemical sensor. Applied
Surface Science, 362: 169-175.
20.   Liu,
Z., Xu, J., Yue, R., Yang, T. and Gao, L. (2016). Facile one-pot synthesis of
Au-PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in
red wine sample. Electrochimica Acta, 196: 1-12.
21.   Yan,
Q., Zhi, N., Yang, L., Xu, G., Feng, Q., Zhang, Q. and Sun, S. (2020). A highly
sensitive uric acid electrochemical biosensor based on a nano-cube cuprous
oxide/ferrocene/uricase modified glassy carbon electrode. Scientific Reports,
10: 10607.
22.   Ali,
A., Zhang, Y., Jamal, R., and Abdiryim, T. (2017). Solid-state heating
synthesis of poly(3,4-ethlylenedioxythiophene)/gold/graphene composite and its
application for amperometric determination of nitrite and iodate. Nanoscale
Research Letter, 12(568): 1-10.
23.   Muhammad,
N. B., and Yusoff, F. (2018). The physical and electrochemical characteristic
of gold nanoparticles supported PEDOT/graphene composite as potential cathode
material in fuel cells. Malaysian Journal of Analytical Sciences,  22(6): 921–930.
24.   Gualandi,
I., Tonelli, D., Mariani, F., Scavetta, E., Marzocchi, M. and Fraboni, B.
(2016). Selective detection of dopamine with an all PEDOT:PSS organic
electrochemical transistor. Scientific Reports, 6 (10): 1-10.
25.   Sekli-belaidi,
F., Temple-boyer, P. and Gros, P. (2010). Voltammetric microsensor using
PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric
acids. Journal of Electroanalytical Chemistry, 647(2): 159-168.
26.   Wang,
C., Du, J. and Wang, H. (2014). A facile electrochemical sensor based on
reduced graphene oxide and Au nanoplates modified glassy carbon electrode for
simultaneous detection of ascrobic acid, dopamine and uric acid. Sensors
& Actuators: B. Chemical, 204: 302-309.
27.   Tian,
X., Cheng, C. and Yuan H. (2012). Simultaneous determination of L-ascorbic
acid, dopamine and uric acid with gold nanoparticles-–b-cyclodextrin–graphene-modified electrode by
square wave voltammetry. Talanta, 93: 79-85.
28.   Yu,
X., Sheng, K. and Shi, G. (2014). A Three-dimensional interpenetrating
electrode of reduced graphene oxide for selective detection of dopamine.The
Analyts, 139: 4525-4531.
29.   Hsu,
M., Chen, Y., Lee, C., and Chiu, H. (2012). Gold nanostructures on flexible substrates as
electrochemical dopamine sensors. Applied Material and Interface, 4(10):
5570-5575.