Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 363 - 375

 

 

 

 


 

THE ELECTROCHEMICAL BEHAVIOUR OF Au-PEDOT/rGO MODIFIED ELECTRODE IN URIC ACID

 

(Sifat Elektrokimia Elektrod Bermodifikasi Komposit Au-PEDOT/rGO dalam Asid Urik)

 

Farhanini Yusoff1*, Mohd Faris Rosdidi1, Azleen Rashidah Mohd Rosli1, Syara Kassim2, Noor Aniza Harun2, Noorashikin Md Saleh3

 

1Faculty of Science and Marine Environment

2Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Research Centre for Sustainable Process Technology, Department of Chemical Engineering,

Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  farhanini@umt.edu.my

 

 

Received: 28 March 2021; Accepted: 23 May 2021; Published:  27 June 2021

 

 

Abstract

The development of gold nanoparticle/poly(3,4-ethylene dioxythiophene)/reduced graphene oxide (denoted as Au-PEDOT/rGO) sensor is necessary for the detection of UA as the irregular amount of UA in the human body may cause several diseases such as gout, heart disease, kidney stone and hypertension. In this work, Au-PEDOT/rGO nanocomposite was synthesized by a facile chemical technique. The morphology, composition, and structure of Au-PEDOT/rGO composite were confirmed by FTIR, SEM, and XRD characterization. FTIR spectrum showed the presence of C-O-C stretching and C-S stretching of the thiophene ring. The attachment of Au with PEDOT and rGO was confirmed by SEM. XRD analysis showed the presence of Au(111), Au(200), Au(220), Au(311) and Au(222) corresponding to Au-PEDOT/rGO composite. This proved that Au-PEDOT/rGO has been successfully synthesized. The electrochemical behavior of Au-PEDOT/rGO/GCE was evaluated by cyclic voltammetry (CV) in 1.0 M KCl with 5 mM K4[Fe(CN)6] and the results demonstrated that Au-PEDOT/rGO/GCE has a better electrical conductivity for detection of UA in the real sample. DPV measurements showed a linear relationship between oxidation peak current and concentration of UA in phosphate buffer (pH 7) over the concentration range 0.10 µM until 25.0 µM. The limit of detection of UA is 0.05 µM, and the limit of quantification of UA is 0.22 µM. Thus, Au-PEDOT/rGO electrode composite is a worthy alternative for the detection of UA in human’s urine.

 

Keywords:  conducting polymer, gold nanoparticles, reduced graphene oxide, uric acid

 

Abstrak

Pembangunan sensor buat zarah nano aurum/poli(3,4-etilenadioxitiofena/grafin oksida terturun (dilabel sebagai Au-PEDOT/rGO) adalah diperlukan untuk pengesanan UA kerana jumlah UA yang tidak normal dalam tubuh manusia boleh menyebabkan beberapa kondisi penyakit seperti gout, penyakit jantung, batu ginjal dan darah tinggi. Dalam kajian ini, komposit nano Au-PEDOT/rGO telah disinthesis melalui teknik kimia mudah. Morfologi, komposisi, dan struktur komposit Au-PEDOT/rGO telah disahkan melalui teknik pencirian FTIR, SEM, dan XRD. Spektrum FTIR menunjukkan kehadiran regangan C-O-C dan regangan C-S bagi ikatan tiofena manakala penggabungan Au kepada lembaran PEDOT dan rGO telah dibuktikan melalui SEM. Analisis XRD menunjukkan kehadiran Au(111), Au(200), Au(220), Au (311) dan Au(222) sepadan dengan komposit Au-PEDOT/rGO. Keputusan tersebut telah mengesahkan bahawa Au-PEDOT/rGO telah berjaya disintesis. Sifat elektrokimia Au-PEDOT/rGO telah dinilai melalui voltammetri berkitar (CV) di dalam 1.0 M KCl bersama dengan 5 mM K4[Fe(CN)6] dan hasil kajian menunjukkan bahawa Au-PEDOT/rGO memiliki konduksi elektrik yang bagus untuk pengesanan UA di dalam sample nyata. Analisis DPV menunjukkan hubungan linear antara puncak pengoksidaan arus dan kepekatan UA di dalam penimbal fosfat (pH 7) diantara julat kepekatan 0.10 µM hingga 25.0 µM. Had pengesanan yang diukur bagi UA ialah 0.05 µM manakala had pengukuran UA adalah 0.22 µM. Oleh itu, komposit Au-PEDOT/rGO merupakan alternatif yang berbaloi untuk mengesan UA dalam air kencing manusia.

 

Kata kunci:  polimer pengalir, zarah nano aurum, grafin oksida terturun, asid urik

 

References

1.      Yu, H., Zhang, Z., Shen, T., Jiang, J., Chang, D. and Pan, H. (2018). Sensitive determination of uric acid by using graphene quantum dots as a new substrate for immobilisation of uric oxidase. IET Nanobiotechnology, 12(23): 191-195.

2.      Soares, F., Paula, F. D. S., Franco, D. L., Torres, W. and Ferreira, L. F. (2017). Electrochemical detection of uric acid using graphite screen-printed electrodes modified with prussian blue/poly(4-aminosalicylic acid)/uricase. Journal of Electroanalytical Chemistry, 806: 172-179.

3.      Ndrepepa, G. (2018) Uric acid and cardiovascular disease. Clinica Chimica Acta, 484(3): 150-163.

4.      Black, C. N., Bot, M., Peter, G., Snieder, H. and Penninxm B. W. J. H. (2017). Uric acid in major depressive and anxiety disorders. Journal of Affective Disorders, 225: 684-690.

5.      Kand, R., Drábková, P. and Hampl, R. (2011). The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B, 879: 2834-2839.

6.      Long, Q., Fang, A., Wen, Y., Li, H., Zhang, Y. and Yao, S. (2016). Biosensors and bioelectronic rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosensors and Bioelectronic, 86: 109-114.

7.      Wei, Y., Liu, Y., Xiu, Z., Wang, S., Chen, B., Zhang, D. and Fang, Y. (2020). Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel electrochemical sensor based on palladium nanoparticles/reduced graphene oxide nanocomposite. International Journal of Analytical Chemistry, 1-13.

8.      Su, C. H., Sun, C. L. and Liao, Y. L. (2017). Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine and nitrite. ACS Omega, 2(8): 4245-4252.

9.      Tukimin, N., Abdullah, J. and Sulaiman, Y. (2018). Electrodeposition of poly(3,4-ethylenedioxy thiophene)/reduced graphene oxide/manganese dioxide for simultaneous detection od uric acid, dopamine and ascorbic acid. Journal of Electroanalytical Chemistry, 820: 74-81.

10.   Muhamad, N. B., Khairul, W. M. and Yusoff, F. (2019). Synthesis and characterization of poly(3,4-ethylenedioxythiophene) functionalized graphene with gold nanoparticles as a potential oxygen reduction electrocatalyts. Journal of Solid State Chemistry, 275(4): 30-37.

11.   Li, Y., Du, Y., Dou, Y., Cai, K. and Xu, J. (2017). PEDOT-based thermoelectric nanocomposites- a mini review. Synthetic Metals, 226: 119-128.

12.   Lawal, A. T. (2019). Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics, 2019: 111384.

13.   Rosli, A. R., Loh, S. H. and Yusoff, F. (2019). Synthesis and characterization of magnetic fe3o4/reduced graphene oxide and its application in determination of dopamine. Asian Journal of Chemistry, 31(12): 2785-2792.

14.   Berisha, L., Shabani, E., Maloku, A., Jashari, G. and Arbneshi, T. (2020). Electrochemical determination of dopamine and uric acid in blood serum using anionic surfactants at carbon paste electrodes. Malaysian Journal of Analytical Sciences, 24(1): 97-106.

15.   Jin W. and Maduraiveeran, G. (2017). Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends in Environmental Analytical  Chemistry, 14(4): 28-36.

16.   Harun, N. A., Kassim, S., Tahrin, R. A. A. and Rusdi, N. F. (2018). Bimetallic (Au-Ag) in 3D hot spots as highly sensitive substrate for high performance surface-enhanced raman scattering (SERS). ASM Science Journal, 11(1): 86-95.

17.   Kassim, S., Padmanabhan, S. C., Salaun, M. and Pemble, M. E. (2011). PMMA gold metallodielectric photonic crystals and inverse opals: preparation and optical properties. AIP Conference Proceeding, 263: 1-4.

18.   Kaur, M., Kaur, H., and Kukkar, D. (2018). Synthesis and characterization of graphene oxide using modified Hummer’s method. AIP Conference Proceeding, 1953(1): 030180.

19.   Johra, F. T. and Jung, W. (2016). Low temperature synthesis of RGO-Au nanocomposite for apparently reduced time and its application as a chemical sensor. Applied Surface Science, 362: 169-175.

20.   Liu, Z., Xu, J., Yue, R., Yang, T. and Gao, L. (2016). Facile one-pot synthesis of Au-PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochimica Acta, 196: 1-12.

21.   Yan, Q., Zhi, N., Yang, L., Xu, G., Feng, Q., Zhang, Q. and Sun, S. (2020). A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Scientific Reports, 10: 10607.

22.   Ali, A., Zhang, Y., Jamal, R., and Abdiryim, T. (2017). Solid-state heating synthesis of poly(3,4-ethlylenedioxythiophene)/gold/graphene composite and its application for amperometric determination of nitrite and iodate. Nanoscale Research Letter, 12(568): 1-10.

23.   Muhammad, N. B., and Yusoff, F. (2018). The physical and electrochemical characteristic of gold nanoparticles supported PEDOT/graphene composite as potential cathode material in fuel cells. Malaysian Journal of Analytical Sciences,  22(6): 921–930.

24.   Gualandi, I., Tonelli, D., Mariani, F., Scavetta, E., Marzocchi, M. and Fraboni, B. (2016). Selective detection of dopamine with an all PEDOT:PSS organic electrochemical transistor. Scientific Reports, 6 (10): 1-10.

25.   Sekli-belaidi, F., Temple-boyer, P. and Gros, P. (2010). Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids. Journal of Electroanalytical Chemistry, 647(2): 159-168.

26.   Wang, C., Du, J. and Wang, H. (2014). A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascrobic acid, dopamine and uric acid. Sensors & Actuators: B. Chemical, 204: 302-309.

27.   Tian, X., Cheng, C. and Yuan H. (2012). Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-b-cyclodextrin–graphene-modified electrode by square wave voltammetry. Talanta, 93: 79-85.

28.   Yu, X., Sheng, K. and Shi, G. (2014). A Three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine.The Analyts, 139: 4525-4531.

29.   Hsu, M., Chen, Y., Lee, C., and Chiu, H. (2012). Gold nanostructures on flexible substrates as electrochemical dopamine sensors. Applied Material and Interface, 4(10): 5570-5575.