Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 24 - 39
DUAL-PRODUCTION OF POLYHYDROXYALKANOATE AND RHAMNOLIPID
BY Pseudomonas aeruginosa UMTKB-5
USING INDUSTRIAL BY‑PRODUCTS
(Dwi-Produksi Polihidroksialkanoat dan Ramnolipid oleh Pseudomonas
aeruginosa UMTKB‑5 dengan Penggunaan Hasil Sampingan Industri)
Noor Fazielawanie Mohd Rashid1,
Tan Suet May Amelia1, Al-Ashraf Abdullah Amirul2,3,4, Kesaven Bhubalan1,4,5*
1Faculty of Science and Marine
Environment,
Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
2Centre for Chemical Biology,
Universiti Sains Malaysia, 11900 Bayan
Lepas, Penang, Malaysia
3School of Biological Sciences,
Universiti Sains Malaysia, 11800 Gelugor,
Penang, Malaysia
4Malaysian Institute of Pharmaceuticals
and Nutraceuticals,
National Institutes of Biotechnology Malaysia,
11700 Gelugor, Penang, Malaysia
5Institute of Marine Biotechnology,
Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
*Corresponding author: kesaven@umt.edu.my
Received: 9 September 2020; Accepted: 10 November 2020;
Published: 20 February 2021
Abstract
The biodegradability and
biocompatibility of polyhydroxyalkanoate (PHA) bioplastic and rhamnolipid (RL)
biosurfactant have encouraged their application in medicine, packaging, and
bioremediation. However, the resources used to produce these two substances contribute
to high manufacturing costs. Therefore, we applied the dual-production approach
and fed the same renewable and economical carbon and nitrogen sources into
singular cultivation media to produce both PHA and RL simultaneously.
By-products from oleochemical (glycerol and glycerine pitch) and sugarcane
(molasses and sweet water) industries were used to produce mcl-PHA and RL from Pseudomonas aeruginosa UMTKB-5.
Furthermore, we also attempted the introduction of plasmid pBBR-PC1020 into
transformant P. aeruginosa UMTKB-5 to produce 20-50% scl-mcl PHA with
better properties. The PHA and RL yields were compared between wild-type and
transformant strains with the
use of seven carbon sources and six nitrogen sources. With glycerol as the
carbon source and urea [CO(NH2)2] as the nitrogen source,
the wild-type strain had produced the highest amount of PHA and RL at 0.24 ±
0.01 and 2.31 ± 0.01 g/L, respectively. The overall molecular weights (Mw)
of the polymers produced ranged from 4 x 105 to 5 x 105
Da. Characterisation analysis on the RL congeners produced were identified as
mono- and di-RL.
Keywords: Pseudomonas aeruginosa,
polyhydroxyalkanoate, rhamnolipid, glycerine pitch, glycerol, dual-production
Abstrak
Biopolimer polihidroksialkanoat (PHA)
dan biosurfaktan ramnolipid (RL) yang mempunyai ciri-ciri biodegradasi dan
keserasian bio telah mendorong penggunaannya dalam perubatan, pembungkusan, dan
bioremediasi. Walau bagaimanapun, sumber yang digunakan untuk menghasilkan
kedua-dua bahan ini menyumbang kepada kos pembuatan yang tinggi. Justeru, kami
mengaplikasikan pendekatan dwi-produksi dan memberi sumber karbon dan nitrogen
sama yang boleh diperbaharui dan murah ke dalam media kultur tunggal untuk
menghasilkan PHA dan RL secara serentak. Hasil sampingan dari industri
oleokimia (gliserol dan gliserin) dan tebu (molase dan air manis) digunakan
sebagai sumber karbon untuk menghasilkan mcl-PHA dan RL dari Pseudomonas
aeruginosa UMTKB-5. Selanjutnya, kami juga memperkenalkan plasmid
pBBR-PC1020 kepada transforman P. aeruginosa UMTKB-5 untuk menghasilkan
20-50% scl-mcl PHA dengan sifat yang lebih baik. Hasil PHA dan RL dibandingkan
antara strain jenis liar dan transforman dengan penggunaan tujuh sumber karbon
dan enam sumber nitrogen. Dengan gliserol sebagai sumber karbon dan urea [CO(NH2)2]
sebagai sumber nitrogen, strain jenis liar telah menghasilkan jumlah PHA dan RL
tertinggi masing-masing pada 0.24 ± 0.01 dan 2.31 ± 0.01 g/L. Berat molekul (Mw)
polimer yang dihasilkan secara keseluruhan adalah dari 4 x 105
hingga 5 x 105 Da. Analisis pencirian atas kongener RL yang
dihasilkan telah dikenal pasti sebagai mono- dan di-RL.
Kata kunci: Pseudomonas
aeruginosa, polihidroksialkanoat, ramnolipid, sisa gliserin, gliserol,
dwi-produksi
References
1.
Doi
Y. (1990) Microbial polyesters. New York, USA, VCH.
2.
Muneer,
F., Rasul, I., Azeem, F., Siddique, M. H., Zubair, M. and Nadeem, H. (2020).
Microbial polyhydroxyalkanoates (PHAs): Efficient replacement of synthetic
polymers. Journal of Polymers and the Environment, 28: 2301-2323.
3. Sharma, A., Jansen, R., Nimtz, M., Johri, B. N. and
Wray, V. (2007). Rhamnolipids from the rhizosphere bacterium Pseudomonas
sp. GRP3 that reduces damping-off disease in chilli and tomato nurseries. Journal
of Natural Products, 70(6): 941-947.
4.
Amelia,
T. S. M., Govindasamy, S., Tamothran, A. M., Vigneswari, S. and Bhubalan, K.
(2019). Applications of PHA in agriculture. In Kalia, V. C. (Ed.), Biotechnological
Applications of Polyhydroxyalkanoates. Singapore: Springer: pp. 347-361.
5.
Chan, P. L., Yu, V., Wai, L. and Yu, H. F.
(2006). Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas
aeruginosa with fatty acids and alternative carbon sources. Applied Biochemistry and Biotechnology,
129-132: 933-941.
6.
Tripathi,
A. D., Yadav, A., Jha, A. and Srivastava,
A. K. (2012). Utilizing of sugar refinery waste (cane molasses) for production
of bio-plastic under submerged fermentation process. Journal of Polymers and
the Environment, 20: 446-453.
7.
Luef, K. P. Stelzer, F. and
Wiesbrock, F. (2015). Poly(hydroxyalkanoate)s in medical applications. Chemical and Biochemical Engineering
Quarterly, 29(2): 287-297.
8.
Azemi, M. A. F. M.
(2017). Biosynthesis of rhamnolipid by P. aeruginosa UMTKB-5 from selected
carbon sources and its characterisation for biosurfactant application. Master thesis, Universiti Malaysia
Terengganu.
9.
Moussa,
T. A. A., Mohamed, M. S. and Samak,
N. (2014). Production and characterization of di-rhamnolipid produced by Pseudomonas
aeruginosa TMN. Brazilian Journal of Chemical Engineering, 31(04):
867- 880.
10.
Luo, Z., Yuan, X. Z., Zhong, H., Zeng, G. M., Liu,
Z. F., Ma, X. L. and Zhu, Y. Y. (2013). Optimizing rhamnolipid
production by Pseudomonas aeruginosa
ATCC 9027 grown on waste frying oil using response surface method and batch-fed
fermentation. Journal of Central South University, 20:
1015-1021.
11.
Reis,
R. S., Pereira, A. G., Neves, B. C. and
Freire, D. M. G. (2011). Gene regulation of rhamnolipid production in Pseudomonas
aeruginosa-A review. Bioresource Technology, 102: 6377-6384.
12.
Azemi,
M. A. F. M., Fazielawanie, N. M. R., Saidin, J., Mohd Effendy, A. W. and Bhubalan, K. (2016). Application of sweetwater as potential carbon
source for rhamnolipid production by marine Pseudomonas aeruginosa UMTKB-5.
International Journal of Bioscience, Biochemistry and Bioinformatics, 6(2): 50-58.
13.
Rashid,
M. N. F., Azemi, M. A. F. M., Abdullah, A. A., Wahid, M. A. and Bhubalan, K. (2015). Simultaneous production of biopolymer and
biosurfactant by genetically modified Pseudomonas aeruginosa UMTKB-5. International
Proceedings of Chemical, Biological and Environmental Engineering, 90(3):
16-21.
14.
Cirstea, D. M., Stefanescu, M., Pahonţu, J. M. and Cornea,
C. P. (2014). Use of some carbon sources by Pseudomonas
strains for synthesizing polyhydroxyalkanoates and/or rhamnolipids. Romanian
Biotechnological Letters, 19(3): 9401.
15.
Costa, S. G. V. A. O., Lépine, F. Milot, S., Déziel,
E., Nitschke, M. and Contiero, J. (2009). Cassava wastewater as a
substrate for the simultaneous production of rhamnolipids and
polyhydroxyalkanoates by Pseudomonas
aeruginosa. Journal of Industrial
Microbiology and Biotechnology, 36: 1063-1072.
16.
Marsudi, S., Unno, H. and Hori, K.
(2008). Palm oil utilization for the simultaneous production of
polyhydroxyalkanoates and rhamnolipids by Pseudomonas
aeruginosa. Applied Microbiology and
Biotechnology, 78: 955-961.
17.
Chen,
Q., Bao, M., Fan, X., Liang, S. and Sun, P.
(2013). Rhamnolipids enhance marine oil
spill bioremediation in laboratory system. Marine
Pollution Bulletin, 71(1-2): 269-75.
18.
Laith, A. A. A., Rahman, R. N. Z. A., Basri, M. and Salleh,
A. B. (2007). The effects of culture conditions on biosurfactant activity of Pseudomonas aeruginosa 181 using
response surface methodology. Journal of
Medical and Biological Science, 1(1): 1-4.
19. Banat,
I. M., Makkar, R. S. and Cameotra,
S. S. (2000). Potential commercial application applications of microbial
surfactants. Applied Microbiology and Biotechnology, 53: 459-508.
20.
Bhubalan, K., Lee, W-H. and Sudesh,
K. (2011). Polyhydroxyalkanoate. In Domb, A. J., Kumar, N. and Ezra, A. (Eds.).
Biodegradable polymer in clinical use and clinical development. New
Jersey: Wiley: pp. 249-315.
21.
Wu, Q., Wang, Y. and Chen,
G-O. (2009). Medical application of microbial biopolyesters
polyhydroxyalkanoates, artificial cells. Blood Substitutes, and
Biotechnology, 37(1): 1-12.
22.
Ojumu,
T. J. and Solomon, B. O. (2004). African Journal of Biotechnology,
3(1): 18-24.
23. Situmorang, M. L., Schryver,
P. D., Dierckens, K. and Bossier, P. (2016). Effect of poly-β-hydroxybutyrate on
growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles.
Veterinary Microbiology, 182: 44-49.
24.
Akaraonye,
E., Keshavarz, T. and Roy, I. (2010). Production of
polyhydroxyalkanoates: the future green materials of choice. Journal of
Chemical Technology and Biotechnology, 85: 732-743.
25.
Yatim,
A. F. M., Syafiq, I. M., Huong, K. H., Amirul, A. A. A., Effendy, A. W. M. and Bhubalan, K. (2017). Bioconversion
of novel and renewable agro-industry by-products into a biodegradable
poly(3-hydroxybutyrate) by marine Bacillus
megaterium UMTKB-1 strain. BioTechnologia,
98(2): 141-151.
26.
Thavasi,
R., Subramanyam Nambaru, V. R. M., Jayalakshmi, S., Balasubramanian, T. and
Banat, I.M. (2011). Biosurfactant production by Pseudomonas aeruginosa from
renewable resources. Indian Journal of Microbiology, 51(1): 30-36.
27.
Fontes, G. C., Ramos, N. M., Amaral, P. F. F., Nele,
M. and Coelho, M. A. Z. (2012). Renewable resources for biosurfactant
production by Yarrowia lipolytica. Brazilian
Journal of Chemical Engineering, 29(3): 483-493.
28.
Dubey, K. and Juwarkar, A. (2011).
Distillery and curd whey wastes as viable alternative sources for biosurfactant
production. Journal of Microbiology and. Biotechnology, 17: 61-69.
29.
Hazimah, A. H., Ooi, T. L. and Salmiah,
A. (2003). Recovery of glycerol and diglycerol from glycerol pitch. Journal
of Oil Palm Research, 15(1): 1-5.
30.
Friedrich, B., Hogrefe, C. and Schlegel,
H. G. (1981). Naturally occurring genetic transfer of hydrogen-oxidizing
ability between strains of Alcaligenes
eutrophus. Journal of Bacteriology,
147: 198-205.
31.
Syafiq,
M. I., Shantini, K., Amirul, A. A. A.
and Bhubalan, K. (2014).
Production of P (3HB-co-4HB) copolymer with high 4HB monomer composition via
additional synthase gene dosage using Cupriavidus sp. USMAA1020
transformant strain. International Conference on Biological, Chemical and
Environmental Sciences, pp. 257.
32. Chuanchuen, R., Narasaki, C. T. and Schweizer, H.
P. (2002). Benchtop and microcentrifuge preparation of Pseudomonas
aeruginosa competent cells. Biotechniques, 33(4): 760-763.
33.
Lima, T. M. S., Procópio, L. C., Brandão, F. D.,
Carvalho, A. M. X., Tótola, M. R.
and Borges, A. C. (2011).
Biodegradability of bacterial surfactants. Biodegradation, 22: 585-592.
34.
Braunegg, G., Sonnleitner, B. and Laffery,
R. M. (1978). A rapid gas chromatographic method for the determination of
poly-β-hydroxybutyric acid in microbial biomass. European Journal of
Applied Microbiology and Biotechnology, 6(1): 29-37.
35. Annuar, M. S. M. (2004). Production of medium-chain-length
poly (3-hydroxyalkanoates) from saponified palm kernel oil by Pseudomonas
putida. Ph.D thesis, University of Malaya, Malaysia.
36.
Kenny, S. T., Runic, J. N., Kaminsky, W., Woods, T.,
Babu, R. P., Keely, C. M., Blau, W. and O'Connor, K.E. (2008). Up-cycling
of PET (polyethyleneterephthalate) to the biodegradable plastic PHA
(polyhydroxyalkanoate). Environmental Science & Technology,
42(20):7696-7701.
37.
Guo, W., Duan, J., Geng, W., Feng, J., Wang, S. and Song, C.
(2013). Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas
mendocina NK-01 with the same substrate specificity. Microbiological
Research, 168: 231-237.
38.
Koch, A. K., Kappeli, O. and Fiechter,
A. (1991). Hydrocarbon assimilation and biosurfactant production in Pseudomonas
aeruginosa mutants. Journal of Bacteriology, 173(3): 4212-4219.
39.
Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin,
H. and He, B. (2009). Characteristics of biosurfactant produced by Pseudomonas
aeruginosa S6 isolated from oil-containing wastewater. Process
Biochemistry, 44(3): 302-308.
40.
Park, S. J., Jang, Y., Noh, W., Oh, Y. H., Lee, H.,
David, Y., Baylon, M. G., Shin, J., Yang, J. E., Choi, S. Y., Lee, S. H., Lee,
S. Y. (2015). Metabolic engineering of Ralstonia eutropha for the
production of polyhydroxyalkanoates from sucrose. Biotechnology and
Bioengineering, 112(3): 638-643.
41. Ali, I. and Jamil, N.
(2017). Biosynthesis and genetics of polyhydroxyalkanoates by newly isolated Pseudomonas
aeruginosa IFS and 30N using inexpensive carbon sources. International
Journal of Environmental Science and Technology, 14(9): 1879-1888.
42.
Clarke, M. A. (2003). Syrups. In Caballero, B.
(Ed.). Encyclopedia of Food Sciences and Nutrition (Second Edition): pp.
5711-5717.
43.
Choi, M. H., Xu, J., Gutierrez, M., Yoo, T., Cho, Y.
H. and Yoon, S. C. (2011). Metabolic relationship between polyhydroxyalkanoic
acid and rhamnolipid synthesis in Pseudomonas
aeruginosa: comparative 13C NMR analysis of the products in wild
type and mutants. Journal of Biotechnology, 151(1): 30-42.
44. Santos, S. C., Fernandez, L. G., Rossi-Alva, J. C. and de Abreu Roque, M. R. (2010). Evaluation of substrates from
renewable-resources in biosurfactants production by Pseudomonas strains.
African Journal of Biotechnology, 9(35): 5704-5711.
45.
Rooney,
A. P., Price, N. P. J., Ray, K. J.
and Kuo, T.-M. (2009). Isolation
and characterization of rhamnolipid-producing bacterial strains from a
biodiesel facility. Research Letter, 295: 82-87.
46.
Meur,
S. L., Zinn, M., Egli, T., Thöny-Meyer, L. and Ren, Q.
(2012). Production of
medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and
octanoic acid in engineered Pseudomonas
putida KT2440. BioMed Central
Biotechnology, 12(53): 1472-6750.
47.
Abdel-Mawgoud,
A. M., Lepine F. and Deziel, E. (2014). A stereospecific
pathway diverts β-oxidation intermediates to the biosynthesis of
rhamnolipid biosurfactants. Chemistry and
Biology, 21: 156-165.
48.
Hori, K., Marsudi, S. and Unno, H.
(2002). Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnology and Bioengineering, 78(6):
699-707.
49.
Silva-Querioz,
S. R., Silva, L. F., Pradella, J. G. C., Pereira, E. M. and Gomez, J. G.
C. (2009). PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas
putida strains show differences on monomer specificities. Journal of
Biotechnology, 143: 111-118.
50.
Cespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T.
T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., Taciro, M. K.,
Sánchez, R. J. and Gomez, J. G. C. (2018). A
non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas
sp. from an unrelated carbon source. International Journal of Biological
Macromolecules, 114: 512-519.
51.
Gomaa, E. Z. (2014). Production of
polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia
coli grown on cane molasses fortified with ethanol. Brazilian Archives
of Biology and Technology, 57(1): 145-154.
52.
Rehm,
B. H. A. and Steinbüchel, A. (1999). Biochemical
and genetic analysis of PHA synthases and other proteins required for PHA
synthesis. International Journal of Biological Macromolecule, 25: 3-19.
53.
Kulpreecha,
S., Boonruangthavorn, A., Meksiriporn, B.
and Thongchul, N. (2009).
Inexpensive fed-batch cultivation for poly(3-hydroxybutyrate) production by a
new isolate of Bacillus megaterium. Journal of Bioscience and Bioengineering,
107(3): 240-245.
54.
Impallomeni, G., Ballistreri, A., Carnemolla, G. M.,
Rizzo, M. G., Nicolò, M. S.
and Guglielmino, S. P. P. (2018).
Biosynthesis and structural characterization of polyhydroxyalkanoates produced
by Pseudomonas aeruginosa ATCC27853 from long odd-chain fatty acids. International
Journal of Biological Macromolecules, 108: 608-614.
55.
Kenny, S. T., Runic, J. N., Kaminsky, W., Woods, T.,
Babu, R. P. and O’Connor, K. E. (2012). Development of a bioprocess to convert
PET derived terephthalic acid and biodiesel derived glycerol to medium chain
length polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 95:
623-633.
56.
Reddy,
M. V., Mawatari, Y., Onodera, R., Nakamura, Y., Yajima, Y. and Chang, Y.-C. (2017). Polyhydroxyalkanoates (PHA) production from
synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme
activity analysis from P. pseudoflava and P. palleronii. Bioresource
Technology, 234: 99-105.