Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 24 - 39

 

 

 

 

DUAL-PRODUCTION OF POLYHYDROXYALKANOATE AND RHAMNOLIPID BY Pseudomonas aeruginosa UMTKB-5 USING INDUSTRIAL BY‑PRODUCTS

 

(Dwi-Produksi Polihidroksialkanoat dan Ramnolipid oleh Pseudomonas aeruginosa UMTKB‑5 dengan Penggunaan Hasil Sampingan Industri)

 

Noor Fazielawanie Mohd Rashid1, Tan Suet May Amelia1, Al-Ashraf Abdullah Amirul2,3,4, Kesaven Bhubalan1,4,5*

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Centre for Chemical Biology,

Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia

3School of Biological Sciences,

Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia

4Malaysian Institute of Pharmaceuticals and Nutraceuticals,

National Institutes of Biotechnology Malaysia, 11700 Gelugor, Penang, Malaysia

5Institute of Marine Biotechnology,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  kesaven@umt.edu.my

 

 

Received: 9 September 2020; Accepted: 10 November 2020; Published: 20 February 2021

 

 

Abstract

The biodegradability and biocompatibility of polyhydroxyalkanoate (PHA) bioplastic and rhamnolipid (RL) biosurfactant have encouraged their application in medicine, packaging, and bioremediation. However, the resources used to produce these two substances contribute to high manufacturing costs. Therefore, we applied the dual-production approach and fed the same renewable and economical carbon and nitrogen sources into singular cultivation media to produce both PHA and RL simultaneously. By-products from oleochemical (glycerol and glycerine pitch) and sugarcane (molasses and sweet water) industries were used to produce mcl-PHA and RL from Pseudomonas aeruginosa UMTKB-5. Furthermore, we also attempted the introduction of plasmid pBBR-PC1020 into transformant P. aeruginosa UMTKB-5 to produce 20-50% scl-mcl PHA with better properties. The PHA and RL yields were compared between wild-type and transformant strains with the use of seven carbon sources and six nitrogen sources. With glycerol as the carbon source and urea [CO(NH2)2] as the nitrogen source, the wild-type strain had produced the highest amount of PHA and RL at 0.24 ± 0.01 and 2.31 ± 0.01 g/L, respectively. The overall molecular weights (Mw) of the polymers produced ranged from 4 x 105 to 5 x 105 Da. Characterisation analysis on the RL congeners produced were identified as mono- and di-RL.

 

Keywords:     Pseudomonas aeruginosa, polyhydroxyalkanoate, rhamnolipid, glycerine pitch, glycerol, dual-production

 

Abstrak

Biopolimer polihidroksialkanoat (PHA) dan biosurfaktan ramnolipid (RL) yang mempunyai ciri-ciri biodegradasi dan keserasian bio telah mendorong penggunaannya dalam perubatan, pembungkusan, dan bioremediasi. Walau bagaimanapun, sumber yang digunakan untuk menghasilkan kedua-dua bahan ini menyumbang kepada kos pembuatan yang tinggi. Justeru, kami mengaplikasikan pendekatan dwi-produksi dan memberi sumber karbon dan nitrogen sama yang boleh diperbaharui dan murah ke dalam media kultur tunggal untuk menghasilkan PHA dan RL secara serentak. Hasil sampingan dari industri oleokimia (gliserol dan gliserin) dan tebu (molase dan air manis) digunakan sebagai sumber karbon untuk menghasilkan mcl-PHA dan RL dari Pseudomonas aeruginosa UMTKB-5. Selanjutnya, kami juga memperkenalkan plasmid pBBR-PC1020 kepada transforman P. aeruginosa UMTKB-5 untuk menghasilkan 20-50% scl-mcl PHA dengan sifat yang lebih baik. Hasil PHA dan RL dibandingkan antara strain jenis liar dan transforman dengan penggunaan tujuh sumber karbon dan enam sumber nitrogen. Dengan gliserol sebagai sumber karbon dan urea [CO(NH2)2] sebagai sumber nitrogen, strain jenis liar telah menghasilkan jumlah PHA dan RL tertinggi masing-masing pada 0.24 ± 0.01 dan 2.31 ± 0.01 g/L. Berat molekul (Mw) polimer yang dihasilkan secara keseluruhan adalah dari 4 x 105 hingga 5 x 105 Da. Analisis pencirian atas kongener RL yang dihasilkan telah dikenal pasti sebagai mono- dan di-RL.

 

Kata kunci:  Pseudomonas aeruginosa, polihidroksialkanoat, ramnolipid, sisa gliserin, gliserol, dwi-produksi

 

References

1.      Doi Y. (1990) Microbial polyesters. New York, USA, VCH.

2.      Muneer, F., Rasul, I., Azeem, F., Siddique, M. H., Zubair, M. and Nadeem, H. (2020). Microbial polyhydroxyalkanoates (PHAs): Efficient replacement of synthetic polymers. Journal of Polymers and the Environment, 28: 2301-2323.

3.      Sharma, A., Jansen, R., Nimtz, M., Johri, B. N. and Wray, V. (2007). Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP3 that reduces damping-off disease in chilli and tomato nurseries. Journal of Natural Products, 70(6): 941-947.

4.      Amelia, T. S. M., Govindasamy, S., Tamothran, A. M., Vigneswari, S. and Bhubalan, K. (2019). Applications of PHA in agriculture. In Kalia, V. C. (Ed.), Biotechnological Applications of Polyhydroxyalkanoates. Singapore: Springer: pp. 347-361.

5.      Chan, P. L., Yu, V., Wai, L. and Yu, H. F. (2006). Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources. Applied Biochemistry and Biotechnology, 129-132: 933-941.

6.      Tripathi, A. D., Yadav, A., Jha, A. and Srivastava, A. K. (2012). Utilizing of sugar refinery waste (cane molasses) for production of bio-plastic under submerged fermentation process. Journal of Polymers and the Environment, 20: 446-453.

7.      Luef, K. P. Stelzer, F. and Wiesbrock, F. (2015). Poly(hydroxyalkanoate)s in medical applications. Chemical and Biochemical Engineering Quarterly, 29(2): 287-297.

8.      Azemi, M. A. F. M. (2017). Biosynthesis of rhamnolipid by P. aeruginosa UMTKB-5 from selected carbon sources and its characterisation for biosurfactant application. Master thesis, Universiti Malaysia Terengganu.

9.      Moussa, T. A. A., Mohamed, M. S. and Samak, N. (2014). Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Brazilian Journal of Chemical Engineering, 31(04): 867- 880.

10.   Luo, Z., Yuan, X. Z., Zhong, H., Zeng, G. M., Liu, Z. F., Ma, X. L. and Zhu, Y. Y. (2013). Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. Journal of Central South University, 20: 1015-1021.

11.   Reis, R. S., Pereira, A. G., Neves, B. C. and Freire, D. M. G. (2011). Gene regulation of rhamnolipid production in Pseudomonas aeruginosa-A review. Bioresource Technology, 102: 6377-6384.

12.   Azemi, M. A. F. M., Fazielawanie, N. M. R., Saidin, J., Mohd Effendy, A. W. and Bhubalan, K. (2016). Application of sweetwater as potential carbon source for rhamnolipid production by marine Pseudomonas aeruginosa UMTKB-5. International Journal of Bioscience, Biochemistry and Bioinformatics, 6(2): 50-58.

13.   Rashid, M. N. F., Azemi, M. A. F. M., Abdullah, A. A., Wahid, M. A. and Bhubalan, K. (2015). Simultaneous production of biopolymer and biosurfactant by genetically modified Pseudomonas aeruginosa UMTKB-5. International Proceedings of Chemical, Biological and Environmental Engineering, 90(3): 16-21.

14.   Cirstea, D. M., Stefanescu, M., Pahonţu, J. M. and Cornea, C. P. (2014). Use of some carbon sources by Pseudomonas strains for synthesizing polyhydroxyalkanoates and/or rhamnolipids. Romanian Biotechnological Letters, 19(3): 9401.

15.   Costa, S. G. V. A. O., Lépine, F. Milot, S., Déziel, E., Nitschke, M. and Contiero, J. (2009). Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 36: 1063-1072.

16.   Marsudi, S., Unno, H. and Hori, K. (2008). Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 78: 955-961.

17.   Chen, Q., Bao, M., Fan, X., Liang, S. and Sun, P. (2013). Rhamnolipids enhance marine oil spill bioremediation in laboratory system. Marine Pollution Bulletin, 71(1-2): 269-75.

18.   Laith, A. A. A., Rahman, R. N. Z. A., Basri, M. and Salleh, A. B. (2007). The effects of culture conditions on biosurfactant activity of Pseudomonas aeruginosa 181 using response surface methodology. Journal of Medical and Biological Science, 1(1): 1-4.

19.   Banat, I. M., Makkar, R. S. and Cameotra, S. S. (2000). Potential commercial application applications of microbial surfactants. Applied Microbiology and Biotechnology, 53: 459-508.

20.   Bhubalan, K., Lee, W-H. and Sudesh, K. (2011). Polyhydroxyalkanoate. In Domb, A. J., Kumar, N. and Ezra, A. (Eds.). Biodegradable polymer in clinical use and clinical development. New Jersey: Wiley: pp. 249-315.

21.   Wu, Q., Wang, Y. and Chen, G-O. (2009). Medical application of microbial biopolyesters polyhydroxyalkanoates, artificial cells. Blood Substitutes, and Biotechnology, 37(1): 1-12.

22.   Ojumu, T. J. and Solomon, B. O. (2004). African Journal of Biotechnology, 3(1): 18-24.

23.   Situmorang, M. L., Schryver, P. D., Dierckens, K. and Bossier, P. (2016). Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles. Veterinary Microbiology, 182: 44-49.

24.   Akaraonye, E., Keshavarz, T. and Roy, I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. Journal of Chemical Technology and Biotechnology, 85: 732-743.

25.   Yatim, A. F. M., Syafiq, I. M., Huong, K. H., Amirul, A. A. A., Effendy, A. W. M. and Bhubalan, K. (2017). Bioconversion of novel and renewable agro-industry by-products into a biodegradable poly(3-hydroxybutyrate) by marine Bacillus megaterium UMTKB-1 strain. BioTechnologia, 98(2): 141-151.

26.   Thavasi, R., Subramanyam Nambaru, V. R. M., Jayalakshmi, S., Balasubramanian, T. and Banat, I.M. (2011). Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian Journal of Microbiology, 51(1): 30-36.

27.   Fontes, G. C., Ramos, N. M., Amaral, P. F. F., Nele, M. and Coelho, M. A. Z. (2012). Renewable resources for biosurfactant production by Yarrowia lipolytica. Brazilian Journal of Chemical Engineering, 29(3): 483-493.

28.   Dubey, K. and Juwarkar, A. (2011). Distillery and curd whey wastes as viable alternative sources for biosurfactant production. Journal of Microbiology and. Biotechnology, 17: 61-69.

29.   Hazimah, A. H., Ooi, T. L. and Salmiah, A. (2003). Recovery of glycerol and diglycerol from glycerol pitch. Journal of Oil Palm Research, 15(1): 1-5.

30.   Friedrich, B., Hogrefe, C. and Schlegel, H. G. (1981). Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. Journal of Bacteriology, 147: 198-205.

31.   Syafiq, M. I., Shantini, K., Amirul, A. A. A. and Bhubalan, K. (2014). Production of P (3HB-co-4HB) copolymer with high 4HB monomer composition via additional synthase gene dosage using Cupriavidus sp. USMAA1020 transformant strain. International Conference on Biological, Chemical and Environmental Sciences, pp. 257.

32.   Chuanchuen, R., Narasaki, C. T. and Schweizer, H. P. (2002). Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques, 33(4): 760-763.

33.   Lima, T. M. S., Procópio, L. C., Brandão, F. D., Carvalho, A. M. X., Tótola, M. R. and Borges, A. C. (2011). Biodegradability of bacterial surfactants. Biodegradation, 22: 585-592.

34.   Braunegg, G., Sonnleitner, B. and Laffery, R. M. (1978). A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. European Journal of Applied Microbiology and Biotechnology, 6(1): 29-37.

35.   Annuar, M. S. M. (2004). Production of medium-chain-length poly (3-hydroxyalkanoates) from saponified palm kernel oil by Pseudomonas putida. Ph.D thesis, University of Malaya, Malaysia.

36.   Kenny, S. T., Runic, J. N., Kaminsky, W., Woods, T., Babu, R. P., Keely, C. M., Blau, W. and O'Connor, K.E. (2008). Up-cycling of PET (polyethyleneterephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environmental Science & Technology, 42(20):7696-7701.

37.   Guo, W., Duan, J., Geng, W., Feng, J., Wang, S. and Song, C. (2013). Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiological Research, 168: 231-237.

38.   Koch, A. K., Kappeli, O. and Fiechter, A. (1991). Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Journal of Bacteriology, 173(3): 4212-4219.

39.   Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H. and He, B. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44(3): 302-308.

40.   Park, S. J., Jang, Y., Noh, W., Oh, Y. H., Lee, H., David, Y., Baylon, M. G., Shin, J., Yang, J. E., Choi, S. Y., Lee, S. H., Lee, S. Y. (2015). Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnology and Bioengineering, 112(3): 638-643.

41.   Ali, I. and Jamil, N. (2017). Biosynthesis and genetics of polyhydroxyalkanoates by newly isolated Pseudomonas aeruginosa IFS and 30N using inexpensive carbon sources. International Journal of Environmental Science and Technology, 14(9): 1879-1888.

42.   Clarke, M. A. (2003). Syrups. In Caballero, B. (Ed.). Encyclopedia of Food Sciences and Nutrition (Second Edition): pp. 5711-5717.

43.   Choi, M. H., Xu, J., Gutierrez, M., Yoo, T., Cho, Y. H. and Yoon, S. C. (2011). Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 13C NMR analysis of the products in wild type and mutants. Journal of Biotechnology, 151(1): 30-42.

44.   Santos, S. C., Fernandez, L. G., Rossi-Alva, J. C. and de Abreu Roque, M. R. (2010). Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. African Journal of Biotechnology, 9(35): 5704-5711.

45.   Rooney, A. P., Price, N. P. J., Ray, K. J. and Kuo, T.-M. (2009). Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. Research Letter, 295: 82-87.

46.   Meur, S. L., Zinn, M., Egli, T., Thöny-Meyer, L. and Ren, Q. (2012).  Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BioMed Central Biotechnology, 12(53): 1472-6750.

47.   Abdel-Mawgoud, A. M., Lepine F. and Deziel, E. (2014). A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chemistry and Biology, 21: 156-165.

48.   Hori, K., Marsudi, S. and Unno, H. (2002). Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnology and Bioengineering, 78(6): 699-707.

49.   Silva-Querioz, S. R., Silva, L. F., Pradella, J. G. C., Pereira, E. M. and Gomez, J. G. C. (2009). PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. Journal of Biotechnology, 143: 111-118.

50.   Cespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T. T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., Taciro, M. K., Sánchez, R. J. and Gomez, J. G. C. (2018). A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 114: 512-519.

51.   Gomaa, E. Z. (2014). Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Brazilian Archives of Biology and Technology, 57(1): 145-154.

52.   Rehm, B. H. A. and Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecule, 25: 3-19.

53.   Kulpreecha, S., Boonruangthavorn, A., Meksiriporn, B. and Thongchul, N. (2009). Inexpensive fed-batch cultivation for poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. Journal of Bioscience and Bioengineering, 107(3): 240-245.

54.   Impallomeni, G., Ballistreri, A., Carnemolla, G. M., Rizzo, M. G., Nicolò, M. S. and Guglielmino, S. P. P. (2018). Biosynthesis and structural characterization of polyhydroxyalkanoates produced by Pseudomonas aeruginosa ATCC27853 from long odd-chain fatty acids. International Journal of Biological Macromolecules, 108: 608-614.

55.   Kenny, S. T., Runic, J. N., Kaminsky, W., Woods, T., Babu, R. P. and O’Connor, K. E. (2012). Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 95: 623-633.

56.   Reddy, M. V., Mawatari, Y., Onodera, R., Nakamura, Y., Yajima, Y. and Chang, Y.-C. (2017). Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Bioresource Technology, 234: 99-105.