Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 40 - 52

 

 

 

 

STUDIES ON THE PROPERTIES OF NATURAL RUBBER/POLY-3-HYDROXYBUTYRATE BLENDS PREPARED BY SOLVENT CASTING

 

(Kajian Mengenai Sifat Campuran Getah Asli/Poli-3-Hidroksibutirat yang Disediakan Melalui Kaedah Acuan Pelarut)

 

Asmaa’ Zainal Abidin, Noor Hana Hanif Abu Bakar*, Mohamad Abu Bakar

 

Nanoscience Research Laboratory, School of Chemical Sciences,

Universiti Sains Malaysia, 11800 USM Penang, Malaysia

 

*Corresponding author:  hana_hanif@usm.my

 

 

Received: 18 September 2020; Accepted: 28 November 2020; Published: 20 February 2021

 

 

Abstract

Bio-based polymer blends constituting of poly(3-hydroxybutyrate) (PHB) and natural rubber (NR), prepared via solvent casting technique have been studied. Various ratios of 80:20, 60:40, 40:60 and 20:80 (wt./wt.) of NR/PHB were investigated. The IR spectra of the blend samples did not show any chemical interaction between the components. X-ray diffraction (XRD) confirmed that the crystallinity of the samples increased as the ratio of PHB is increased in the blend. Thermal stability and thermal transition of the blend system were characterized by thermogravimetric analysis (TG and DTG) and differential scanning calorimetry (DSC). Thermal stability of the blend samples showed similar characteristics as the original polymers. Meanwhile, two separate glass transition temperatures were observed for the blends, indicating that NR and PHB are immiscible. Polarized optical microscopy (POM) revealed inconsistent growth of PHB spherulite in the blends after subjected to annealing. The results indicated that NR obstructs the regular arrangement of the ring banded spherulite.

 

Keywords:  natural rubber, poly-3-hydroxybutyrate, blending, solvent casting, miscibility

 

Abstrak

Campuran biopolimer yang terdiri daripada poli-3-hidroksibutirat (PHB) dan getah asli (NR), telah dikaji dan disintesis melalui teknik acuan pelarut. Pelbagai nisbah 80:20, 60:40, 40:60 dan 20:80 (wt./wt.) NR/PHB telah dikaji. Spektrum IR bagi sampel campuran tidak menunjukkan interaksi kimia antara komponen. Pembelauan sinar-X (XRD) mengesahkan bahawa kristaliniti sampel meningkat apabila nisbah PHB meningkat dalam campuran. Kestabilan terma dan peralihan terma bagi sistem campuran telah dianalisis menggunakan termogravimetri (TG dan DTG) dan perbezaan pengimbasan kalorimetri (DSC). Kestabilan terma untuk sampel campuran menunjukkan ciri yang serupa dengan polimer asal. Sementara itu, terdapat dua suhu peralihan kaca untuk campuran yang menunjukkan bahawa NR dan PHB tidak dapat dicampur. Mikroskop optik polarisasi (POM) menunjukkan pertumbuhan sferulit PHB yang tidak konsisten dalam campuran setelah mengalami penyepuhlindapan. Hasil kajian menunjukkan bahawa NR menghalang susunan biasa sferulit berikat cincin.

 

Kata kunci:  getah asli, poli-3-hidroksibutirat, campuran, acuan pelarut, keterlarutcampura

 

 

References

1.      Notario, B., Pinto, J., Rodriguez-Perez, M. A. (2016). Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 78-79: 93-139.

2.      Cavalcante, M. P., Toledo, A. L. M. M., Rodrigues, E. J. R., Neto, R. P. C. and Tavares, M. I. B. (2017). Correlation between traditional techniques and TD-NMR to determine the morphology of PHB/PCL blends. Polymer Testing, 58:159-165.

3.      Golshaei, P. and Güven, O. (2017). Chemical modification of PET surface and subsequent graft copolymerization with poly(N-isopropylacryl amide). Reactive Functional Polymer, 118: 26-34.

4.      Mazzocchetti, L., Scandola, M. and Jiang, Z. (2012). Random copolymerization with a large lactone enhances aliphatic polycarbonate crystallinity. European Polymer Journal, 48:1883-1891.

5.      Ganji, F. and Abdekhodaie, M. J. (2010). The effects of reaction conditions on block copolymerization of chitosan and poly(ethylene glycol). Carbohydrate Polymer, 81: 799-804.

6.      Murugan, P., Han, L., Gan, C. Y., Maurer, F. H. J. and Sudesh, K. (2016). A new biological recovery approach for PHA using mealworm, Tenebrio molitor. Journal of Biotechnology, 239: 98-105.

7.      Arrieta, M. P., López, J., López, D., Kenny, J. M. and Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops Products, 93: 290-230.

8.      Tognana, S., Salgueiro, W. and Silva, L. (2016). Spherulitic growth and crystallization kinetics in PHB/DGEBA blends. Thermochimica Acta, 623:1-8.

9.      Cavalheiro, J. M. B.T., Raposo, R. S., de Almeida, M. C. M. D., Teresa Cesário, M., Sevrin, C., Grandfils, C. and da Fonseca, M. M. R. (2012). Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxy valerate) by Cupriavidus necator using waste glycerol. Bioresource Technology, 111: 391-397.

10.   Hinüber, C., Häussler, L., Vogel, R., Brünig, H., Heinrich, G. and Werner, C. (2011). Hollow fibers made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone blend. Express Polymer Letter, 5: 643-652.

11.   Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73: 3333-3350.

12.   Goonoo, N., Bhaw-Luximon, A., Passanha, P., Esteves, S., Schönherr, H. and Jhurry, D. (2017). Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. Materials Science Engineering C, 76:13-24.

13.   Arrieta, M. P., López, J., Rayón, E. and Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108: 307-318.

14.   Mousavioun, P., Halley, P. J. and Doherty, W. O. S. (2013). Thermophysical properties and rheology of PHB/lignin blends. Industrial Crops Products, 50: 270-275.

15.   Pongsathit, S. and Pattamaprom, C. (2018). Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends. Radiation Physics and Chemistry 144: 13-20.

16.   Bhatt, R., Shah, D., Patel, K. C. and Trivedi, U. (2008) PHA-rubber blends: Synthesis, characterization and biodegradation. Bioresource Technology, 99: 4615-4620.

17.   Ramsay, B. A., Langlade, V., Carreau, P. J. and Juliana, A. (1993). Biodegradability and mechanical properties of poly-(f3-hydroxybutyrate-co-3-hydroxyvalerate)-starch blends. Applied and Environmental Microbiology, 59:1242-1246.

18.   Abdelwahab, M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W. and Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability 97: 1822-1828.

19.   Rolere, S., Liengprayoon, S., Vaysse, L., Sainte-Beuve, J. and Bonfils, F. (2015). Investigating natural rubber composition with Fourier transform infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polymer Testing, 43:83-93.

20.   Li, C., Feng, C., Peng, Z., Gong, W. and Kong, L. (2013) Ammonium-assisted green fabrication of graphene/ natural rubber latex composite. Polymer Composite, 34: 88-95.

21.   Zhijiang, C., Yi, X., Haizheng, Y., Jia, J. and Liu, Y. (2016). Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. Materials Science Engineering C, 58: 757-767.

22.   Abraham, E., Elbi, P. A., Deepa, B., Jyotishkumar, P., Pothen, L. A., Narine, S. S. and Thomas, S. (2012). X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polymer Degradation and Stability, 97: 2378-2387.

23.   Pazhooh, H. N., Bagheri, R. and Adloo, A. (2017). Fabrication of semi-conductive natural rubber nanocomposites with low copper nanoparticle contents. Polymer, 108:135-145.

24.   Zhang, S., Sun, X., Ren, Z., Li, H. and Yan, S. (2015) The development of a bilayer structure of poly(propylene carbonate)/poly(3-hydroxybutyrate) blends from the demixed melt. Physical Chemistry, 17: 32225-32231.

25.   Tan, W. L., Yaakob, N. N., Zainal Abidin, A., Abu Bakar, M. and Abu Bakar, N. H. H. (2016). Metal chloride induced formation of porous polyhydroxybutyrate (PHB) films: Morphology, Thermal properties and crystallinity. IOP Conference Series Materials Science Engineering,133: 1-11.

26.   Ma, P., Cai, X., Chen, M., Dong, W. and Lemstra, P. J. (2014). Partially bio-based thermoplastic elastomers by physical blending of poly(hydroxyalkanoate)s and poly(ethylene-co-vinyl acetate). Express Polymer Letter, 8: 517-527.

27.   Pachekoski, W. M., Agnelli, J. A. M. and Belem, L. P. (2009). Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing. Materials Resource, 12: 159-164.