Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 40 - 52
STUDIES ON THE PROPERTIES OF NATURAL RUBBER/POLY-3-HYDROXYBUTYRATE
BLENDS PREPARED BY SOLVENT CASTING
(Kajian
Mengenai Sifat Campuran Getah Asli/Poli-3-Hidroksibutirat yang Disediakan
Melalui Kaedah Acuan Pelarut)
Asmaa’ Zainal Abidin, Noor Hana Hanif
Abu Bakar*, Mohamad Abu Bakar
Nanoscience Research Laboratory, School of Chemical Sciences,
Universiti Sains Malaysia, 11800 USM Penang, Malaysia
*Corresponding author: hana_hanif@usm.my
Received: 18 September 2020;
Accepted: 28 November 2020; Published: 20 February 2021
Abstract
Bio-based polymer blends constituting of poly(3-hydroxybutyrate) (PHB)
and natural rubber (NR), prepared via solvent casting technique have
been studied. Various ratios of 80:20, 60:40, 40:60 and 20:80 (wt./wt.) of
NR/PHB were investigated. The IR spectra of the blend samples did not show any
chemical interaction between the components. X-ray diffraction (XRD) confirmed
that the crystallinity of the samples increased as the ratio of PHB is increased
in the blend. Thermal stability and thermal transition of the blend system were
characterized by thermogravimetric analysis (TG and DTG) and differential
scanning calorimetry (DSC). Thermal stability of the blend samples showed
similar characteristics as the original polymers. Meanwhile, two separate glass
transition temperatures were observed for the blends, indicating that NR and
PHB are immiscible. Polarized optical microscopy (POM) revealed inconsistent
growth of PHB spherulite in the blends after subjected to annealing. The
results indicated that NR obstructs the regular arrangement of the ring banded
spherulite.
Keywords: natural rubber, poly-3-hydroxybutyrate,
blending, solvent casting, miscibility
Abstrak
Campuran biopolimer yang terdiri
daripada poli-3-hidroksibutirat (PHB) dan getah asli (NR), telah dikaji dan disintesis
melalui teknik acuan pelarut. Pelbagai nisbah 80:20, 60:40, 40:60 dan 20:80 (wt./wt.)
NR/PHB telah dikaji. Spektrum IR bagi sampel campuran tidak menunjukkan interaksi
kimia antara komponen. Pembelauan sinar-X (XRD) mengesahkan bahawa kristaliniti
sampel meningkat apabila nisbah PHB meningkat dalam campuran. Kestabilan terma
dan peralihan terma bagi sistem campuran telah dianalisis menggunakan
termogravimetri (TG dan DTG) dan perbezaan pengimbasan kalorimetri (DSC).
Kestabilan terma untuk sampel campuran menunjukkan ciri yang serupa dengan
polimer asal. Sementara itu, terdapat dua suhu peralihan kaca untuk campuran
yang menunjukkan bahawa NR dan PHB tidak dapat dicampur. Mikroskop optik
polarisasi (POM) menunjukkan pertumbuhan sferulit PHB yang tidak konsisten
dalam campuran setelah mengalami penyepuhlindapan. Hasil kajian menunjukkan
bahawa NR menghalang susunan biasa sferulit berikat cincin.
Kata kunci: getah asli, poli-3-hidroksibutirat, campuran,
acuan pelarut, keterlarutcampura
References
1.
Notario, B., Pinto, J., Rodriguez-Perez, M. A. (2016).
Nanoporous polymeric materials: A new class of materials with enhanced
properties. Progress in Materials Science, 78-79: 93-139.
2.
Cavalcante,
M. P., Toledo, A. L. M. M., Rodrigues, E. J. R., Neto, R. P. C. and Tavares, M.
I. B. (2017). Correlation between traditional techniques and TD-NMR to
determine the morphology of PHB/PCL blends. Polymer Testing, 58:159-165.
3.
Golshaei,
P. and Güven, O. (2017). Chemical modification of PET surface and subsequent
graft copolymerization with poly(N-isopropylacryl amide). Reactive
Functional Polymer, 118: 26-34.
4.
Mazzocchetti,
L., Scandola, M. and Jiang, Z. (2012). Random copolymerization with a large
lactone enhances aliphatic polycarbonate crystallinity. European Polymer
Journal, 48:1883-1891.
5.
Ganji,
F. and Abdekhodaie, M. J. (2010). The effects of reaction conditions on block
copolymerization of chitosan and poly(ethylene glycol). Carbohydrate
Polymer, 81: 799-804.
6.
Murugan,
P., Han, L., Gan, C. Y., Maurer, F. H. J. and Sudesh, K. (2016). A new biological
recovery approach for PHA using mealworm, Tenebrio molitor. Journal
of Biotechnology, 239: 98-105.
7.
Arrieta,
M. P., López, J., López, D., Kenny, J. M. and Peponi, L. (2016). Biodegradable
electrospun bionanocomposite fibers based on plasticized PLA–PHB blends
reinforced with cellulose nanocrystals. Industrial Crops Products, 93:
290-230.
8.
Tognana,
S., Salgueiro, W. and Silva, L. (2016). Spherulitic growth and crystallization
kinetics in PHB/DGEBA blends. Thermochimica Acta, 623:1-8.
9.
Cavalheiro,
J. M. B.T., Raposo, R. S., de Almeida, M. C. M. D., Teresa Cesário, M., Sevrin,
C., Grandfils, C. and da Fonseca, M. M. R. (2012). Effect of cultivation
parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxy valerate) by Cupriavidus
necator using waste glycerol. Bioresource Technology, 111: 391-397.
10.
Hinüber,
C., Häussler, L., Vogel, R., Brünig, H., Heinrich, G. and Werner, C. (2011).
Hollow fibers made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone
blend. Express Polymer Letter, 5: 643-652.
11.
Garcia-Garcia,
D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., Balart, R. (2016).
Processing and characterization of binary poly(hydroxybutyrate) (PHB) and
poly(caprolactone) (PCL) blends with improved impact properties. Polymer
Bulletin, 73: 3333-3350.
12.
Goonoo,
N., Bhaw-Luximon, A., Passanha, P., Esteves, S., Schönherr, H. and Jhurry, D.
(2017). Biomineralization potential and cellular response of PHB and PHBV
blends with natural anionic polysaccharides. Materials Science Engineering
C, 76:13-24.
13.
Arrieta,
M. P., López, J., Rayón, E. and Jiménez, A. (2014). Disintegrability under
composting conditions of plasticized PLA–PHB blends. Polymer Degradation and
Stability, 108: 307-318.
14.
Mousavioun,
P., Halley, P. J. and Doherty, W. O. S. (2013). Thermophysical properties and
rheology of PHB/lignin blends. Industrial Crops Products, 50: 270-275.
15.
Pongsathit,
S. and Pattamaprom, C. (2018). Irradiation grafting of natural rubber latex
with maleic anhydride and its compatibilization of poly(lactic acid)/natural
rubber blends. Radiation Physics and Chemistry 144: 13-20.
16.
Bhatt,
R., Shah, D., Patel, K. C. and Trivedi, U. (2008) PHA-rubber blends: Synthesis,
characterization and biodegradation. Bioresource Technology, 99:
4615-4620.
17.
Ramsay,
B. A., Langlade, V., Carreau, P. J. and Juliana, A. (1993). Biodegradability
and mechanical properties of
poly-(f3-hydroxybutyrate-co-3-hydroxyvalerate)-starch blends. Applied and
Environmental Microbiology, 59:1242-1246.
18.
Abdelwahab,
M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W. and Chiellini, E. (2012).
Thermal, mechanical and morphological characterization of plasticized PLA-PHB
blends. Polymer Degradation and Stability 97: 1822-1828.
19.
Rolere,
S., Liengprayoon, S., Vaysse, L., Sainte-Beuve, J. and Bonfils, F. (2015).
Investigating natural rubber composition with Fourier transform infrared
(FT-IR) spectroscopy: A rapid and non-destructive method to determine both
protein and lipid contents simultaneously. Polymer Testing, 43:83-93.
20.
Li, C.,
Feng, C., Peng, Z., Gong, W. and Kong, L. (2013) Ammonium-assisted green
fabrication of graphene/ natural rubber latex composite. Polymer Composite,
34: 88-95.
21.
Zhijiang,
C., Yi, X., Haizheng, Y., Jia, J. and Liu, Y. (2016).
Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation,
characterization and cytocompatibility. Materials Science Engineering C,
58: 757-767.
22.
Abraham,
E., Elbi, P. A., Deepa, B., Jyotishkumar, P., Pothen, L. A., Narine, S. S. and
Thomas, S. (2012). X-ray diffraction and biodegradation analysis of green
composites of natural rubber/nanocellulose. Polymer Degradation and
Stability, 97: 2378-2387.
23.
Pazhooh,
H. N., Bagheri, R. and Adloo, A. (2017). Fabrication of semi-conductive natural
rubber nanocomposites with low copper nanoparticle contents. Polymer,
108:135-145.
24.
Zhang,
S., Sun, X., Ren, Z., Li, H. and Yan, S. (2015) The development of a bilayer structure
of poly(propylene carbonate)/poly(3-hydroxybutyrate) blends from the demixed
melt. Physical Chemistry, 17: 32225-32231.
25.
Tan, W.
L., Yaakob, N. N., Zainal Abidin, A., Abu Bakar, M. and Abu Bakar, N. H. H.
(2016). Metal chloride induced formation of porous polyhydroxybutyrate (PHB)
films: Morphology, Thermal properties and crystallinity. IOP Conference
Series Materials Science Engineering,133: 1-11.
26.
Ma, P.,
Cai, X., Chen, M., Dong, W. and Lemstra, P. J. (2014). Partially bio-based
thermoplastic elastomers by physical blending of poly(hydroxyalkanoate)s and
poly(ethylene-co-vinyl acetate). Express Polymer Letter, 8: 517-527.
27.
Pachekoski,
W. M., Agnelli, J. A. M. and Belem, L. P. (2009). Thermal, mechanical and
morphological properties of poly (hydroxybutyrate) and polypropylene blends
after processing. Materials Resource, 12: 159-164.