Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 16 - 23
UNVEILING HOMOGENEOUS CATALYTIC
PERFORMANCE OF N,N’-BIS-(3,5-DI-TERT-BUTYLSALICYLIDENE)-2,2-DIMETHYLPROPANE-1,3-DIAMINEPALLADIUM(II)
IN THE MIZOROKI-HECK REACTION
(Menyingkap Prestasi
Pemangkinan Homogen N,N’-bis-(3,5-di-tert-butilsalisilidena)-2,2-dimetilpropana-1,3-diaminapaladium(II)
dalam Tindak Balas Mizoroki-Heck)
Siti Kamilah Che Soh*, Mohd Sukeri Mohd Yusof, Wan M. Khairul
Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia.
*Corresponding
author: sitikamilah@umt.edu.my
Received: 18 September 2020; Accepted: 22 November 2020;
Published: 20 February 2021
Abstract
Efficient
Mizoroki-Heck coupling reactions were obtained using a homogeneous catalyst of symmetrical square planar N,N’-bis-(3,5-di-tert-butylsalicylidene)-2,2-dimethylpropane-1,3-diaminepalladium(II),
Keywords: N2O2-tetradentade
ligand, palladium(II) complex, Mizoroki-Heck reaction
Abstrak
Tindak balas gandingan Mizoroki-Heck yang efisien telah
dihasilkan menggunakan mangkin homogen bersimetri segi empat planar, N,N’-bis-(3,5-di-tert-butilsalisilidena)-2,2-dimetilpropana-1,3-diaminapaladium(II),
Pd-LDDP. Pembolehubah masa (3 dan 6 jam), suhu (100, 120 dan 140 °C), jumlah muatan
mangkin yang digunakan (0.5, 1.0, 1.5
dan 2.0 mmol%), dan jenis bes (Et3N,
NaHCO3, Na2CO3 dan NaOAc) telah dioptimumkan
untuk memberikan hasil yang sangat baik bagi produk gandingan Mizoroki-Heck
4-bromoasetofenon dengan metil akrilat. Hasil kajian pemangkinan menunjukkan
sistem mangkin Pd-LDDP/NaOAc/0.5 mmol%/140 °C telah memberikan
keadaan yang optimum serta mencapai prestasi tinggi bagi pelbagai aril bromida
berpenarik elektron dengan penukaran hasil sehingga 85% dalam masa tindak balas
selama 6 jam. Oleh itu, cadangan mangkin bebas-fosfina yang lebih stabil
terhadap udara dan kelembapan secara signifikan telah menyediakan capaian
terhadap transformasi organik dalam tindak balas gandingan Mizoroki-Heck.
Kata
kunci: ligan tetradentat-N2O2, kompleks
paladium(II), tindak balas Mizoroki-Heck
References
1.
Jagtap, S. (2017). Heck
reaction-state of the art. Catalysts,
7(9): 267.
2.
Ghosh, T. (2019).
Reductive Heck reaction: An emerging alternative in natural product synthesis. ChemistrySelect, 4(16): 4747-4755.
3.
Tarnowicz-Ligus, S. and
Trzeciak, A. M. (2018). Heck transformations of biological compounds catalyzed
by phosphine-free palladium. Molecules,
23(9): 2227.
4.
Budarin, V. L.,
Shuttleworth, P. S., Clark, J. H. and Luque, R. (2010). Industrial applications
of C-C coupling reactions. Current
Organic Synthesis, 7(6): 614-627.
5.
Biajoli, A. F. P.,
Schwalm, C. S., Limberger, J., Claudino, T. S. and Monteiro, A. L. (2014).
Recent progress in the use of Pd-catalyzed C-C cross-coupling reactions the
synthesis pharmaceutical compounds. Journal
of the Brazilian Chemical Society, 25(12): 2186-2214.
6.
Watson, D. A. (2012). Selected
diastereoselective reactions: Heck type cyclizations. Comprehensive Chirality.
Elsevier Science, Netherland: pp. 648-684.
7.
Mannepalli, L. K.,
Gadipelly, C., Deshmukh, G., Likhar, P., and Pottabathula, S. (2020). Advances
in C-C coupling reactions catalyzed by homogeneous phosphine free palladium
catalysts. Bulletin of the Chemical
Society of Japan, 93(3): 355-372.
8.
Mino, T., Shirae, Y.,
Sasai, Y., Sakamoto, M. and Fujita, T. (2006). Phosphine-free palladium
catalyzed mizoroki−heck reaction using hydrazone as a ligand. The Journal of Organic Chemistry, 71(18):
6834-6839.
9.
Bakherad, M., Keivanloo,
A., Amin, A. H. and Jajarmi, S. (2012). Phosphine-free polystyrene-supported
palladium(II) complex as an efficient catalyst for the Heck and Suzuki coupling
reactions in water. Comptes Rendus
Chimie, 15(11-12): 945-949.
10.
Mingji, D., Liang, B.,
Wang, C., You, Z., Xiang, J., Dong, G., Chen, J. and Yang, Z. (2004). A novel
thiourea ligand applied in the Pd-catalyzed Heck, Suzuki and Suzuki
carbonylative reactions. Advanced
Synthesis & Catalysis, 346 (13‐15): 1669-1673.
11.
Farina, V. (2004).
High‐turnover palladium catalysts in cross-coupling and Heck chemistry: A
critical overview. Advanced Synthesis
& Catalysis, 346: 1553-1582.
12.
Wang, M., Zhu, H., Jin,
K., Dai, D. and Sun, L. (2003). Ethylene oligomerization by Salen-Type
zirconium complexes to low-carbon linear a-olefins. Journal of Catalysis, 220: 392-398.
13.
Ulusoy, M., Birel, Ö.,
Şahin, O., Büyükgüngör, O. and Centikaya, B. (2012). Structural, spectral,
electrochemical and catalytic reactivity studies of a series of N2O2
chelated palladium(II) complexes. Polyhedron,
38: 141-148.
14.
Oberholzer, M. and Frech,
C. M. (2014). Mizoroki-Heck cross-coupling reactions catalyzed by
dichloro{bis[1,1',1''-(phosphinetriyl)tripiperidine]}palladium under mild
reaction conditions. Journal of
Visualized Experiments, 85(51444): 1-7.
15.
Faghih, Z., Neshat, A.,
Wojtczak, A., Faghih, Z., Mohammadi, Z. and Varestan, S. (2018). Palladium(II)
complexes based on schiff base ligands derived from ortho-vanillin; synthesis,
characterization and cytotoxic studies. Inorganica Chimica Acta, 471: 404-412.
16.
Feng, Z. Q., Yang, X. L.
and Ye, Y. F. (2013). Pd(II) and Zn(II)
based complexes with Schiff base ligands: synthesis, characterization,
luminescence, and antibacterial and catalytic activities. The Scientific World Journal, 2013:
956840
17.
Rao, G. K., Kumar, A.,
Kumar, B., Kumar, D. and Singh, A. K. (2012). Palladium(II)-Selenated Schiff
base complex catalyzed Suzuki-Miyaura coupling: Dependence of efficiency on
alkyl chain length of ligand. Dalton
Transactions, 41: 1931-1937.
18.
Kianfar, A. H., Zargari,
S. and Khavasi, H. R. (2010). Synthesis and electrochemistry of M(II) N2O2
Schiff base complexes: X-ray structure of
{Ni[Bis(3-chloroacetylacetone)ethylenediimine]}. Journal of the Iranian Chemical Society, 7: 908-916.
19.
Nyangasi, L. O., Andala,
D. M., Onindo, C. O., Ngila, J. C., Makhubela, B. C. and Ngigi, E. M. (2017).
Preparation and characterization of Pd modified TiO2 nanofiber
catalyst for carbon–carbon coupling Heck reaction. Journal of Nanomaterials, 2017: 8290892.
20.
Djakovitch, L. and Koehler,
K. (1999). Heterogeneously catalysed Heck reaction using palladium modified
zeolites. Journal of Molecular Catalysis
A: Chemical, 142(2): 275-284.
21.
Nuri, A., Vucetic, N.,
Smått, J. H., Mansoori, Y., Mikkola, J. P. and Murzin, D. Y. (2020). Synthesis
and characterization of palladium supported amino functionalized
magnetic-MOF-MIL-101 as an efficient and recoverable catalyst for Mizoroki–Heck
cross-coupling. Catalysis Letters,
2020: 1-13.
22.
Yang, C. and Nolan, S. P.
(2001). A highly efficient palladium/imidazolium salt system for catalytic Heck
reactions. Synlett, 10: 1539-1542.
23.
Kumari, S., Maddipoti,
K., Das, B. and Ray, S. (2019). Palladium–Schiff base complexes encapsulated in
zeolite-Y host: functionality controlled by the structure of a guest
complex. Inorganic Chemistry, 58(2):
1527-1540.
24.
Che Soh, S. K. and
Shamsuddin, M. (2018). Synthesis, characterization and catalytic applications
of 2,2-dimenthylpropane-1,3-diaminopalladium(II) complex in Mizoroki-Heck
reaction. Asian Journal of Chemistry,
30(1): 81-84.
25.
Xu, H. J., Zhao, Y. Q.
and Zhou, X. F. (2011). Palladium-catalyzed Heck reaction of aryl chlorides
under mild conditions promoted by organic ionic bases. The Journal of Organic Chemistry, 76(19):
8036-8041.
26.
Littke, A. F., and Fu, G.
C. (2001). A versatile catalyst for heck reactions of aryl chlorides and aryl
bromides under mild conditions. Journal
of the American Chemical Society,123(29): 6989-7000.
27.
Dounay, A. B. and
Overman, L. E. (2003). The asymmetric intramolecular Heck reaction in natural
product total synthesis. Chemical
Reviews, 103(8): 2945-2964.
28.
Beller, M. and Riermeier,
T. H. (1996). First efficient palladium-catalyzed Heck reactions of aryl
bromides with alkyl methacrylate.
Tetrahedron Letters, 37(36): 6535-6538.
29.
Nasrollahzadeh, M.,
Azarian, A., Ehsani, A. and Khalaj, M. (2014). Preparation, optical properties
and catalytic activity of TiO2@ Pd nanoparticles as heterogeneous
and reusable catalysts for ligand-free Heck coupling reaction. Journal of Molecular Catalysis A: Chemical, 394:
205-210.
30.
Hahn, F. E., Jahnke, M.
C., Gomez-Benitez, V., Morales-Morales, D. and Pape, T. (2005). Synthesis and
catalytic activity of pincer-type bis(benzimidazolin-2-ylidene) palladium
complexes. Organometallics, 24:
6458-6463.