Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 16 - 23

 

 

 

 

UNVEILING HOMOGENEOUS CATALYTIC PERFORMANCE OF N,N’-BIS-(3,5-DI-TERT-BUTYLSALICYLIDENE)-2,2-DIMETHYLPROPANE-1,3-DIAMINEPALLADIUM(II) IN THE MIZOROKI-HECK REACTION

 

(Menyingkap Prestasi Pemangkinan Homogen N,N’-bis-(3,5-di-tert-butilsalisilidena)-2,2-dimetilpropana-1,3-diaminapaladium(II) dalam Tindak Balas Mizoroki-Heck)

 

Siti Kamilah Che Soh*, Mohd Sukeri Mohd Yusof, Wan M. Khairul

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

 

*Corresponding author:  sitikamilah@umt.edu.my

 

 

Received: 18 September 2020; Accepted: 22 November 2020; Published: 20 February 2021

 

 

Abstract

Efficient Mizoroki-Heck coupling reactions were obtained using a homogeneous catalyst of symmetrical square planar N,N’-bis-(3,5-di-tert-butylsalicylidene)-2,2-dimethylpropane-1,3-diaminepalladium(II), Pd-LDDP. The variables of time (3 and 6 hours), , temperature (100, 120 and 140 °C amount of catalyst loading (0.5, 1.0, 1.5 and 2.0 mmol%), and type of bases (Et3N, NaHCO3,  Na2CO3 and NaOAc) were optimised to obtain excellent yield of Mizoroki-Heck coupling products of 4-bromoacetophenone methyl acrylate.  Catalytic results exhibited that the Pd-LDDP/NaOAc/0.5 mmol%/140 °C catalyst system gave the optimum condition and achieved high performance for a wide range of electron withdrawing aryl bromides with the conversion of up to 85% in 6 hours of reaction time. Thus, the proposed phoshine-free catalyst, which is more stable towards air and moisture, significantly provided access towards the organic transformation of Mizoroki-Heck coupling reaction.

 

Keywords:  N2O2-tetradentade ligand, palladium(II) complex, Mizoroki-Heck reaction

 

Abstrak

Tindak balas gandingan Mizoroki-Heck yang efisien telah dihasilkan menggunakan mangkin homogen bersimetri segi empat planar, N,N’-bis-(3,5-di-tert-butilsalisilidena)-2,2-dimetilpropana-1,3-diaminapaladium(II), Pd-LDDP. Pembolehubah masa (3 dan 6 jam), suhu (100, 120 dan 140 °C), jumlah muatan mangkin yang digunakan (0.5, 1.0, 1.5 dan 2.0 mmol%), dan jenis bes (Et3N, NaHCO3, Na2CO3 dan NaOAc) telah dioptimumkan untuk memberikan hasil yang sangat baik bagi produk gandingan Mizoroki-Heck 4-bromoasetofenon dengan metil akrilat. Hasil kajian pemangkinan menunjukkan sistem mangkin Pd-LDDP/NaOAc/0.5 mmol%/140 °C telah memberikan keadaan yang optimum serta mencapai prestasi tinggi bagi pelbagai aril bromida berpenarik elektron dengan penukaran hasil sehingga 85% dalam masa tindak balas selama 6 jam. Oleh itu, cadangan mangkin bebas-fosfina yang lebih stabil terhadap udara dan kelembapan secara signifikan telah menyediakan capaian terhadap transformasi organik dalam tindak balas gandingan Mizoroki-Heck.

 

Kata kunci:  ligan tetradentat-N2O2, kompleks paladium(II), tindak balas Mizoroki-Heck

 

References

1.      Jagtap, S. (2017). Heck reaction-state of the art. Catalysts, 7(9): 267.

2.      Ghosh, T. (2019). Reductive Heck reaction: An emerging alternative in natural product synthesis. ChemistrySelect, 4(16): 4747-4755.

3.      Tarnowicz-Ligus, S. and Trzeciak, A. M. (2018). Heck transformations of biological compounds catalyzed by phosphine-free palladium. Molecules, 23(9): 2227.

4.      Budarin, V. L., Shuttleworth, P. S., Clark, J. H. and Luque, R. (2010). Industrial applications of C-C coupling reactions. Current Organic Synthesis, 7(6): 614-627.

5.      Biajoli, A. F. P., Schwalm, C. S., Limberger, J., Claudino, T. S. and Monteiro, A. L. (2014). Recent progress in the use of Pd-catalyzed C-C cross-coupling reactions the synthesis pharmaceutical compounds. Journal of the Brazilian Chemical Society, 25(12): 2186-2214.

6.      Watson, D. A. (2012). Selected diastereoselective reactions: Heck type cyclizations. Comprehensive Chirality. Elsevier Science, Netherland: pp. 648-684.

7.      Mannepalli, L. K., Gadipelly, C., Deshmukh, G., Likhar, P., and Pottabathula, S. (2020). Advances in C-C coupling reactions catalyzed by homogeneous phosphine free palladium catalysts. Bulletin of the Chemical Society of Japan, 93(3): 355-372.

8.      Mino, T., Shirae, Y., Sasai, Y., Sakamoto, M. and Fujita, T. (2006). Phosphine-free palladium catalyzed mizoroki−heck reaction using hydrazone as a ligand. The Journal of Organic Chemistry, 71(18): 6834-6839.

9.      Bakherad, M., Keivanloo, A., Amin, A. H. and Jajarmi, S. (2012). Phosphine-free polystyrene-supported palladium(II) complex as an efficient catalyst for the Heck and Suzuki coupling reactions in water. Comptes Rendus Chimie, 15(11-12): 945-949.

10.   Mingji, D., Liang, B., Wang, C., You, Z., Xiang, J., Dong, G., Chen, J. and Yang, Z. (2004). A novel thiourea ligand applied in the Pd-catalyzed Heck, Suzuki and Suzuki carbonylative reactions. Advanced Synthesis & Catalysis, 346 (13‐15): 1669-1673.

11.   Farina, V. (2004). High‐turnover palladium catalysts in cross-coupling and Heck chemistry: A critical overview. Advanced Synthesis & Catalysis, 346: 1553-1582.

12.   Wang, M., Zhu, H., Jin, K., Dai, D. and Sun, L. (2003). Ethylene oligomerization by Salen-Type zirconium complexes to low-carbon linear a-olefins. Journal of Catalysis, 220: 392-398.

13.   Ulusoy, M., Birel, Ö., Şahin, O., Büyükgüngör, O. and Centikaya, B. (2012). Structural, spectral, electrochemical and catalytic reactivity studies of a series of N2O2 chelated palladium(II) complexes. Polyhedron, 38: 141-148.

14.   Oberholzer, M. and Frech, C. M. (2014). Mizoroki-Heck cross-coupling reactions catalyzed by dichloro{bis[1,1',1''-(phosphinetriyl)tripiperidine]}palladium under mild reaction conditions. Journal of Visualized Experiments, 85(51444): 1-7.

15.   Faghih, Z., Neshat, A., Wojtczak, A., Faghih, Z., Mohammadi, Z. and Varestan, S. (2018). Palladium(II) complexes based on schiff base ligands derived from ortho-vanillin; synthesis, characterization and cytotoxic studies. Inorganica Chimica Acta, 471: 404-412.

16.   Feng, Z. Q., Yang, X. L. and Ye, Y.  F. (2013). Pd(II) and Zn(II) based complexes with Schiff base ligands: synthesis, characterization, luminescence, and antibacterial and catalytic activities. The Scientific World Journal, 2013: 956840

17.   Rao, G. K., Kumar, A., Kumar, B., Kumar, D. and Singh, A. K. (2012). Palladium(II)-Selenated Schiff base complex catalyzed Suzuki-Miyaura coupling: Dependence of efficiency on alkyl chain length of ligand. Dalton Transactions, 41: 1931-1937.

18.   Kianfar, A. H., Zargari, S. and Khavasi, H. R. (2010). Synthesis and electrochemistry of M(II) N2O2 Schiff base complexes: X-ray structure of {Ni[Bis(3-chloroacetylacetone)ethylenediimine]}. Journal of the Iranian Chemical Society, 7: 908-916.

19.   Nyangasi, L. O., Andala, D. M., Onindo, C. O., Ngila, J. C., Makhubela, B. C. and Ngigi, E. M. (2017). Preparation and characterization of Pd modified TiO2 nanofiber catalyst for carbon–carbon coupling Heck reaction. Journal of Nanomaterials, 2017: 8290892.

20.   Djakovitch, L. and Koehler, K. (1999). Heterogeneously catalysed Heck reaction using palladium modified zeolites. Journal of Molecular Catalysis A: Chemical, 142(2): 275-284.

21.   Nuri, A., Vucetic, N., Smått, J. H., Mansoori, Y., Mikkola, J. P. and Murzin, D. Y. (2020). Synthesis and characterization of palladium supported amino functionalized magnetic-MOF-MIL-101 as an efficient and recoverable catalyst for Mizoroki–Heck cross-coupling. Catalysis Letters, 2020: 1-13.

22.   Yang, C. and Nolan, S. P. (2001). A highly efficient palladium/imidazolium salt system for catalytic Heck reactions. Synlett, 10: 1539-1542.

23.   Kumari, S., Maddipoti, K., Das, B. and Ray, S. (2019). Palladium–Schiff base complexes encapsulated in zeolite-Y host: functionality controlled by the structure of a guest complex. Inorganic Chemistry, 58(2): 1527-1540.

24.   Che Soh, S. K. and Shamsuddin, M. (2018). Synthesis, characterization and catalytic applications of 2,2-dimenthylpropane-1,3-diaminopalladium(II) complex in Mizoroki-Heck reaction. Asian Journal of Chemistry, 30(1): 81-84.

25.   Xu, H. J., Zhao, Y. Q. and Zhou, X. F. (2011). Palladium-catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. The Journal of Organic Chemistry, 76(19): 8036-8041.

26.   Littke, A. F., and Fu, G. C. (2001). A versatile catalyst for heck reactions of aryl chlorides and aryl bromides under mild conditions. Journal of the American Chemical Society,123(29): 6989-7000.

27.   Dounay, A. B. and Overman, L. E. (2003). The asymmetric intramolecular Heck reaction in natural product total synthesis. Chemical Reviews, 103(8): 2945-2964.

28.   Beller, M. and Riermeier, T. H. (1996). First efficient palladium-catalyzed Heck reactions of aryl bromides with alkyl methacrylate. Tetrahedron Letters, 37(36): 6535-6538.

29.   Nasrollahzadeh, M., Azarian, A., Ehsani, A. and Khalaj, M. (2014). Preparation, optical properties and catalytic activity of TiO2@ Pd nanoparticles as heterogeneous and reusable catalysts for ligand-free Heck coupling reaction. Journal of Molecular Catalysis A: Chemical, 394: 205-210.

30.   Hahn, F. E., Jahnke, M. C., Gomez-Benitez, V., Morales-Morales, D. and Pape, T. (2005). Synthesis and catalytic activity of pincer-type bis(benzimidazolin-2-ylidene) palladium complexes. Organometallics, 24: 6458-6463.