Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 1 - 15
ADVANCED ADSORBENTS FOR THE EXTRACTION AND PRECONCENTRATION
OF PENICILLIN ANTIBIOTICS: AN UPDATED REVIEW
(Penjerap Lanjutan Bagi Pengekstrakan Dan Prapemekatan
Antibiotik Penisilin: Satu Tinjauan Terkini)
Wan Ibrahim
Thani Abd Halim1, Siti Munirah Ishak1, Salwani Md Saad1,
Nadhiratul-Farihin Semail1, Ahmad Husaini Mohamed1,2,
Mohd Yusmaidie Aziz1, Azam Taufik Mohd Din3, Nur Nadhirah
Mohamad Zain1, Nik Nur Syazni Nik Mohamed Kamal1,
Sazlinda
Kamaruzaman4, Noorfatimah Yahaya1*
1Integrative Medicine Cluster, Advanced Medical and Dental Institute
(AMDI),
Universiti Sains Malaysia, 13200
Bertam Kepala Batas, Penang, Malaysia
2Universiti Teknologi MARA,
Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit
Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
3School of Chemical Engineering, Engineering Campus,
Universiti Sains Malaysia, 14300,
Nibong Tebal, Penang, Malaysia
4Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
*Corresponding author: noorfatimah@usm.my
Received: 13 November 2020; Accepted: 27 December 2020;
Published: 20 February 2021
Abstract
Widespread
use of penicillins (PENs) has brought about the pollution of wastewater and contamination
of food, leading to antibiotic resistance which is detrimental to human life.
PEN residues are being constantly identified in different matrices at low
concentration. Several studies have been performed to extract these residues
from environmental and food matrices. Sample preparation approaches like solid
phase extraction (SPE) and liquid phase extraction (LLE) have been developed
for their quantitation. SPE, in particular, shows great demand as an essential
step to raise both practical efficiency and analytical sensitivity.
Conventional SPE methods used for the extraction of antibiotics are relatively
expensive, tedious and generally require long analysis time. In this review,
recent miniaturized SPE methods and their applications for extraction of PENs
from various matrices will be discussed. The methods represent fast, modern and
efficient approaches to trace analytes. Selected examples will illustrate the
various features of miniaturized SPE methods and their applications in food,
biological, and environmental areas. With that, this paper presents a review of previous
studies pertaining to miniaturized SPE methods that focused on the analysis of
PENs in variety of matrices from the year 2015 to 2020.
Keywords: penicillins, sample preparation, solid phase
extraction, advanced solid phase extraction, food security
Abstrak
Penggunaan
penisilin (PEN) secara meluas telah menyebabkan pencemaran air kumbahan dan
pencemaran makanan, yang berpotensi mewujudkan kerintangan antibiotik yang
berbahaya terhadap kehidupan manusia. Sisa PEN kerap kali dikenal pasti dalam
matriks berbeza pada kepekatan rendah. Beberapa kajian telah dilakukan untuk
mengekstrak sisa ini dari matriks persekitaran dan makanan. Pendekatan
penyediaan sampel seperti pengekstrakan fasa pepejal (SPE) dan pengekstrakan
fasa cecair (LLE) telah dibangunkan untuk penyukatan secara kuantitatif. SPE,
terutamanya, menunjukkan permintaan yang besar sebagai langkah penting untuk
meningkatkan kecekapan praktikal dan kepekaan analisis. Kaedah SPE konvensional
yang digunakan untuk pengekstrakan antibiotik agak mahal, susah dan biasanya
memerlukan masa analisis yang panjang. Dalam tinjauan ini, kaedah SPE yang
terkini dan aplikasi mereka untuk pengekstrakan PEN dari pelbagai matriks akan
dibincangkan. Kaedah-kaedah ini mewakili pendekatan pantas, moden dan cekap
untuk mengesan bahan analit.
Contoh-contoh yang terpilih akan memberi gambaran mengenai ciri-ciri SPE
lanjutan yang pelbagai dan aplikasi mereka dalam bidang makanan, biologi dan
persekitaran. Dengan itu, manuskrip ini memberi tinjauan bagi kajian yang
melibatkan kaedah SPE lanjutan yang mengfokuskan kepada analisa PENS di dalam
pelbagai matriks dari tahun 2015 sehingga 2020.
Kata
kunci: penisilin, penyediaan sampel, pengekstrakan fasa
pepejal, pengekstrakan fasa pepejal lanjutan, kawalan makanan
References
1.
Samanidou, V. F., Nisyriou, S. A. and Papadoyannis, I.
N. (2007). Development and validation of an HPLC method for the determination
of penicillin antibiotics residues in bovine muscle according to the European
Union Decision 2002/657/EC. Journal of Separation Science, 30(18):
3193-3201.
2.
Bailón-Pérez, M. I., García-Campaña, A. M., del
Olmo-Iruela, M., Gámiz-Gracia, L. and Cruces-Blanco, C. (2009). Trace
determination of 10 β-lactam antibiotics in environmental and food samples
by capillary liquid chromatography. Journal of Chromatography A,
1216(47): 8355-8361.
3.
Díaz-bao, M., Barreiro, R., Miranda, J. M., Cepeda, A.
and Regal, P. (2015). Fast HPLC-MS/MS Method for determining penicillin
antibiotics in infant formulas using molecularly imprinted solid-phase
extraction. Journal of Analytical Methods in Chemistry, 2015: 959675.
4.
Miller, E. L. (2002). The penicillins : A review
and update. Journal of Midwifery & Women's Health, 47(6): 426-434.
5.
Evaggelopoulou, E. N. and Samanidou, V. F. (2013).
Development and validation of an HPLC method for the determination of six
penicillin and three amphenicol antibiotics in gilthead seabream (Sparus
aurata) tissue according to the European Union Decision 2002/657/EC
Cloxacillin Dicloxacillin. Food Chemistry, 136(3–4): 1322-1329.
6.
Webb, V. and Davies, J. (1993). Antibiotic preparations
contain DNA: A source of drug resistance genes?. Antimicrobial Agents and
Chemotherapy, 37(11): 2379-2384.
7.
Piddock, L. J. V. (1996). Does the use of antimicrobial
agents in veterinary medicine and animal husbandry select antibiotic-resistant
bacteria that infect man and compromise antimicrobial chemotherapy?. Journal
of Antimicrobial Chemothera, 38(1–3): 95-95.
8.
Lara, F. J., Olmo-iruela, M., Cruces-blanco, C.,
Quesada-molina, C. and Garcı, A. M. (2012). Advances in the determination
of β-lactam antibiotics by liquid chromatography. TrAC Trends in
Analytical Chemistry, 38: 52-66.
9.
Zhi, S., Zhou, J., Liu, H., Wu, H., Zhang, Z., Ding, Y.
and Zhang, K. (2020). Simultaneous extraction and determination of 45
veterinary antibiotics in swine manure by liquid chromatography-tandem mass
spectrometry. Journal of Chromatography B, 1154: 122286.
10. Watanabe,
N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T. and Harter, T. (2010). Use
and environmental occurrence of antibiotics in freestall dairy farms with
manured forage fields. Environmental Science & Technology, 44(17):
6591-6600.
11. Wu, N., Luo, Z., Ge, Y., Guo, P., Du,
K., Tang, W. and Fu, Q. (2016). A novel surface molecularly imprinted polymer
as the solid-phase extraction adsorbent for the selective determination of
ampicillin sodium in milk and blood samples. Journal of Pharmaceutical
Analysis, 6(3): 157-164.
12. Meetschen, U. and Petz, M. (1990).
Capillary gas chromatographic method for determination of benzylpenicillin and
other beta-lactam antibiotics in milk. Journal - Association of Official
Analytical Chemists, 73(3): 373-379.
13. Sahebi,
H., Konoz, E., Ezabadi, A., Niazi, A. and Hamid, S. (2020). Simultaneous
determination of five penicillins in milk using a new ionic liquid-modified
magnetic nanoparticle based dispersive micro-solid phase extraction followed by
ultra-performance liquid chromatography-tandem mass spectrometry. Microchemical
Journal, 154: 104605.
14. Castilla-fernández,
D., Moreno-gonzález, D., Beneito-cambra, M. and Molina-díaz, A. (2019).
Critical assessment of two sample treatment methods for multiresidue
determination of veterinary drugs in milk by UHPLC-MS/MS. Analytical and
Bioanalytical Chemistry, 411:1433-1442.
15. Rossi,
R., Saluti, G., Moretti, S., Diamanti, I. and Galarini, R. (2017). Multiclass
methods for the analysis of antibiotic residues in milk by liquid
chromatography coupled to mass spectrometry: A review. Food Additives &
Contaminants: Part A, 2017: 1-17.
16. Alipanahpour
Dil, E., Asfaram, A. and Sadeghfar, F. (2019). Magnetic dispersive micro-solid
phase extraction with the CuO/ZnO@Fe3O4-CNTs
nanocomposite sorbent for the rapid pre-concentration of chlorogenic acid in
the medical extract of plants, food, and water samples. Analyst, 144(8):
2684-2695.
17. Hassan,
M., Fazlzadeh, M. and Hazrati, M. (2020). A novel silica supported
chitosan/glutaraldehyde as an efficient sorbent in solid phase extraction
coupling with HPLC for the determination of Penicillin G from water and
wastewater samples. Arabian Journal of Chemistry, 13(9): 7147-7159.
18. Arthur, C. L. and Pawliszyn, J.
(1990). Solid phase microextraction with thermal desorption using fused silica
optical fibers. Analytical Chemistry, 62(19): 2145-2148.
19. Fumes,
B. H., Silva, M. R., Andrade, F. N., Eduardo, C., Nazario, D. and Lanças, F. M.
(2015). Recent advances and future trends in new materials for sample
preparation. Trends in Analytical Chemistry, 71: 9-25.
20. Xu,
M., Liu, M., Sun, M., Chen, K., Cao, X. and Hu, Y. (2016). Magnetic solid-phase
extraction of phthalate esters (PAEs) in apparel textile by core – shell
structured Fe3O4@ silica @ triblock-copolymer magnetic
microspheres. Talanta, 150: 125-134.
21. Wu,
Q., Song, Y., Wang, Q., Liu, W., Hao, L., Wang, Z. and Wang, C. (2020).
Combination of magnetic solid-phase extraction and HPLC-UV for simultaneous
determination of four phthalate esters in plastic bottled juice. Food
Chemistry, 339: 127855.
22. Sahebi, H., Konoz, E. and Ezabadi, A.
(2019). Synthesis of DABCO-based ionic liquid functionalized magnetic
nanoparticles as a novel sorbent for the determination of cephalosporins in
milk samples by dispersive solid-phase extraction followed by ultra-performance
liquid chromatography-tandem mass spectrometry. New Journal of
Chemistry, 43(34): 13554-13570.
23. Bader, N. (2018). Stir bar sorptive
extraction as a sample preparation technique for chromatographic analysis: An
overview. Asian Journal of Nanosciences and Materials, 1(2):
56-62.
24. Raynie, D. E. (2006). Modern extraction
techniques. Analytical chemistry, 78(12): 3997-4004.
25. Yadav,
V. K. and Kumar, V. (2015). New approach in extraction process for discovery of
herbal drug. Indo American Journal
of Pharmaceutical Research, 4(8): 14-39.
26. Hemmati,
M., Rajabi, M. and Asghari, A. (2018). Magnetic nanoparticle based solid-phase
extraction of heavy metal ions: A review on recent advances. Microchimica
Acta, 185(3): 160.
27. Wan Ibrahim, W. A., Sutirman, Z. A.,
Qaderi, J., Abu Bakar, K., Md Basir, S. H. and Aouissi, I. E. (2020). A Review
on applications of gold and silver-based sorbents in solid phase extraction and
solid phase microextraction. Malaysian Journal of Analytical Sciences, 24(4):
464-483.
28. Baharin, S. N. A. (2016).
Functionalized polythiophene-coated magnetic nanoparticles for solid-phase
extraction of phthalates, Doctoral dissertation, University of Malaya.
29. Dios,
A. S. De and Díaz-garcía, M. E. (2010). Multifunctional nanoparticles:
Analytical prospects. Analytica Chimica Acta, 666(1-2): 1-22.
30. Liu,
Y., Tourbin, M., Lachaize, S. and Guiraud, P. (2013). Silica nanoparticles
separation from water: Aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere,
92(6): 681-687.
31. Ahmadi,
M., Elmongy, H. and Madrakian, T. (2017). Nanomaterials as sorbents for sample
preparation in bioanalysis: A review. Analytica Chimica Acta, 958: 1-21.
32. Alivisatos,
P. (2000). Colloidal quantum dots. From scaling laws to biological
applications. Pure and Applied Chemistry, 72(1-2): 3-9.
33. Bitas, D. and Samanidou, V. (2018).
Carbon nanotubes as sorbent materials for the extraction of pharmaceutical
products followed by chromatographic analysis. Fullerens, Graphenes and
Nanotubes: pp. 375-411.
34. Ahmadi,
M., Elmongy, H. and Madrakian, T. (2017). Nanomaterials as sorbents for sample
preparation in bioanalysis: A review. Analytica Chimica Acta, 958: 1-21.
35. Keypour,
H., Shayesteh, M., Sharifi-Rad, A., Salehzadeh, S., Khavasi, H. and Valencia,
L. (2008). Synthesis and characterization of copper(II) and cobalt(II)
complexes with two new potentially hexadentate Schiff base ligands. X-ray
crystal structure determination of one copper(II) complex. Journal of
Organometallic Chemistry, 693(19): 3179-3187.
36. Zhao,
F. and Zhao, M. (2007). Supramolecules: The chemical building blocks of the
future. ChemInform, 38(23): 89-100.
37. Jia,
Q., Geng, Z. Q., Liu, Y., Wang, W., Han, C. Q., Yang, G. H., Li, H. and Qu, L.
L. (2018). Highly reproducible solid-phase extraction membrane for removal and
surface-enhanced Raman scattering detection of antibiotics. Journal of
Materials Science, 53(21): 14989-14997.
38. Golzari
Aqda, T., Behkami, S., Raoofi, M. and Bagheri, H. (2019). Graphene
oxide-starch-based micro-solid phase extraction of antibiotic residues from
milk samples. Journal of Chromatography A, 1591: 7-14.
39. Pourjavadi,
A., Nazari, M., Kabiri, B., Hosseini, S. H. and Bennett, C. (2016). Preparation
of porous graphene oxide/hydrogel nanocomposites and their ability for
efficient adsorption of methylene blue. RSC Advances, 6(13):
10430-10437.
40. Xu,
L., Qi, X., Li, X., Bai, Y. and Liu, H. (2016). Recent advances in applications
of nanomaterials for sample preparation. Talanta, 146: 714-726.
41. Wang,
L., Zhao, W. and Tan, W. (2008). Bioconjugated silica nanoparticles:
development and applications. Nano Research, 1(2): 99-115.
42. Jeelani, P. G., Mulay, P., Venkat, R.
and Ramalingam, C. (2020). Multifaceted application of silica nanoparticles: A
review. Silicon, 12(6): 1337-1354.
43. Ansari,
F. (2017). Novel nanostructured electron transport compact layer for efficient
and large-area perovskite solar cells using acidic treatment of titanium layer.
Nanotechnology, 2017: 1-30.
44. Shafqat,
S. S., Khan, A. A., Zafar, M. N., Alhaji, M. H., Sanaullah, K., Shafqat, S. R.,
Murtaza, S. and Pang, S. C. (2019). Development of amino-functionalized silica
nanoparticles for efficient and rapid removal of COD from pre-treated palm oil
effluent. Journal of Materials Research and Technology, 8(1): 385-395.
45. Sun,
Y., Zhang, Z. and Wong, C. P. (2005). Study on mono-dispersed nano-size silica
by surface modification for underfill applications. Journal of Colloid and
Interface Science, 292(2): 436-444.
46. Molaei,
R., Tajik, H. and Moradi, M. (2019). Magnetic solid phase extraction based on
mesoporous silica-coated iron oxide nanoparticles for simultaneous
determination of biogenic amines in an Iranian traditional dairy product;
Kashk. Food Control, 101: 1-8.
47. Abdolmohammad-Zadeh,
H., Hassanlouei, S. and Zamani-Kalajahi, M. (2017). Preparation of ionic
liquid-modified SiO2@Fe3O4 nanocomposite as a
magnetic sorbent for use in solid-phase extraction of zinc(II) ions from milk
and water samples. RSC Advances, 7(38): 23293-23300.
48. Wu,
W., He, Q. and Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis
and surface functionalization strategies. Nanoscale Research Letters,
3(11): 397-415.
49. Urraca,
J. L., Chamorro-Mendiluce, R., Orellana, G. and Moreno-Bondi, M. C. (2016).
Molecularly imprinted polymer beads for clean-up and preconcentration of
β-lactamase-resistant penicillins in milk. Analytical and Bioanalytical
Chemistry, 408(7): 1843-1854.
50. Gros,
M., Rodríguez-Mozaz, S. and Barceló, D. (2013). Rapid analysis of multiclass
antibiotic residues and some of their metabolites in hospital, urban wastewater
and river water by ultra-high-performance liquid chromatography coupled to
quadrupole-linear ion trap tandem mass spectrometry. Journal of
Chromatography A, 1292: 173-188.
51. Salari,
M., Dehghani, M. H., Azari, A., Motevalli, M. D., Shabanloo, A. and Ali, I.
(2019). High performance removal of phenol from aqueous solution by magnetic
chitosan based on response surface methodology and genetic algorithm. Journal
of Molecular Liquids, 285: 146-157.
52. Huang,
Y., Zheng, H., Li, H., Zhao, C., Zhao, R. and Li, S. (2020). Highly selective
uranium adsorption on 2-phosphonobutane-1,2,4-tricarboxylic acid-decorated
chitosan-coated magnetic silica nanoparticles. Chemical Engineering Journal,
388: 124349.
53. Li, W.
K. and Shi, Y. P. (2019). Recent advances and applications of carbon nanotubes
based composites in magnetic solid-phase extraction. TrAC - Trends in
Analytical Chemistry, 118: 652-665.
54. Mutavdzic
Pavlovic, D., Nikšić, K., Livazović, S., Brnardić, I. and
Anžlovar, A. (2015). Preparation and application of sulfaguanidine-imprinted
polymer on solid-phase extraction of pharmaceuticals from water. Talanta,
131: 99-107.
55. Soledad-Rodríguez,
B., Fernández-Hernando, P., Garcinuño-Martínez, R. M. and Durand-Alegría, J. S.
(2017). Effective determination of ampicillin in cow milk using a molecularly
imprinted polymer as sorbent for sample preconcentration. Food Chemistry,
224: 432-438.
56. Li,
G., Xia, L., Dong, J., Chen, Y. and Li, Y. (2019). Metal-organic frameworks. In
Solid-Phase Extraction. Elsevier Inc.
57. Lirio,
S., Liu, W., Lin, C., Lin, C. and Huang, H. (2016). Aluminum based
metal-organic framework-polymer monolith in solid-phase microextraction of
penicillins in river water and milk samples. Journal of Chromatography A,
1428: 236-245.
58. Loiseau,
T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T.
and Férey, G. (2004). A rationale for the large breathing of the porous
aluminum terephthalate (MIL-53) upon hydration. Chemistry - A European
Journal, 10(6): 1373-1382.
59. Bagheri,
A. R. and Ghaedi, M. (2020). Magnetic metal organic framework for
pre-concentration of ampicillin from cow milk samples. Journal of
Pharmaceutical Analysis, 10(4): 365-375.
60. Bagheri,
A. R., Arabi, M., Ghaedi, M., Ostovan, A., Wang, X., Li, J. and Chen, L.
(2019). Dummy molecularly imprinted polymers based on a green synthesis
strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta,
195: 390-400.