Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 1 - 15

 

 

 

ADVANCED ADSORBENTS FOR THE EXTRACTION AND PRECONCENTRATION OF PENICILLIN ANTIBIOTICS: AN UPDATED REVIEW

 

(Penjerap Lanjutan Bagi Pengekstrakan Dan Prapemekatan Antibiotik Penisilin: Satu Tinjauan Terkini)

 

Wan Ibrahim Thani Abd Halim1, Siti Munirah Ishak1, Salwani Md Saad1, Nadhiratul-Farihin Semail1, Ahmad Husaini Mohamed1,2, Mohd Yusmaidie Aziz1, Azam Taufik Mohd Din3, Nur Nadhirah Mohamad Zain1, Nik Nur Syazni Nik Mohamed Kamal1,

Sazlinda Kamaruzaman4, Noorfatimah Yahaya1*

 

1Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI),

Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia

2Universiti Teknologi MARA,

Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

3School of Chemical Engineering, Engineering Campus,

Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia

4Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

*Corresponding author:  noorfatimah@usm.my

 

 

Received: 13 November 2020; Accepted: 27 December 2020; Published:  20 February 2021

 

 

Abstract

Widespread use of penicillins (PENs) has brought about the pollution of wastewater and contamination of food, leading to antibiotic resistance which is detrimental to human life. PEN residues are being constantly identified in different matrices at low concentration. Several studies have been performed to extract these residues from environmental and food matrices. Sample preparation approaches like solid phase extraction (SPE) and liquid phase extraction (LLE) have been developed for their quantitation. SPE, in particular, shows great demand as an essential step to raise both practical efficiency and analytical sensitivity. Conventional SPE methods used for the extraction of antibiotics are relatively expensive, tedious and generally require long analysis time. In this review, recent miniaturized SPE methods and their applications for extraction of PENs from various matrices will be discussed. The methods represent fast, modern and efficient approaches to trace analytes. Selected examples will illustrate the various features of miniaturized SPE methods and their applications in food, biological, and environmental areas. With that, this paper presents a review of previous studies pertaining to miniaturized SPE methods that focused on the analysis of PENs in variety of matrices from the year 2015 to 2020.

 

Keywords:  penicillins, sample preparation, solid phase extraction, advanced solid phase extraction, food security

 

Abstrak

Penggunaan penisilin (PEN) secara meluas telah menyebabkan pencemaran air kumbahan dan pencemaran makanan, yang berpotensi mewujudkan kerintangan antibiotik yang berbahaya terhadap kehidupan manusia. Sisa PEN kerap kali dikenal pasti dalam matriks berbeza pada kepekatan rendah. Beberapa kajian telah dilakukan untuk mengekstrak sisa ini dari matriks persekitaran dan makanan. Pendekatan penyediaan sampel seperti pengekstrakan fasa pepejal (SPE) dan pengekstrakan fasa cecair (LLE) telah dibangunkan untuk penyukatan secara kuantitatif. SPE, terutamanya, menunjukkan permintaan yang besar sebagai langkah penting untuk meningkatkan kecekapan praktikal dan kepekaan analisis. Kaedah SPE konvensional yang digunakan untuk pengekstrakan antibiotik agak mahal, susah dan biasanya memerlukan masa analisis yang panjang. Dalam tinjauan ini, kaedah SPE yang terkini dan aplikasi mereka untuk pengekstrakan PEN dari pelbagai matriks akan dibincangkan. Kaedah-kaedah ini mewakili pendekatan pantas, moden dan cekap untuk mengesan  bahan analit. Contoh-contoh yang terpilih akan memberi gambaran mengenai ciri-ciri SPE lanjutan yang pelbagai dan aplikasi mereka dalam bidang makanan, biologi dan persekitaran. Dengan itu, manuskrip ini memberi tinjauan bagi kajian yang melibatkan kaedah SPE lanjutan yang mengfokuskan kepada analisa PENS di dalam pelbagai matriks dari tahun 2015 sehingga 2020.

 

Kata kunci:     penisilin, penyediaan sampel, pengekstrakan fasa pepejal, pengekstrakan fasa pepejal lanjutan, kawalan makanan

 

References

1.      Samanidou, V. F., Nisyriou, S. A. and Papadoyannis, I. N. (2007). Development and validation of an HPLC method for the determination of penicillin antibiotics residues in bovine muscle according to the European Union Decision 2002/657/EC. Journal of Separation Science, 30(18): 3193-3201.

2.      Bailón-Pérez, M. I., García-Campaña, A. M., del Olmo-Iruela, M., Gámiz-Gracia, L. and Cruces-Blanco, C. (2009). Trace determination of 10 β-lactam antibiotics in environmental and food samples by capillary liquid chromatography. Journal of Chromatography A, 1216(47): 8355-8361.

3.      Díaz-bao, M., Barreiro, R., Miranda, J. M., Cepeda, A. and Regal, P. (2015). Fast HPLC-MS/MS Method for determining penicillin antibiotics in infant formulas using molecularly imprinted solid-phase extraction. Journal of Analytical Methods in Chemistry, 2015: 959675.

4.      Miller, E. L. (2002). The penicillins : A review and update. Journal of Midwifery & Women's Health, 47(6): 426-434.

5.      Evaggelopoulou, E. N. and Samanidou, V. F. (2013). Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus aurata) tissue according to the European Union Decision 2002/657/EC Cloxacillin Dicloxacillin. Food Chemistry, 136(3–4): 1322-1329.

6.      Webb, V. and Davies, J. (1993). Antibiotic preparations contain DNA: A source of drug resistance genes?. Antimicrobial Agents and Chemotherapy, 37(11): 2379-2384.

7.      Piddock, L. J. V. (1996). Does the use of antimicrobial agents in veterinary medicine and animal husbandry select antibiotic-resistant bacteria that infect man and compromise antimicrobial chemotherapy?. Journal of Antimicrobial Chemothera, 38(1–3): 95-95.

8.      Lara, F. J., Olmo-iruela, M., Cruces-blanco, C., Quesada-molina, C. and Garcı, A. M. (2012). Advances in the determination of β-lactam antibiotics by liquid chromatography. TrAC Trends in Analytical Chemistry, 38: 52-66.

9.      Zhi, S., Zhou, J., Liu, H., Wu, H., Zhang, Z., Ding, Y. and Zhang, K. (2020). Simultaneous extraction and determination of 45 veterinary antibiotics in swine manure by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1154: 122286.

10.   Watanabe, N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T. and Harter, T. (2010). Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environmental Science & Technology, 44(17): 6591-6600.

11.   Wu, N., Luo, Z., Ge, Y., Guo, P., Du, K., Tang, W. and Fu, Q. (2016). A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. Journal of Pharmaceutical Analysis, 6(3): 157-164.

12.   Meetschen, U. and Petz, M. (1990). Capillary gas chromatographic method for determination of benzylpenicillin and other beta-lactam antibiotics in milk. Journal - Association of Official Analytical Chemists, 73(3): 373-379.

13.   Sahebi, H., Konoz, E., Ezabadi, A., Niazi, A. and Hamid, S. (2020). Simultaneous determination of five penicillins in milk using a new ionic liquid-modified magnetic nanoparticle based dispersive micro-solid phase extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. Microchemical Journal, 154: 104605.

14.   Castilla-fernández, D., Moreno-gonzález, D., Beneito-cambra, M. and Molina-díaz, A. (2019). Critical assessment of two sample treatment methods for multiresidue determination of veterinary drugs in milk by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 411:1433-1442.

15.   Rossi, R., Saluti, G., Moretti, S., Diamanti, I. and Galarini, R. (2017). Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review. Food Additives & Contaminants: Part A, 2017: 1-17.

16.   Alipanahpour Dil, E., Asfaram, A. and Sadeghfar, F. (2019). Magnetic dispersive micro-solid phase extraction with the CuO/ZnO@Fe3O4-CNTs nanocomposite sorbent for the rapid pre-concentration of chlorogenic acid in the medical extract of plants, food, and water samples. Analyst, 144(8): 2684-2695.

17.   Hassan, M., Fazlzadeh, M. and Hazrati, M. (2020). A novel silica supported chitosan/glutaraldehyde as an efficient sorbent in solid phase extraction coupling with HPLC for the determination of Penicillin G from water and wastewater samples. Arabian Journal of Chemistry, 13(9): 7147-7159.

18.   Arthur, C. L. and Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19): 2145-2148.

19.   Fumes, B. H., Silva, M. R., Andrade, F. N., Eduardo, C., Nazario, D. and Lanças, F. M. (2015). Recent advances and future trends in new materials for sample preparation. Trends in Analytical Chemistry, 71: 9-25.

20.   Xu, M., Liu, M., Sun, M., Chen, K., Cao, X. and Hu, Y. (2016). Magnetic solid-phase extraction of phthalate esters (PAEs) in apparel textile by core – shell structured Fe3O4@ silica @ triblock-copolymer magnetic microspheres. Talanta, 150: 125-134.

21.   Wu, Q., Song, Y., Wang, Q., Liu, W., Hao, L., Wang, Z. and Wang, C. (2020). Combination of magnetic solid-phase extraction and HPLC-UV for simultaneous determination of four phthalate esters in plastic bottled juice. Food Chemistry, 339: 127855.

22.   Sahebi, H., Konoz, E. and Ezabadi, A. (2019). Synthesis of DABCO-based ionic liquid functionalized magnetic nanoparticles as a novel sorbent for the determination of cephalosporins in milk samples by dispersive solid-phase extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. New Journal of Chemistry, 43(34): 13554-13570.

23.   Bader, N. (2018). Stir bar sorptive extraction as a sample preparation technique for chromatographic analysis: An overview. Asian Journal of Nanosciences and Materials, 1(2): 56-62.

24.   Raynie, D. E. (2006). Modern extraction techniques. Analytical chemistry, 78(12): 3997-4004.

25.   Yadav, V. K. and Kumar, V. (2015). New approach in extraction process for discovery of herbal drug.   Indo American Journal of Pharmaceutical Research, 4(8): 14-39.

26.   Hemmati, M., Rajabi, M. and Asghari, A. (2018). Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances. Microchimica Acta, 185(3): 160.

27.   Wan Ibrahim, W. A., Sutirman, Z. A., Qaderi, J., Abu Bakar, K., Md Basir, S. H. and Aouissi, I. E. (2020). A Review on applications of gold and silver-based sorbents in solid phase extraction and solid phase microextraction. Malaysian Journal of Analytical Sciences, 24(4): 464-483.

28.   Baharin, S. N. A. (2016). Functionalized polythiophene-coated magnetic nanoparticles for solid-phase extraction of phthalates, Doctoral dissertation, University of Malaya.

29.   Dios, A. S. De and Díaz-garcía, M. E. (2010). Multifunctional nanoparticles: Analytical prospects. Analytica Chimica Acta, 666(1-2): 1-22.

30.   Liu, Y., Tourbin, M., Lachaize, S. and Guiraud, P. (2013). Silica nanoparticles separation from water: Aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere, 92(6): 681-687.

31.   Ahmadi, M., Elmongy, H. and Madrakian, T. (2017). Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Analytica Chimica Acta, 958: 1-21.

32.   Alivisatos, P. (2000). Colloidal quantum dots. From scaling laws to biological applications. Pure and Applied Chemistry, 72(1-2): 3-9.

33.   Bitas, D. and Samanidou, V. (2018). Carbon nanotubes as sorbent materials for the extraction of pharmaceutical products followed by chromatographic analysis. Fullerens, Graphenes and Nanotubes: pp. 375-411.

34.   Ahmadi, M., Elmongy, H. and Madrakian, T. (2017). Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Analytica Chimica Acta, 958: 1-21.

35.   Keypour, H., Shayesteh, M., Sharifi-Rad, A., Salehzadeh, S., Khavasi, H. and Valencia, L. (2008). Synthesis and characterization of copper(II) and cobalt(II) complexes with two new potentially hexadentate Schiff base ligands. X-ray crystal structure determination of one copper(II) complex. Journal of Organometallic Chemistry, 693(19): 3179-3187.

36.   Zhao, F. and Zhao, M. (2007). Supramolecules: The chemical building blocks of the future. ChemInform, 38(23): 89-100.

37.   Jia, Q., Geng, Z. Q., Liu, Y., Wang, W., Han, C. Q., Yang, G. H., Li, H. and Qu, L. L. (2018). Highly reproducible solid-phase extraction membrane for removal and surface-enhanced Raman scattering detection of antibiotics. Journal of Materials Science, 53(21): 14989-14997.

38.   Golzari Aqda, T., Behkami, S., Raoofi, M. and Bagheri, H. (2019). Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples. Journal of Chromatography A, 1591: 7-14.

39.   Pourjavadi, A., Nazari, M., Kabiri, B., Hosseini, S. H. and Bennett, C. (2016). Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue. RSC Advances, 6(13): 10430-10437.

40.   Xu, L., Qi, X., Li, X., Bai, Y. and Liu, H. (2016). Recent advances in applications of nanomaterials for sample preparation. Talanta, 146: 714-726.

41.   Wang, L., Zhao, W. and Tan, W. (2008). Bioconjugated silica nanoparticles: development and applications. Nano Research, 1(2): 99-115.

42.   Jeelani, P. G., Mulay, P., Venkat, R. and Ramalingam, C. (2020). Multifaceted application of silica nanoparticles: A review. Silicon, 12(6): 1337-1354.

43.   Ansari, F. (2017). Novel nanostructured electron transport compact layer for efficient and large-area perovskite solar cells using acidic treatment of titanium layer. Nanotechnology, 2017: 1-30.

44.   Shafqat, S. S., Khan, A. A., Zafar, M. N., Alhaji, M. H., Sanaullah, K., Shafqat, S. R., Murtaza, S. and Pang, S. C. (2019). Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. Journal of Materials Research and Technology, 8(1): 385-395.

45.   Sun, Y., Zhang, Z. and Wong, C. P. (2005). Study on mono-dispersed nano-size silica by surface modification for underfill applications. Journal of Colloid and Interface Science, 292(2): 436-444.

46.   Molaei, R., Tajik, H. and Moradi, M. (2019). Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product; Kashk. Food Control, 101: 1-8.

47.   Abdolmohammad-Zadeh, H., Hassanlouei, S. and Zamani-Kalajahi, M. (2017). Preparation of ionic liquid-modified SiO2@Fe3O4 nanocomposite as a magnetic sorbent for use in solid-phase extraction of zinc(II) ions from milk and water samples. RSC Advances, 7(38): 23293-23300.

48.   Wu, W., He, Q. and Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11): 397-415.

49.   Urraca, J. L., Chamorro-Mendiluce, R., Orellana, G. and Moreno-Bondi, M. C. (2016). Molecularly imprinted polymer beads for clean-up and preconcentration of β-lactamase-resistant penicillins in milk. Analytical and Bioanalytical Chemistry, 408(7): 1843-1854.

50.   Gros, M., Rodríguez-Mozaz, S. and Barceló, D. (2013). Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. Journal of Chromatography A, 1292: 173-188.

51.   Salari, M., Dehghani, M. H., Azari, A., Motevalli, M. D., Shabanloo, A. and Ali, I. (2019). High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm. Journal of Molecular Liquids, 285: 146-157.

52.   Huang, Y., Zheng, H., Li, H., Zhao, C., Zhao, R. and Li, S. (2020). Highly selective uranium adsorption on 2-phosphonobutane-1,2,4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles. Chemical Engineering Journal, 388: 124349.

53.   Li, W. K. and Shi, Y. P. (2019). Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAC - Trends in Analytical Chemistry, 118: 652-665.

54.   Mutavdzic Pavlovic, D., Nikšić, K., Livazović, S., Brnardić, I. and Anžlovar, A. (2015). Preparation and application of sulfaguanidine-imprinted polymer on solid-phase extraction of pharmaceuticals from water. Talanta, 131: 99-107.

55.   Soledad-Rodríguez, B., Fernández-Hernando, P., Garcinuño-Martínez, R. M. and Durand-Alegría, J. S. (2017). Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chemistry, 224: 432-438.

56.   Li, G., Xia, L., Dong, J., Chen, Y. and Li, Y. (2019). Metal-organic frameworks. In Solid-Phase Extraction. Elsevier Inc.

57.   Lirio, S., Liu, W., Lin, C., Lin, C. and Huang, H. (2016). Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. Journal of Chromatography A, 1428: 236-245.

58.   Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T. and Férey, G. (2004). A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry - A European Journal, 10(6): 1373-1382.

59.   Bagheri, A. R. and Ghaedi, M. (2020). Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples. Journal of Pharmaceutical Analysis, 10(4): 365-375.

60.   Bagheri, A. R., Arabi, M., Ghaedi, M., Ostovan, A., Wang, X., Li, J. and Chen, L. (2019). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 195: 390-400.