Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 138 - 152
SYNTHESIS, CHARACTERIZATION AND ELECTROCHEMICAL STUDIES OF
TRANSITION METAL COMPLEXES CONTAINING 3,6-BIS(3,5-DIMETHYLPYRAZOLYL) PYRIDAZINE
LIGAND
(Sintesis, Pencirian dan
Kajian Elektrokimia bagi Kompleks Logam Peralihan Mengandungi Ligan
3,6-Bis(3,5-Dimetilpirazolil) Piridazina)
Shankary Selvanathan and Woi Pei Meng*
Department of Chemistry,
Faculty of Science,
Universiti Malaya, 50603 Kuala
Lumpur, Malaysia
*Corresponding author: pmwoi@um.edu.my
Received: 2 November 2020;
Accepted: 21 January 2021; Published: 20
February 2021
Abstract
Four novel coordination complexes were
synthesized based on 3,6-bis (3,5-dimethylpyrazolyl) pyridazine ligand with
Cu(II), Fe(II), Ni(II) and Co(II) metals. The synthesized complexes were
characterized using several analyses. The infrared (IR) spectra for all the
complexes showed a significant shift at the ligand methyl group (C-H), pyrazole
ring (C=N), pyridazine ring (C-N) and (N-N) at 2926 cm-1, 1137 cm-1,
1162 cm-1 and 970 cm-1, respectively. The
elemental analyses of the complexes confined to the stoichiometry of 1:2 ratio
between the ligand and the metal cation. The presence of the metal in the
complexes was confirmed using the FESEM-EDX analysis. The complexation of the
metals to the ligand was evidenced when all the complexes exhibit a significant
shift in the position of the characteristic ligand band at around 260 nm due to
the HOMO → LUMO π → π* transitions of the pyridazine and
pyrazoles groups in the UV-Vis spectrum. Cyclic voltammetry (CV) method was
used to explore the redox characteristics of the complexes. The Cu(II), Fe(II)
and Ni(II) complexes exhibited quasi-reversible single electron transfer
process while no peak was observed in Co(II) complex upon scanning from -1.5 to
1.5 V vs. Ag/AgCl. This observation is speculated to be the effect of poor
complexation in between the metal and the ligand. The potential recorded for
Cu(II) complex at 0.03 V vs. Ag/AgCl was corresponded to the reduction of
Cu(II) to Cu(I) while the potential at
0.75 V was due to the oxidation of Cu(I) to Cu(II). For the Fe(II)
complex, the redox couple Fe(II)/Fe(III) was recorded at -0.47 V and -0.67 V
during its oxidation and reduction process respectively. Finally, the peak at
0.71 V in the CV of Ni(II) complex is attributed to its oxidation process of
Ni(I) to Ni(II) while the peak at 0.12 V is due to its reduction from Ni(II) to
Ni(I).
Keywords:
pyridazine,
transition metal, coordination complex, electrochemical behavior
Abstrak
Empat
kompleks koordinatan novel telah disintesis berdasarkan ligan
3,6-bis(3,5-dimetilpirazolil) piridazina dengan logam Cu(II), Fe(II), Ni(II)
dan Co(II). Kompleks yang disintesis dicirikan dengan beberapa kaedah analisis.
Spektrum IR bagi kesemua kompleks menunjukkan perubahan yang ketara pada
kumpulan metil ligan (C-H), lingkaran pirazol (C=N), lingkaran piridazina (C-N)
and (N-N) masing-masing pada 2926 cm-1, 1137 cm-1, 1162
cm-1 and 970 cm-1. Analisis unsur kompleks membataskan
nisbah stoikiometri ligan: logam kepada 1: 2. Kehadiran logam dalam kompleks
juga telah disahkan menerusi analisis FESEM-EDX. Pembentukan kompleks bersama
logam dan ligan disahkan lebih lanjut kerana semua kompleks mempamerkan
perubahan yang sangat ketara dalam pencirian pada 260 nm kerana peralihan HOMO
→ LUMO π → π* dalam lingkaran pirazol and piridazina
menerusi spektrum UV-Vis. Sifat redoks kompleks telah disiasat dengan kaedah
elektrokimia voltammetri kitaran (CV). Kompleks Cu(II), Fe(II) dan Ni(II)
mempamerkan proses pemindahan elektron tunggal yang seakan-balik manakala tiada
puncak diperhatikan bagi kompleks Co(II) apabila kesemua kompleks ini diimbas
pada potensi -1.5 ke 1.5 V vs. Ag/AgCl. Potensi untuk kompleks Cu(II) pada 0.03
V vs. Ag/AgCl sepadan dengan penurunan Cu(II) kepada Cu(I) manakala potensi
pada 0.75 V adalah disebabkan oleh pengoksidaan Cu(I) kepada Cu(II). Bagi
kompleks Fe(II), pasangan redoks Fe(II)/Fe(III) mencatatkan potensi
masing-masing pada -0.47 V dan -0.67 V semasa proses pengoksidaan dan
penurunan. Akhirnya, potensi pada 0.71 V dalam voltammogram kitaran kompleks
Ni(II) adalah disebabkan oleh proses pengoksidaan Ni(II) kepada Ni(I) manakala
potensi pada 0.12 V adalah disebabkan oleh penurunan dari Ni(II) ke Ni(I).
Kata kunci: piridazina,
logam peralihan, kompleks koordinatan, tindakan elektrokimia
References
1.
Cargnelutti, R., Schumacher, R. F., Belladona, A. L.
and Kazmierczak, J. C. (2021). Coordination chemistry and synthetic approaches
of pyridyl-selenium ligands: A decade update. Coordination Chemistry Reviews, 426: 213537.
2.
Dubois,
D. L. (1997). Development of transition metal phosphine complexes as
electrocatalysts for CO2 and CO reduction. Comments on Inorganic Chemistry, 19(5): 307-325.
3.
Cheung,
K.-C., Wong, W. L., Ma, D. L., Lai, T. S. and Wong, K. Y. (2007). Transition
metal complexes as electrocatalysts-Development and applications in
electro-oxidation reactions. Coordination
Chemistry Reviews, 251(17): 2367-2385.
4.
Grünwald,
K. R., Saischek, G., Volpe, M., Belaj, F. and Mösch-Zanetti, N. C. (2010).
Pyridazine-Based ligands and their coordinating ability towards first-row
transition metals. European Journal of
Inorganic Chemistry, (15): 2297-2305.
5.
Viciano-Chumillas,
M., et al. (2010). Coordination Versatility of Pyrazole-Based Ligands towards
High-Nuclearity Transition-Metal and Rare-Earth Clusters. European Journal of Inorganic Chemistry, (22): p. 3403-3418.
6.
Gao,
H., Tanase, S., de Jongh, L. J. and Reedijk, J. (2006). Synthesis, crystal
structures and properties of the novel mononuclear copper(II) and tetranuclear
cobalt(II) complexes with 3,6-bis-(3,5-dimethylpyrazolyl)-pyridazine. Transition Metal Chemistry, 31(8):
1088-1092.
7.
Baranac-Stojanović,
M. (2014). New insight into the anisotropic effects in solution-state NMR
spectroscopy. RSC Advances, 4(1):
308-321.
8.
Kaddouri,
Y., Abrigach, F., Mechbal, N., Karzazi, Y., El Kodadi, M., Aouniti, A. and
Touzani, R. (2019). Pyrazole compounds: Synthesis, molecular structure,
chemical reactivity, experimental and theoretical DFT FTIR spectra. Materials Today: Proceedings, 13:
956-963.
9.
Anush,
S. M., Vishalakshi, B., Kalluraya, B. and Manju, N. (2018). Synthesis of
pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological
Macromolecules, 119: 446-452.
10.
Figueiredo,
H., Silva, B., Raposo, M. M. M., Fonseca, A. M., Neves, I. C., Quintelas, C.
and Tavares, T. (2008). Immobilization of Fe(III) complexes of pyridazine
derivatives prepared from biosorbents supported on zeolites. Microporous and Mesoporous Materials,
109(1): 163-171.
11.
Mészáros
Szécsényi, K., Leovac, V. M., Jacimovic, Z. K. and Pokol, G. (2003). Transition
Metal Complexes with Pyrazole Based Ligands. Journal of Thermal Analysis and Calorimetry, 74(3): 943-952.
12.
Mezei,
G. and Raptis, R. G. (2004). Effect of pyrazole-substitution on the structure
and nuclearity of Cu(II)-pyrazolato complexes. Inorganica Chimica Acta, 357(11): 3279-3288.
13.
Kutluay,
A. and Aslanoglu, M. (2013). Modification of electrodes using conductive porous
layers to confer selectivity for the voltammetric detection of paracetamol in
the presence of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 185: 398-404.
14.
Beaver,
B. D., Hall, L. C., Lukehart, C. M. and Preston, L. D. (1981). Reactions of
coordinated molecules. XXVII. Cyclic voltammetry of several transition metal
metalla-acetylacetonate complexes. Inorganica
Chimica Acta, 47: 25-30.
15.
Huang,
F., Wang, F., Feng, S., Li, Y., Li, S. and Li, Y. (2013). Direct
electrochemistry and electrochemical biosensing of glucose oxidase based on
CdSe@CdS quantum dots and MWNT-modified electrode. Journal of Solid State Electrochemistry, 17(5): 1295-1301.
16.
Hamel,
C., Chamelot, P. and Taxil, P. (2004). Neodymium(III) cathodic processes in
molten fluorides. Electrochimica Acta,
49(25): 4467-4476.