Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 138 - 152

 

 

 

 

SYNTHESIS, CHARACTERIZATION AND ELECTROCHEMICAL STUDIES OF TRANSITION METAL COMPLEXES CONTAINING 3,6-BIS(3,5-DIMETHYLPYRAZOLYL) PYRIDAZINE LIGAND

 

(Sintesis, Pencirian dan Kajian Elektrokimia bagi Kompleks Logam Peralihan Mengandungi Ligan 3,6-Bis(3,5-Dimetilpirazolil) Piridazina)

 

Shankary Selvanathan and Woi Pei Meng*

 

Department of Chemistry, Faculty of Science,

Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author:  pmwoi@um.edu.my

 

 

Received: 2 November 2020; Accepted: 21 January 2021; Published:  20 February 2021

 

 

Abstract

Four novel coordination complexes were synthesized based on 3,6-bis (3,5-dimethylpyrazolyl) pyridazine ligand with Cu(II), Fe(II), Ni(II) and Co(II) metals. The synthesized complexes were characterized using several analyses. The infrared (IR) spectra for all the complexes showed a significant shift at the ligand methyl group (C-H), pyrazole ring (C=N), pyridazine ring (C-N) and (N-N) at 2926 cm-1, 1137 cm-1, 1162 cm-1 and 970 cm-1, respectively. The elemental analyses of the complexes confined to the stoichiometry of 1:2 ratio between the ligand and the metal cation. The presence of the metal in the complexes was confirmed using the FESEM-EDX analysis. The complexation of the metals to the ligand was evidenced when all the complexes exhibit a significant shift in the position of the characteristic ligand band at around 260 nm due to the HOMO → LUMO π → π* transitions of the pyridazine and pyrazoles groups in the UV-Vis spectrum. Cyclic voltammetry (CV) method was used to explore the redox characteristics of the complexes. The Cu(II), Fe(II) and Ni(II) complexes exhibited quasi-reversible single electron transfer process while no peak was observed in Co(II) complex upon scanning from -1.5 to 1.5 V vs. Ag/AgCl. This observation is speculated to be the effect of poor complexation in between the metal and the ligand. The potential recorded for Cu(II) complex at 0.03 V vs. Ag/AgCl was corresponded to the reduction of Cu(II) to Cu(I) while the potential at  0.75 V was due to the oxidation of Cu(I) to Cu(II). For the Fe(II) complex, the redox couple Fe(II)/Fe(III) was recorded at -0.47 V and -0.67 V during its oxidation and reduction process respectively. Finally, the peak at 0.71 V in the CV of Ni(II) complex is attributed to its oxidation process of Ni(I) to Ni(II) while the peak at 0.12 V is due to its reduction from Ni(II) to Ni(I).

 

Keywords:  pyridazine, transition metal, coordination complex, electrochemical behavior

 

Abstrak

Empat kompleks koordinatan novel telah disintesis berdasarkan ligan 3,6-bis(3,5-dimetilpirazolil) piridazina dengan logam Cu(II), Fe(II), Ni(II) dan Co(II). Kompleks yang disintesis dicirikan dengan beberapa kaedah analisis. Spektrum IR bagi kesemua kompleks menunjukkan perubahan yang ketara pada kumpulan metil ligan (C-H), lingkaran pirazol (C=N), lingkaran piridazina (C-N) and (N-N) masing-masing pada 2926 cm-1, 1137 cm-1, 1162 cm-1 and 970 cm-1. Analisis unsur kompleks membataskan nisbah stoikiometri ligan: logam kepada 1: 2. Kehadiran logam dalam kompleks juga telah disahkan menerusi analisis FESEM-EDX. Pembentukan kompleks bersama logam dan ligan disahkan lebih lanjut kerana semua kompleks mempamerkan perubahan yang sangat ketara dalam pencirian pada 260 nm kerana peralihan HOMO → LUMO π → π* dalam lingkaran pirazol and piridazina menerusi spektrum UV-Vis. Sifat redoks kompleks telah disiasat dengan kaedah elektrokimia voltammetri kitaran (CV). Kompleks Cu(II), Fe(II) dan Ni(II) mempamerkan proses pemindahan elektron tunggal yang seakan-balik manakala tiada puncak diperhatikan bagi kompleks Co(II) apabila kesemua kompleks ini diimbas pada potensi -1.5 ke 1.5 V vs. Ag/AgCl. Potensi untuk kompleks Cu(II) pada 0.03 V vs. Ag/AgCl sepadan dengan penurunan Cu(II) kepada Cu(I) manakala potensi pada 0.75 V adalah disebabkan oleh pengoksidaan Cu(I) kepada Cu(II). Bagi kompleks Fe(II), pasangan redoks Fe(II)/Fe(III) mencatatkan potensi masing-masing pada -0.47 V dan -0.67 V semasa proses pengoksidaan dan penurunan. Akhirnya, potensi pada 0.71 V dalam voltammogram kitaran kompleks Ni(II) adalah disebabkan oleh proses pengoksidaan Ni(II) kepada Ni(I) manakala potensi pada 0.12 V adalah disebabkan oleh penurunan dari Ni(II) ke Ni(I).

 

Kata kunci:  piridazina, logam peralihan, kompleks koordinatan, tindakan elektrokimia

 

References

1.      Cargnelutti, R., Schumacher, R. F., Belladona, A. L. and Kazmierczak, J. C. (2021). Coordination chemistry and synthetic approaches of pyridyl-selenium ligands: A decade update. Coordination Chemistry Reviews, 426: 213537.

2.      Dubois, D. L. (1997). Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments on Inorganic Chemistry, 19(5): 307-325.

3.      Cheung, K.-C., Wong, W. L., Ma, D. L., Lai, T. S. and Wong, K. Y. (2007). Transition metal complexes as electrocatalysts-Development and applications in electro-oxidation reactions. Coordination Chemistry Reviews, 251(17): 2367-2385.

4.      Grünwald, K. R., Saischek, G., Volpe, M., Belaj, F. and Mösch-Zanetti, N. C. (2010). Pyridazine-Based ligands and their coordinating ability towards first-row transition metals. European Journal of Inorganic Chemistry, (15): 2297-2305.

5.      Viciano-Chumillas, M., et al. (2010). Coordination Versatility of Pyrazole-Based Ligands towards High-Nuclearity Transition-Metal and Rare-Earth Clusters. European Journal of Inorganic Chemistry, (22): p. 3403-3418.

6.      Gao, H., Tanase, S., de Jongh, L. J. and Reedijk, J. (2006). Synthesis, crystal structures and properties of the novel mononuclear copper(II) and tetranuclear cobalt(II) complexes with 3,6-bis-(3,5-dimethylpyrazolyl)-pyridazine. Transition Metal Chemistry, 31(8): 1088-1092.

7.      Baranac-Stojanović, M. (2014). New insight into the anisotropic effects in solution-state NMR spectroscopy. RSC Advances, 4(1): 308-321.

8.      Kaddouri, Y., Abrigach, F., Mechbal, N., Karzazi, Y., El Kodadi, M., Aouniti, A. and Touzani, R. (2019). Pyrazole compounds: Synthesis, molecular structure, chemical reactivity, experimental and theoretical DFT FTIR spectra. Materials Today: Proceedings, 13: 956-963.

9.      Anush, S. M., Vishalakshi, B., Kalluraya, B. and Manju, N. (2018). Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological Macromolecules, 119: 446-452.

10.   Figueiredo, H., Silva, B., Raposo, M. M. M., Fonseca, A. M., Neves, I. C., Quintelas, C. and Tavares, T. (2008). Immobilization of Fe(III) complexes of pyridazine derivatives prepared from biosorbents supported on zeolites. Microporous and Mesoporous Materials, 109(1): 163-171.

11.   Mészáros Szécsényi, K., Leovac, V. M., Jacimovic, Z. K. and Pokol, G. (2003). Transition Metal Complexes with Pyrazole Based Ligands. Journal of Thermal Analysis and Calorimetry, 74(3): 943-952.

12.   Mezei, G. and Raptis, R. G. (2004). Effect of pyrazole-substitution on the structure and nuclearity of Cu(II)-pyrazolato complexes. Inorganica Chimica Acta, 357(11): 3279-3288.

13.   Kutluay, A. and Aslanoglu, M. (2013). Modification of electrodes using conductive porous layers to confer selectivity for the voltammetric detection of paracetamol in the presence of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 185: 398-404.

14.   Beaver, B. D., Hall, L. C., Lukehart, C. M. and Preston, L. D. (1981). Reactions of coordinated molecules. XXVII. Cyclic voltammetry of several transition metal metalla-acetylacetonate complexes. Inorganica Chimica Acta, 47: 25-30.

15.   Huang, F., Wang, F., Feng, S., Li, Y., Li, S. and Li, Y. (2013). Direct electrochemistry and electrochemical biosensing of glucose oxidase based on CdSe@CdS quantum dots and MWNT-modified electrode. Journal of Solid State Electrochemistry, 17(5): 1295-1301.

16.   Hamel, C., Chamelot, P. and Taxil, P. (2004). Neodymium(III) cathodic processes in molten fluorides. Electrochimica Acta, 49(25): 4467-4476.