Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 153 - 164

 

 

 

 

A MINI REVIEW ON SENSOR AND BIOSENSOR FOR FOOD FRESHNESS DETECTION

 

(Satu Ulasan Mini Sensor dan Biosensor untuk Pengesanan Kesegaran Makanan)

 

Wan Elina Faradilla Wan Khalid* and Nur Izzatul Afiqah Jais

 

Universiti Teknologi MARA, Cawangan Negeri Sembilan,

Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author:  wan_elina@uitm.edu.my

 

 

Received: 11 October 2020; Accepted: 30 December 2020; Published:  20 February 2021

 

 

Abstract

The freshness of food is one of the important qualities that need to be considered by consumers while selecting the food. However, many people are having trouble to determine the level of freshness without the presence of devices or instruments. Therefore, the development of food freshness sensor has become one of the promising analytical techniques, which provides more benefits as compared to other instruments such as gas chromatography mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). Food freshness sensors offer faster analysis and most importantly, it is non-destructive to food sample. In this review, we focus on the development and performance of various types of sensors for food freshness detection such as electrochemical sensors, optical sensors, potentiometry sensors and pH sensor. For each type of sensors, there are several main elements that will be emphasized, which include type of samples, reagents used, immobilization matrix and performances of the sensors. A section that discusses the future works, which have the potential for the application in the sensor and biosensor of freshness detection is also highlighted.

 

Keywords:  sensor, biosensor, immobilization matrix, food freshness detection 

 

Abstrak

Kesegaran makanan ialah salah satu kualiti penting yang perlu diambil kira oleh pengguna semasa pemilihan makanan. Walau bagaimanapun, pengguna akan mengalami kesukaran untuk menentukan tahap kesegaran makanan tanpa kehadiran peralatan atau instrumen. Oleh itu, pembangunan sensor kesegaran makanan telah menjadi salah satu teknik analisis yang menjanjikan lebih banyak faedah berbanding instrumen lain seperti kromatografi gas-spektrometri jisim (GC-MS), kromatografi cecair prestasi tinggi (HPLC) dan elektroforesis rerambut (CE). Sensor kesegaran makanan menawarkan analisis yang lebih cepat dan yang paling penting ia tidak merosakkan sampel makanan. Ulasan ini memfokuskan kepada pembangunan dan prestasi pelbagai jenis sensor untuk pengesanan kesegaran makanan seperti sensor elektrokimia, sensor optik dan sensor potensiometri. Bagi setiap jenis sensor, terdapat beberapa elemen penting yang akan ditekankan termasuk jenis sampel, reagen yang digunakan, matrik pemegunan dan prestasi sensor. Bahagian yang membincangkan kajian masa depan yang berpotensi untuk aplikasi sensor dan biosensor untuk penentuan kesegaran juga disorot.

 

Kata kunci:  sensor, biosensor, matrik pemegunan, penentuan kesegaran makanan

 

References

1.      Lianou, A., Panagou, E. Z. and Nychas, G. J. E. (2016). Microbiological spoilage of foods and beverages. In the Stability and Shelf Life of Food: pp. 3-42.

2.      Petruzzi, L., Corbo, M. R., Sinigaglia, M. and Bevilacqua, A. (2017). Microbial spoilage of foods: Fundamentals. In the Microbiological Quality of Food: Foodborne Spoilers: pp. 1-21.

3.      Kuswandi, B., Jayus, Larasati, T. S., Abdullah, A., and Heng, L. Y. (2012). Real-time monitoring of shrimp spoilage using on-package sticker sensor based on natural dye of curcumin. Food Analytical Methods, 5(4): 881-889.

4.      Al-Kharousi, Z. S., Guizani, N., Al-Sadi, A. M., Al-Bulushi, I. M., and Shaharoona, B. (2016). Hiding in fresh fruits and vegetables: Opportunistic pathogens may cross geographical barriers. International Journal of Microbiology, 2016: 1-14.

5.      Hong, X. and Wang, J. (2012). Discrimination and prediction of pork freshness by E-nose. IFIP Advances in Information and Communication Technology, 1: 1-14.

6.      Kaczmarek, M., Avery, S. V. and Singleton, I. (2019). Microbes associated with fresh produce: Sources, types and methods to reduce spoilage and contamination. Advances in Applied Microbiology, 107: 4-5.

7.      Ghasemi-Varnamkhasti, M., Apetrei, C., Lozano, J. and Anyogu, A. (2018). Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science and Technology, 80: 71-92.

8.      Dudnyk, I., Janeček, E. R., Vaucher-Joset, J. and Stellacci, F. (2018). Edible sensors for meat and seafood freshness. Sensors and Actuators, B: Chemical, 259: 1-9.

9.      Lee, K., Baek, S., Kim, D. and Seo, J. (2019). A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis. Food Packaging and Shelf Life, 19: 40-46.

10.   Maftoonazad, N. and Ramaswamy, H. (2019). Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing, 75: 76-84.

11.   Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T. and Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130: 547-554.

12.   Honeychurch, K. C. and Piano, M. (2018). Electrochemical (bio) sensors for environmental and food analyses. Biosensors, 8(3): 2-4.

13.   Johnson, J., Atkin, D., Lee, K., Sell, M. and Chandra, S. (2019). Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Science, 150: 40-46.

14.   Zeng, L., Peng, L., Wu, D. and Yang, B. (2019). Electrochemical sensors for food safety. Nutrition in Health and Disease - Our Challenges Now and Forthcoming Time: pp. 1-11.

15.   Rustagi, S. and Kumar, P. (2013). Biosensor and its application in food industry. Advance in Bioresearch, 4(42): 168-170.

16.   Thakur, M. S. and Ragavan, K. V. (2013). Biosensors in food processing. Journal of Food Science and Technology, 50(4): 625-641.

17.   Dobrucka, R. and Przekop, R. (2019). New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, 43(11): 1-9.

18.   Kalpana, S., Priyadarshini, S. R., Maria Leena, M., Moses, J. A. and Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science and Technology, 93: 145-157.

19.   Müller, P. and Schmid, M. (2019). Intelligent packaging in the food sector: A brief overview. Foods, 8(1): 16.

20.   Perez de Vargas-Sansalvador, I. M., Erenas, M. M., Martínez-Olmos, A., Mirza-Montoro, F., Diamond, D. and Capitan-Vallvey, L. F. (2020). Smartphone based meat freshness detection. Talanta, 216: 1-24.

21.   Plumpe, M., Beckers, M., Mecnika, V., Seide, G., Gries, T., and Bunge, C. A. (2017). Applications of polymer-optical fibres in sensor technology, lighting and further applications. Polymer Optical Fibres, 2017: 311-335.

22.   Kuswandi, B. (2017). Freshness sensors for food packaging. Reference Module in Food Science: pp. 1-11.

23.   Mujahid, A., and Dickert, F. L. (2012). Molecularly imprinted polymers for sensors: Comparison of optical and mass-sensitive detection. Molecularly Imprinted Sensors: pp. 125-159.

24.   Peixoto, A. C. and Silva, A. F. (2017). Smart devices: Micro-and nanosensors. Bioinspired Materials for Medical Applications: pp. 297-329.

25.   Skouteris, G., Webb, D. P., Shin, K. L. F. and Rahimifard, S. (2018). Assessment of the capability of an optical sensor for in-line real-time wastewater quality analysis in food manufacturing. Water Resources and Industry, 20: 75-81.

26.   Zhang, H., Zhang, H., Aldalbahi, A., Zuo, X., Fan, C. and Mi, X. (2017). Fluorescent biosensors enabled by graphene and graphene oxide. Biosensors and Bioelectronicss, 89: 96-106.

27.   Lobnik, A., Turel, M. and Urek, Š. K. (2012). Optical chemical sensors: Design and applications. Advances in Chemical Sensors: pp. 4-28.

28.   Weston, M., Kuchel, R. P., Ciftci, M., Boyer, C. and Chandrawati, R. (2020). A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. Journal of Colloid and Interface Science, 572: 31-38.

29.   Hasanah, U., Setyowati, M., Efendi, R., Muslem, M., Md Sani, N. D., Safitri, E. and Idroes, R. (2019). Preparation and characterization of a pectin membrane-based optical pH sensor for fish freshness monitoring. Biosensors, 9(2): 2-8.

30.   Lee, G. Y. and Shin, H. S. (2016). Development of freshness indicator for quality of skate (Raja kenojei) during storage. Food Science and Biotechnology, 25(5): 1485-1489.

31.   Wang, W., Xiong, Y. and Li, M. (2017). A renewable intelligent colorimetric indicator based on polyaniline for detecting freshness of tilapia. Packaging Technology and Science, 31(3): 133-140.

32.   Ahmed, M. U., Hossain, M. M., and Tamiya, E. (2008). Electrochemical biosensors for medical and food applications. Electroanalysis, 20(6): 616–626.

33.   Antuña-Jiménez, D., Díaz-Díaz, G., Blanco-López, M. C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J. and Tuñón-Blanco, P. (2012). Molecularly Imprinted Electrochemical Sensors: Past, present, and future. Molecularly Imprinted Sensors: pp. 1-34.

34.   Shaw, L. and Dennany, L. (2017). Applications of electrochemical sensors: Forensic drug analysis. Current Opinion in Electrochemistry, 3: 23-28.

35.   Dejous, C., Hallil, H., Raimbault, V., Rukkumani, R. and Yakhmi, J. V. (2017). Using microsensors to promote the development of innovative therapeutic nanostructures. Nanostructures for Novel Therapy: Synthesis, Characterization and Applications, 539-561.

36.   Zuber, A. A., Klantsataya, E., and Bachhuka, A. (2019). Biosensing. Comprehensive Nanoscience and Nanotechnology: pp. 105-126.

37.   Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan, J. B. B. and Krishnan, U. M. (2013). Development of electrochemical biosensor with nano-interface for xanthine sensing-A novel approach for fish freshness estimation. Food Chemistry, 139: 963-969.

38.   Dervisevic, M., Custiuc, E., Çevik, E. and Şenel, M. (2015). Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chemistry, 181: 277-283.

39.   Dolmaci, N., Çete, S., Arslan, F. and Yaşar, A. (2012). An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artificial Cells, Blood Substitutes, and Biotechnology, 40(4): 275-279.

40.   Bourigua, S., El Ichi, S., Korri-Youssoufi, H., Maaref, A., Dzyadevych, S.and Jaffrezic Renault, N. (2011). Electrochemical sensing of trimethylamine based on polypyrrole-flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for evaluation of fish freshness. Biosensors and Bioelectronics, 28(1): 105-111.

41.   González, M. and González, V. (2005). Methods for the determination of water and minerals in food. Food and Nutritional Analysis: pp. 241-250.

42.   Hu, J., Stein, A. and Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC - Trends in Analytical Chemistry, 76: 102-114.

43.   Amemiya, S. (2007). Potentiometric Ion-Selective Electrodes. In Handbook of Electrochemistry: pp. 261-294.

44.   Park, H. J., Yoon, J. H., Lee, K. G. and Choi, B. G. (2019). Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Convergence, 6(1): 1-7.

45.   Kaneki, N., Tanaka, H., Kurosaka, T., Shimada, K. and Asano, Y. (2003). Measurement of fish freshness using potentiometric gas sensor. Sensors and Materials, 15(8): 413-422.