Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 153 - 164
A MINI REVIEW ON SENSOR AND BIOSENSOR FOR FOOD FRESHNESS DETECTION
(Satu Ulasan Mini Sensor dan Biosensor untuk Pengesanan Kesegaran Makanan)
Wan
Elina Faradilla Wan Khalid* and Nur Izzatul Afiqah Jais
Universiti
Teknologi MARA, Cawangan Negeri Sembilan,
Kampus
Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
*Corresponding
author: wan_elina@uitm.edu.my
Received: 11 October 2020; Accepted: 30 December 2020;
Published: 20 February 2021
Abstract
The freshness of food is one of the important
qualities that need to be considered by consumers while selecting the food.
However, many people are having trouble to determine the level of freshness
without the presence of devices or instruments. Therefore, the development of
food freshness sensor has become one of the promising analytical techniques,
which provides more benefits as compared to other instruments such as gas
chromatography mass spectrometry (GC-MS),
high-performance liquid chromatography
(HPLC) and capillary
electrophoresis (CE). Food freshness sensors offer faster analysis and most
importantly, it is non-destructive to food sample. In this review, we focus on
the development and performance of various types of sensors for food freshness
detection such as electrochemical sensors, optical sensors, potentiometry
sensors and pH sensor. For each type of sensors, there are several main
elements that will be emphasized, which include type of samples, reagents used,
immobilization matrix and performances of the sensors. A section that discusses
the future works, which have the potential for the application in the sensor
and biosensor of freshness detection is also highlighted.
Keywords: sensor,
biosensor, immobilization matrix, food freshness detection
Abstrak
Kesegaran makanan ialah salah satu
kualiti penting yang perlu diambil kira oleh pengguna semasa pemilihan makanan.
Walau bagaimanapun, pengguna akan mengalami kesukaran untuk menentukan tahap kesegaran
makanan tanpa kehadiran peralatan atau instrumen. Oleh itu, pembangunan sensor
kesegaran makanan telah menjadi salah satu teknik analisis yang menjanjikan
lebih banyak faedah berbanding instrumen lain seperti kromatografi
gas-spektrometri jisim (GC-MS), kromatografi cecair prestasi tinggi (HPLC) dan
elektroforesis rerambut (CE). Sensor kesegaran makanan menawarkan analisis yang
lebih cepat dan yang paling penting ia tidak merosakkan sampel makanan. Ulasan
ini memfokuskan kepada pembangunan dan prestasi pelbagai jenis sensor untuk
pengesanan kesegaran makanan seperti sensor elektrokimia, sensor optik dan
sensor potensiometri. Bagi setiap jenis sensor, terdapat beberapa elemen
penting yang akan ditekankan termasuk jenis sampel, reagen yang digunakan, matrik
pemegunan dan prestasi sensor. Bahagian yang membincangkan kajian masa depan
yang berpotensi untuk aplikasi sensor dan biosensor untuk penentuan kesegaran
juga disorot.
Kata kunci: sensor, biosensor, matrik pemegunan, penentuan kesegaran
makanan
References
1.
Lianou,
A., Panagou, E. Z. and Nychas, G. J. E. (2016). Microbiological spoilage of
foods and beverages. In the Stability and Shelf Life of Food: pp.
3-42.
2. Petruzzi, L., Corbo, M. R., Sinigaglia, M. and
Bevilacqua, A. (2017). Microbial spoilage of foods: Fundamentals. In the
Microbiological Quality of Food: Foodborne Spoilers: pp. 1-21.
3. Kuswandi, B., Jayus, Larasati, T. S., Abdullah, A.,
and Heng, L. Y. (2012). Real-time monitoring of shrimp spoilage using
on-package sticker sensor based on natural dye of curcumin. Food Analytical
Methods, 5(4): 881-889.
4. Al-Kharousi, Z. S., Guizani, N., Al-Sadi, A. M.,
Al-Bulushi, I. M., and Shaharoona, B. (2016). Hiding in fresh fruits and
vegetables: Opportunistic pathogens may cross geographical barriers. International
Journal of Microbiology, 2016: 1-14.
5. Hong, X. and Wang, J. (2012). Discrimination and
prediction of pork freshness by E-nose. IFIP Advances in Information and
Communication Technology, 1: 1-14.
6. Kaczmarek, M., Avery, S. V. and Singleton, I.
(2019). Microbes associated with fresh produce: Sources, types and methods to
reduce spoilage and contamination. Advances in Applied Microbiology, 107:
4-5.
7. Ghasemi-Varnamkhasti, M., Apetrei, C., Lozano, J. and
Anyogu, A. (2018). Potential use of electronic noses, electronic tongues and
biosensors as multisensor systems for spoilage examination in foods. Trends
in Food Science and Technology, 80: 71-92.
8. Dudnyk, I., Janeček, E. R., Vaucher-Joset, J. and
Stellacci, F. (2018). Edible sensors for meat and seafood freshness. Sensors
and Actuators, B: Chemical, 259: 1-9.
9. Lee, K., Baek, S., Kim, D. and Seo, J. (2019). A
freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet
and RGB color analysis. Food Packaging and Shelf Life, 19: 40-46.
10. Maftoonazad, N. and Ramaswamy, H. (2019). Design and
testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH
associated quality in fresh date fruit (Rutab). Polymer Testing, 75: 76-84.
11. Rukchon, C., Nopwinyuwong, A., Trevanich, S.,
Jinkarn, T. and Suppakul, P. (2014). Development of a food spoilage indicator
for monitoring freshness of skinless chicken breast. Talanta, 130: 547-554.
12. Honeychurch, K. C. and Piano, M. (2018).
Electrochemical (bio) sensors for environmental and food analyses. Biosensors,
8(3): 2-4.
13. Johnson, J., Atkin, D., Lee, K., Sell, M. and
Chandra, S. (2019). Determining meat freshness using electrochemistry: Are we
ready for the fast and furious? Meat Science, 150: 40-46.
14. Zeng, L., Peng, L., Wu, D. and Yang, B. (2019).
Electrochemical sensors for food safety. Nutrition in Health and Disease -
Our Challenges Now and Forthcoming Time: pp. 1-11.
15. Rustagi, S. and Kumar, P. (2013). Biosensor and its
application in food industry. Advance in Bioresearch, 4(42): 168-170.
16. Thakur, M. S. and Ragavan, K. V. (2013). Biosensors
in food processing. Journal of Food Science and Technology, 50(4): 625-641.
17.
Dobrucka,
R. and Przekop, R. (2019). New perspectives in active and intelligent food
packaging. Journal of Food Processing and Preservation, 43(11): 1-9.
18. Kalpana, S., Priyadarshini, S. R., Maria Leena, M.,
Moses, J. A. and Anandharamakrishnan, C. (2019). Intelligent packaging: Trends
and applications in food systems. Trends in Food Science and Technology,
93: 145-157.
19. Müller, P. and Schmid, M. (2019). Intelligent
packaging in the food sector: A brief overview. Foods, 8(1): 16.
20. Perez de Vargas-Sansalvador, I. M., Erenas, M. M.,
Martínez-Olmos, A., Mirza-Montoro, F., Diamond, D. and Capitan-Vallvey, L. F.
(2020). Smartphone based meat freshness detection. Talanta, 216: 1-24.
21. Plumpe, M., Beckers, M., Mecnika, V., Seide, G.,
Gries, T., and Bunge, C. A. (2017). Applications of polymer-optical fibres in
sensor technology, lighting and further applications. Polymer Optical Fibres,
2017: 311-335.
22. Kuswandi, B. (2017). Freshness sensors for food
packaging. Reference Module in Food Science: pp. 1-11.
23. Mujahid, A., and Dickert, F. L. (2012). Molecularly
imprinted polymers for sensors: Comparison of optical and mass-sensitive
detection. Molecularly Imprinted Sensors: pp. 125-159.
24. Peixoto, A. C. and Silva, A. F. (2017). Smart
devices: Micro-and nanosensors. Bioinspired Materials for Medical
Applications: pp. 297-329.
25. Skouteris, G., Webb, D. P., Shin, K. L. F. and
Rahimifard, S. (2018). Assessment of the capability of an optical sensor for
in-line real-time wastewater quality analysis in food manufacturing. Water
Resources and Industry, 20: 75-81.
26. Zhang, H., Zhang, H., Aldalbahi, A., Zuo, X., Fan,
C. and Mi, X. (2017). Fluorescent biosensors enabled by graphene and graphene
oxide. Biosensors and Bioelectronicss, 89: 96-106.
27. Lobnik, A., Turel, M. and Urek, Š. K. (2012).
Optical chemical sensors: Design and applications. Advances in Chemical
Sensors: pp. 4-28.
28. Weston, M., Kuchel, R. P., Ciftci, M., Boyer, C. and
Chandrawati, R. (2020). A polydiacetylene-based colorimetric sensor as an
active use-by date indicator for milk. Journal of Colloid and Interface
Science, 572: 31-38.
29. Hasanah, U., Setyowati, M., Efendi, R., Muslem, M.,
Md Sani, N. D., Safitri, E. and Idroes, R. (2019). Preparation and
characterization of a pectin membrane-based optical pH sensor for fish
freshness monitoring. Biosensors, 9(2): 2-8.
30. Lee, G. Y. and Shin, H. S. (2016). Development of
freshness indicator for quality of skate (Raja kenojei) during storage. Food
Science and Biotechnology, 25(5): 1485-1489.
31. Wang, W., Xiong, Y. and Li, M. (2017). A
renewable intelligent colorimetric indicator based on polyaniline for detecting
freshness of tilapia. Packaging Technology and Science, 31(3): 133-140.
32. Ahmed, M. U., Hossain, M. M., and Tamiya, E. (2008).
Electrochemical biosensors for medical and food applications. Electroanalysis,
20(6): 616–626.
33. Antuña-Jiménez, D., Díaz-Díaz, G., Blanco-López, M.
C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J. and Tuñón-Blanco, P. (2012).
Molecularly Imprinted Electrochemical Sensors: Past, present, and future.
Molecularly Imprinted Sensors: pp. 1-34.
34. Shaw, L. and Dennany, L. (2017). Applications of
electrochemical sensors: Forensic drug analysis. Current Opinion in
Electrochemistry, 3: 23-28.
35. Dejous, C., Hallil, H., Raimbault, V., Rukkumani, R.
and Yakhmi, J. V. (2017). Using microsensors to promote the development of
innovative therapeutic nanostructures. Nanostructures for Novel Therapy:
Synthesis, Characterization and Applications, 539-561.
36. Zuber, A. A., Klantsataya, E., and Bachhuka, A.
(2019). Biosensing. Comprehensive Nanoscience and Nanotechnology: pp. 105-126.
37. Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan,
J. B. B. and Krishnan, U. M. (2013). Development of electrochemical biosensor
with nano-interface for xanthine sensing-A novel approach for fish freshness
estimation. Food Chemistry, 139: 963-969.
38. Dervisevic, M., Custiuc, E., Çevik, E. and
Şenel, M. (2015). Construction of novel xanthine biosensor by using
polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food
Chemistry, 181: 277-283.
39. Dolmaci, N., Çete, S., Arslan, F. and Yaşar, A.
(2012). An amperometric biosensor for fish freshness detection from xanthine
oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artificial
Cells, Blood Substitutes, and Biotechnology, 40(4): 275-279.
40. Bourigua, S., El Ichi, S., Korri-Youssoufi, H.,
Maaref, A., Dzyadevych, S.and Jaffrezic Renault, N. (2011). Electrochemical
sensing of trimethylamine based on polypyrrole-flavin-containing monooxygenase
(FMO3) and ferrocene as redox probe for evaluation of fish freshness. Biosensors
and Bioelectronics, 28(1): 105-111.
41. González, M. and González, V. (2005). Methods for
the determination of water and minerals in food. Food and Nutritional
Analysis: pp. 241-250.
42.
Hu,
J., Stein, A. and Bühlmann, P. (2016). Rational design of all-solid-state
ion-selective electrodes and reference electrodes. TrAC - Trends in
Analytical Chemistry, 76: 102-114.
43. Amemiya, S. (2007). Potentiometric Ion-Selective
Electrodes. In Handbook of Electrochemistry: pp. 261-294.
44. Park, H. J., Yoon, J. H., Lee, K. G. and Choi, B. G.
(2019). Potentiometric performance of flexible pH sensor based on polyaniline
nanofiber arrays. Nano Convergence, 6(1): 1-7.
45. Kaneki, N., Tanaka, H., Kurosaka, T., Shimada, K. and
Asano, Y. (2003). Measurement of fish freshness using potentiometric gas
sensor. Sensors and Materials, 15(8): 413-422.