Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 1045 - 1060

 

 

 

 

ROLE OF VANADIA AND TITANIA PHASES IN THE REMOVAL OF METHYLENE BLUE BY ADSORPTION AND PHOTOCATALYTIC DEGRADATION

 

(Peranan Fasa Vanadia dan Titania dalam Penyingkiran Metilena Biru Melalui Penjerapan dan Degradasi Fotokatalisis)

 

Pei Wen Koh1,2, Cheng Yee Leong2, Leny Yuliati2,3, Hadi Nur2, Siew Ling Lee2*

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81300 Johor Bahru, Malaysia

3Ma Chung Center for Photosynthetic Pigments,

Universitas Ma Chung, Malang 65151, Indonesia

 

*Corresponding author:  sllee@ibnusina.utm.my

 

 

Received: 18 July 2019; Accepted: 20 July 2020; Published:  10 December 2020

 

 

Abstract

Total removal of methylene blue (MB) over vanadia (V2O5) -modified titania (TiO2) composite demonstrated that the V2O5 and TiO2 phases played a vital role in the adsorption and photodegradation of MB, respectively. The 10 mol% of V2O5- modified TiO2 (10V-TiO2) showed the highest removal of MB, i.e., 26- and 2-folds better adsorption capacity than that of undoped TiO2 and V2O5, respectively. The presence of surface hydroxyl, pores, and the highest amount of V5+ species in 10V-TiO2 could be responsible for the high adsorption of MB. V2O5 induced anatase to rutile phase transformation and shifted absorption properties of TiO2 to the visible light region. Considering the rutile phase has lower bandgap energy (3.0 eV), its presence in the sample has enhanced the photodegradation of MB. The photodegradation of MB followed pseudo-second-order reaction. The reusability test elucidated that the photodegradation performance of 10V-TiO2 was improved by 30-folds after the second cycle, with total MB removal due to the exposure of more TiO2 to MB.

 

Keywords:  vanadia, titania, methylene blue, adsorption, photocatalyst, photodegradation

 

Abstrak

Penyingkiran metilena biru (MB) secara keseluruhan oleh komposit titania (TiO2) yang diubahsuai dengan vanadia (V2O5) menunjukkan bahawa fasa V2O5 dan TiO2 masing-masing memainkan peranan penting dalam penjerapan dan fotodegradasi MB. TiO2 yang diubahsuai dengan 10 mol% V2O5 (10V-TiO2) menunjukkan penyingkiran MB yang tertinggi, iaitu 26- dan 2-kali ganda kapasiti penjerapan yang lebih baik daripada TiO2 dan V2O5 yang tidak didopkan. Kewujudan hidrosil di permukaan, liang, dan jumlah spesis V5+ tertinggi dalam 10V-TiO2 menyumbang kepada penjerapan MB yang tinggi. V2O5 mendorong transformasi fasa anatase ke rutil dan sifat-sifat penyerapan TiO2 beralih ke rantau cahaya nampak. Memandangkan fasa rutil mempunyai tenaga jurang jalur yang lebih rendah (3.0 eV), kewujudannya dalam sampel telah meningkatkan prestasi fotodegradasi MB. Fotodegradasi MB mengikuti tindak balas tertib pseudo-kedua. Ujian kebolehgunaan tersebut membuktikan bahawa prestasi fotodegradasi 10V-TiO2 telah ditingkatkan sebanyak 30-kali ganda selepas kitaran kedua kerana lebih banyak TiO2 terdedah kepada MB.

 

Kata kunci:  vanadia, titania, metilena biru, penjerapan, fotokatalis, fotodegradasi

 

References

1.      Koh, P. W., Yuliati, L. and Lee, S. L. (2019). Kinetics and optimization studies of photocatalytic degradation of methylene blue over Cr-doped TiO2 using response surface methodology. Iranian Journal of Science and Technology, Transactions A: Science, 43(1): 95-103.

2.      Koh, P. W., Hatta, M. H. M., Ong, S. T., Yuliati, L. and Lee, S. L. (2017). Photocatalytic degradation of photosensitizing and non-photosensitizing dyes over chromium doped titania photocatalysts under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 332: 215-223.

3.      Kumar, P. S., Ramalingam, S. and Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of Chemical Engineering, 28(1): 149-155.

4.      Roosta, M., Ghaedi, M., Daneshfar, A., Sahraei, R. and Asghari, A. (2014). Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrasonics Sonochemistry, 21(1): 242-252.

5.      Keng, P. S., Lee, S. L., Ha, S. T., Hung, Y. T. and Ong, S. T. (2013). Cheap materials to clean heavy metal polluted waters. In Green Materials for Energy, Products and Depollution Springer, Dordrecht: pp. 335-414.

6.      Leong, C.Y., Koh, P.W., Lo, Y.S., Lee, S.L. (2020). Hydrothermal synthesis of titanium dioxide nanotube with methylamine for photodegradation of Congo red. IOP Conf. Series: Materials Science and Engineering, 833, 012075.

7.      Pirkanniemi, K. and Sillanpää, M. (2002). Heterogeneous water phase catalysis as an environmental application: a review Chemosphere, 48(10): 1047-1060.

8.      MiarAlipour, S., Friedmann, D., Scott, J. and Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341: 404-423.

9.      Ooi, Y. K., Hussin, F., Yuliati, L. and Lee, S. L. (2019). Comparison study on molybdena-titania supported on TUD-1 and TUD-C synthesized via sol-gel templating method: Properties and catalytic performance in olefins epoxidation. Materials Research Express, 6(7): 074001.

10.   Ooi, Y. K., Yuliati, L., Hartanto, D., Nur, H. and Lee, S. L. (2016). Mesostructured TUD-C supported molybdena doped titania as high selective oxidative catalyst for olefins epoxidation at ambient condition. Microporous and Mesoporous Materials, 225: 411-420.

11.   Wang, N., Zhu, L. H., Li, J., and Tang, H. Q. (2007). A novel Fe(OH)3/TiO2 nanoparticles and its high photocatalytic activity. Chinese Chemical Letters, 18(10): 1261-1264.

12.   Hamdan, H., Muhid, M. N. M., Lee, S. L., and Tan, Y. Y. (2009). Visible light enabled V and Cr doped titania-silica aerogel photocatalyst. International Journal of Chemical Reactor Engineering, 7(1).

13.   Ooi, Y. K., Yuliati, L., and Lee, S. L. (2016). Phenol photocatalytic  degradation  over  mesoporous TUD-1-supported chromium oxide-doped titania photocatalyst.  Chinese Journal of Catalysis,  37(11): 1871-1881.

14.   Wu, J. C. S. and Chen, C. H. (2004). A visible-light response vanadium-doped titania nanocatalyst by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 163(3): 509-515.

15.   Li, H., Zhao, G., Chen, Z., Han, G. and Song, B. (2010). Low temperature synthesis of visible light-driven vanadium doped titania photocatalyst. Journal of Colloid and Interface Science, 344(2): 247-250.

16.   Nguyen, T. B., Hwang, M. J., and Ryu, K. S. (2012). High adsorption capacity of V-doped TiO2 for decolorization of methylene blue. Applied Surface Science, 258(19): 7299-7305.

17.   Koh, P. W., Yuliati, L., and Lee, S. L. (2014). Effect of transition metal oxide doping (Cr, Co, V) in the photocatalytic activity of TiO2 for congo red degradation under visible light. Jurnal Teknologi (Sciences & Engineering), 69(5): 45-50.

18.   Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5): 751-767.

19.   Choi, J., Park, H. and Hoffmann, M. R. (2009). Effects of single metal-ion doping on the visible-light photoreactivity of TiO2The Journal of Physical Chemistry C, 114(2): 783-792.

20.   Martin, S. T., Morrison, C. L., and Hoffmann, M. R. (1994). Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. The Journal of Physical Chemistry, 98(51): 13695-13704.

21.   Pena, D. A., Uphade, B. S., and Smirniotis, P. G. (2004). TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. Journal of Catalysis, 221(2), 421-431.

22.   Spurr, R. A. and Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 29(5): 760-762.

23.   Nagaveni, K., Hegde, M. S. and Madras, G. (2004). Structure and photocatalytic activity of Ti1-xMxO2±δ (M= W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. The Journal of Physical Chemistry B, 108(52): 20204-20212.

24.   Astorino, E., John, B. Peri, R. J. Willey, and Guido B. (1995). Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 157(2): 482-500.

25.   Bhattacharyya, K., Varma, S., Tripathi, A. K., Bharadwaj, S. R., and Tyagi, A. K. (2008). Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene. The Journal of Physical Chemistry C, 112(48): 19102-19112.

26.   Lewandowska, A. E., Banares, M. A., Khabibulin, D. F. and Lapina, O. B. (2009). Precursor effect on the molecular structure, reactivity, and stability of alumina-supported vanadia. The Journal of Physical Chemistry C, 113(48): 20648-20656.

27.   Shekar, S. C., Soni, K., Bunkar, R., Sharma, M., Singh, B., Suryanarayana, M. V. S., and Vijayaraghavan, R. (2011). Vapor phase catalytic degradation of bis (2-chloroethyl) ether on supported vanadia–titania catalyst. Applied Catalysis B: Environmental, 103(1-2): 11-20.

28.   Olthof, B., Khodakov, A., Bell, A. T. and Iglesia, E. (2000). Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2The Journal of Physical Chemistry B, 104(7): 1516-1528.

29.   Rao, P. S. N., Rao, K. T. V., Prasad, P. S. S. and Lingaiah, N. (2011). The role of vanadia for the selective oxidation of benzyl alcohol over heteropolymolybdate supported on alumina. Chinese Journal of Catalysis, 32(11-12): 1719-1726.

30.   Zhao, L., Zhu, X., Feng, K., and Wang, B. (2006). Speciation analysis of inorganic vanadium (V(IV)/V (V)) by graphite furnace atomic absorption spectrometry following ion-exchange separation. International Journal of Environmental and Analytical Chemistry, 86(12): 931-939.

31.   Dong, Y., Liu, Y., Lu, D., Zheng, F., Fang, P. and Zhang, H. (2017). Unpredictable adsorption and visible light induced decolorization of nano rutile for the treatment of crystal violet. Solid State Sciences, 66: 1-6.

32.   Yu, L., Yuan, S., Shi, L., Zhao, Y. and Fang, J. (2010). Synthesis of Cu2+ doped mesoporous titania and investigation of its photocatalytic ability under visible light. Microporous and Mesoporous Materials, 134(1-3): 108-114.

33.   Yan, X., Ohno, T., Nishijima, K., Abe, R. and Ohtani, B. (2006). Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chemical Physics Letters, 429(4-6): 606-610.

34.   Matos, J., Hofman, M. and Pietrzak, R. (2013). Synergy effect in the photocatalytic degradation of methylene blue on a suspended mixture of TiO2 and N-containing carbons. Carbon, 54: 460-471.

35.   Nair, R. G., Roy, J. K., Samdarshi, S. K. and Mukherjee, A. K. (2012). Mixed phase V doped titania shows high photoactivity for disinfection of Escherichia coli and detoxification of phenol. Solar Energy Materials and Solar Cells, 105: 103-108.

36.   Wu, H-X, Wang, T-J, Chen, L., Jin, Y., Zhang, Y. and Dou, X-M. (2009). The roles of the surface charge and hydroxyl group on a Fe−Al−Ce adsorbent in fluoride adsorption. Industrial & Engineering Chemistry Research, 48(9): 4530-4534.