Malaysian
Journal of Analytical Sciences Vol 24 No 6
(2020): 893 - 905
DEVELOPMENT OF
DISPERSIVE MICRO-SOLID PHASE EXTRACTION FOR THE ANALYSIS OF OFLOXACIN AND
SPARFLOXACIN IN HUMAN PLASMA
(Pembangunan Pengekstrakan Fasa
Pepejal-Mikro Disesarkan untuk Analisis Oflosaksin dan Sparflosaksin dalam Plasma Manusia)
Sohaib
Jumaah Owaid1, Noorfatimah Yahaya2, Nurul Yani Rahim1,
Rania Adam Edrees Mohammad1, Maizatul
Najwa Jajuli1, Mazidatulakmam Miskam1*
1School of Chemical
Sciences,
Universiti Sains Malaysia, 11900 Minden, Pulau Pinang, Malaysia
2 Integrative Medicine
Cluster, Advanced Medical and Dental Institute (AMDI),
Universiti Sains
Malaysia, 13200 Bertam, Pulau Pinang, Malaysia
*Corresponding author: mazidatul@usm.my
Received: 13 August 2020;
Accepted: 18 October 2020; Published: 10
December 2020
Abstract
Dispersive micro-solid phase extraction (D-μ-SPE)
using C18 adsorbent combined with HPLV-UV was developed for the
determination of ofloxacin and sparfloxacin in human plasma. Seven
D‐μ‐SPE parameters namely type and amount of adsorbent mass,
sample volume, pH of sample solution, extraction time, desorption solvent and
volume were optimized. Under optimum conditions, calibration curves showed good
linearity in the range of 0.5–1000 μg L-1 with acceptable limit
of detection (LOD) of 0.73 and 1.81 μg L-1 and limit of
quantitation (LOQ) of 2.44 and 6.03 μg L-1 for ofloxacin and
sparfloxacin, respectively. The D‐μ‐SPE also demonstrated
acceptable precision at the concentration of 500 dan 1000 μg L-1
of ofloxacin and sparfloxacin, respectively in human plasma with RSD value of ≤12.5%. A good relative recoveries was obtained between
90.1-109.5%. The developed D-μ-SPE method has proven to be a fast and
simple approach which only requires low amount of extraction solvent for drug
analysis.
Keywords: dispersive micro-solid
phase extraction, high performance liquid chromatography, ofloxacin,
sparfloxacin, human plasma
Abstrak
Pengekstrakkan fasa
pepejal mikro disesarkan (D-µ-SPE) menggunakan penjerap C18 yang
digabungkan dengan HPLC-UV telah dibangunkan untuk penentuan oflosaksin dan
sparflosaksin dalam plasma manusia. Beberapa parameter D‐μ‐SPE
seperti jenis dan jumlah jisim penjerap, isipadu sampel, pH larutan sampel,
masa pengekstrakan, pelarut penyahjerap dan masa penyahjerap telah
dioptimumkan. Dalam keadaan yang optimum, lengkung penentu ukuran menunjukkan
lineariti yang baik dalam julat 0.5-1000 μg L-1 dengan had
pengesanan (LOD) 0.73 dan 1.81 μg L-1 dan had pengukuran (LOQ)
2.44 dan 6.03 μg L-1 yang memuaskan masing-masing bagi
ofloksaksin dan sparflosaksin. Kaedah yang dicadangkan juga menunjukkan
ketepatan pada kepekatan 500 dan 1000 μg L-1 yang baik bagi
oflosaksin dan sparflosaksin dari plasma manusia dengan RSD ≤12.5%
dan pemulihan relatif yang baik dalam julat 90.1-109.5%. Kaedah
D‐μ‐SPE terbukti sebagai kaedah yang cepat danmudah untuk
analisis ubat-ubatan kerana ia hanya memerlukan pelarut organik dalam jumlah
yang kecil sewaktu analisis dijalankan.
Kata
kunci: pengekstrakkan fasa pepejal
mikro disesarkan, kromatografi cecair berprestasi tinggi, oflosaksin,
sparflosaksin, plasma manusia
References
1.
Minovski, N., Vračko,
M., and Šolmajer, T. (2011). Quantitative structure-activity relationship study
of antitubercular fluoroquinolones. Molecular Diversity, 15 (2):
417-426.
2. He, K. and Blaney, L. (2015). Systematic Optimization of an
SPE with HPLC-FLD method for fluoroquinolone detection in wastewater. Journal
of Hazardous Materials, 282:96-105.
3.
Shao, H., Zhou,
H., Zhang, T., Zhao, X., Jiang, Z. and Wang,
Q. (2019). Preparation of molecularly imprinted hybrid monoliths for the
selective detection of fluoroquinolones in infant formula powders. Journal
of Chromatography A, 1588: 33-40.
4.
Shipkova, M.
and Svinarov, D. (2016). LC–MS/MS as a tool for TDM services:
Where are we? Clinical Biochemistry, 49: 1009-1023.
5.
Zeng, H. J., Yang, R.,
Liu, B., Lei, L. F., Li, J. J. and Qu, L. B. (2012). Simple and sensitive
determination of sparfloxacin in pharmaceuticals and biological samples by
immunoassay. Journal of Pharmaceutical Analysis, 2(3): 214-219.
6.
Assadian, F. and Niazi,
A. (2017). Application of response surface modeling and chemometrics methods
for the determination of ofloxacin in human urine using dispersive
liquid-liquid microextraction combined with spectrofluorimetry. Journal of
the Brazilian Chemical Society, 28(12): 2291-2300.
7.
Khezeli, T. and
Daneshfar, A. (2017). Development of dispersive micro-solid phase extraction
based on micro and nano sorbents. Trends in Analytical Chemistry, 89:
99-118.
8.
Wu, Q., Zhao, Y., Wang,
C., Sun, M., Ma, X. and Wang, Z. (2015). Mesoporous carbon reinforced hollow
fiber liquid-phase microextraction for the enrichment of phenylurea herbicides
followed by their determination with high performance liquid chromatography. Analytical
Methods, 7(3): 901–908.
9.
Khan, F. U., Nasir, F.,
Iqbal, Z., Khan, I., Shahbaz, N., Hassan, M. and Ullah, F. (2016). Simultaneous
Determination of moxifloxacin and ofloxacin in physiological fluids using high
performance liquid chromatography with ultraviolet detection. Journal of
Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,
1017–1018: 120-128.
10.
Attimarad, M. and
Alnajjar, A. (2013). A conventional HPLC-MS method for the simultaneous
determination of ofloxacin and cefixime in plasma: Development and validation. Journal
of Basic and Clinical Pharmacy, 4(2): 36.
11.
Tang, Q., Yang, T., Tan,
X. and Luo, J. (2009). Simultaneous determination of fluoroquinolone antibiotic
residues in milk sample by solid-phase extraction - liquid
chromatography-tandem mass spectrometry. Journal of Agricultural and Food
Chemistry, 57(11): 4535-4539.
12.
Tian, Z., Gao, J. J. and Qin,
W. (2018). Determination of fluoroquinolones in milk by ionic liquid-mediated
two-phase extraction followed by capillary electrophoresis analysis. Madridge
Journal of Analytical Sciences and Instrumentation, 3(1): 62-67.
13.
Maia, A.
S., Paíga, P., Delerue-Matos, C., Castro, P. M. L. and Tiritan, M. E. (2020).
Quantification of fluoroquinolones in wastewaters by liquid
chromatography-tandem mass spectrometry. Environment Pollution, 259:
113927.
14.
Rodrigues-Silva, C.,
Porto, R.S., dos Santos, S. G., Schneider, J. and Rath, S. (2019).
Fluoroquinolones in hospital wastewater: Analytical method, occurrence,
treatment with ozone and residual antimicrobial activity evaluation. Journal
of the Brazilian Chemical Society, 30(7): 1447-1457.
15.
Zheng, J., Xi, C., Wang,
G., Cao, S., Tang, B., and Mu, Z. (2018). Simultaneous determination of 20
antibiotics in bovine colostrum tablet using UHPLC–MS/MS and SPE. Chromatographia,
81(6): 947-957.
16.
Lee, H. B., Peart, E. T.
and Svoboda, M. L. (2007). Determination of ofloxacin, norfloxacin, and
ciprofloxacin in sewage by selective solid-phase extraction, liquid
chromatography with fluorescence detection and liquid chromatography-tandem
mass spectrometry. Journal of Chromatography A, 1139(1): 45-52.
17.
Ruiz, F. J., Ripoll, L.,
Hidalgo, M. and Canals, A. (2019). Dispersive micro solid-phase extraction
(D-µ-SPE) with graphene oxide as adsorbent for sensitive elemental analysis of
aqueous samples by laser induced breakdown spectroscopy (LIBS). Talanta,
191: 162-170.
18.
Chung, W. H., Tzing, S.
H. and Ding, W. H. (2013). Dispersive micro solid-phase extraction for the
rapid analysis of synthetic polycyclic musks using thermal desorption gas
chromatography-mass spectrometry. Journal of Chromatography A, 1307:
34-40.
19.
Ghorbani, M.,
Aghamohammadhassan, M., Ghorbani, H. and Zabihi, A. (2020). Trends in sorbent
development for dispersive micro-solid phase extraction. Microchemical
Journal, 158: 105250.
20.
Jamali M. R., Firouzjah,
A. and Rahnama R. (2013). Solvent-assisted dispersive solid phase extraction. Talanta,
116: 454-459.
21.
Anastassiades, M.,
Lehotay, S. J., Stajnbaher, D. and Schenck, F. J. (2003). Fast and easy
multiresidue method employing acetonitrile extraction/partitioning and
“dispersive solid-phase extraction” for the determination of pesticide residues
in produce. Journal of AOAC International, 86(2): 412-431.
22.
Amoli-diva, M. and
Pourghazi, K. (2018). CoFe2O4 nanoparticles
grafted multi-walled carbon nanotubes coupled with surfactant-enhanced
spectrofluorimetry for determination of ofloxacin in human plasma. Nanochemistry
Research, 3(1): 17-23.
23.
Vakh C., Alaboud, M.,
Lebedinets, S., Korolev, D., Postnov, V., Moskvin, L., Osmolovskaya, O. and
Bulatov, A. (2018). An automated magnetic dispersive micro-solid phase
extraction in a fluidized reactor for the determination of fluoroquinolones in
baby food samples. Analytica Chimica Acta, 1001: 59-69.
24.
Chisvert, A., Cardenas,
S. and Lucena, R. (2019). Dispersive micro-solid phase extraction. Trends in
Analytical Chemistry, 112: 226-233.
25. Mohd
Hassan, F, W., Muggundha, R., Kamaruzaman, S., Sanagi, M, M., Yoshida, N.,
Hirota, Y. and Nishiyama, N. (2018). Dispersive
liquid–liquid microextraction combined with dispersive solid-phase extraction
for gas chromatography with mass spectrometry determination of polycyclic
aromatic hydrocarbons in aqueous matrices. Journal of Separation Science,
41(19): 3751-3763.
26.
Basheer, C., Han, G. C.,
Toh, M. H. and Hian, K. L. (2007). Application of porous membrane-protected
micro-solid-phase extraction combined with HPLC for the analysis of acidic
drugs in wastewater. Analytical Chemistry, 79(17): 6845-6850.
27.
Roberts, J. A. (2009).
Pharmacokinetic issues for antibiotics in the critically Ill patient. Critical
Care Medicine, 37(3): 840-851.
28.
Borner, K., Borner, E.
and Lode, H. (1992). Determination of sparfloxacin in serum and urine by
high-performance liquid chromato-graphy. Journal of Chromatography B:
Biomedical Sciences and Applications, 579(2): 285-289.
29.
Srinivas, N., Narasu, L.,
Shankar, B. P. and Mullangi, R. (2008). Development and validation of a HPLC
method for simultaneous quantitation of gatifloxacin, sparfloxacin and
moxifloxacin using levofloxacin as internal standard in human plasma:
Application to a clinical pharmacokinetic study. Biomedical Chromatography,
22(11): 1288-1295.
30.
Samanidou, V. F.,
Christodoulou, E. A. and Papadoyannis, I. N. (2005), Determination of
fluoroquinolones in edible animal tissue samples by high performance liquid
chromatography after solid phase extraction. Journal of Separation Science,
28(6): 555-565.
31.
Garcia, M. A., Solans,
C., Calvo, A., Royo, M., Hernandez, E., Rey,
R. and Bregante, M. A. (2002). Analysis of ofloxacin in plasma samples by
high-performance liquid chromatography. Chromatographia, 55(7-8):
431-434.