Malaysian Journal of Analytical Sciences Vol 24 No 6 (2020): 893 - 905

 

 

 

 

DEVELOPMENT OF DISPERSIVE MICRO-SOLID PHASE EXTRACTION FOR THE ANALYSIS OF OFLOXACIN AND SPARFLOXACIN IN HUMAN PLASMA

 

(Pembangunan Pengekstrakan Fasa Pepejal-Mikro Disesarkan untuk Analisis Oflosaksin dan Sparflosaksin dalam Plasma Manusia)

 

Sohaib Jumaah Owaid1, Noorfatimah Yahaya2, Nurul Yani Rahim1, Rania Adam Edrees Mohammad1, Maizatul Najwa Jajuli1, Mazidatulakmam Miskam1*

 

1School of Chemical Sciences,
Universiti Sains Malaysia, 11900 Minden, Pulau Pinang, Malaysia

2 Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI),

Universiti Sains Malaysia, 13200 Bertam, Pulau Pinang, Malaysia

 

*Corresponding author:  mazidatul@usm.my

 

 

Received: 13 August 2020; Accepted: 18 October 2020; Published:  10 December 2020

 

 

Abstract

Dispersive micro-solid phase extraction (D-μ-SPE) using C18 adsorbent combined with HPLV-UV was developed for the determination of ofloxacin and sparfloxacin in human plasma. Seven D‐μ‐SPE parameters namely type and amount of adsorbent mass, sample volume, pH of sample solution, extraction time, desorption solvent and volume were optimized. Under optimum conditions, calibration curves showed good linearity in the range of 0.5–1000 μg L-1 with acceptable limit of detection (LOD) of 0.73 and 1.81 μg L-1 and limit of quantitation (LOQ) of 2.44 and 6.03 μg L-1 for ofloxacin and sparfloxacin, respectively. The D‐μ‐SPE also demonstrated acceptable precision at the concentration of 500 dan 1000 μg L-1 of ofloxacin and sparfloxacin, respectively in human plasma with RSD value of 12.5%. A good relative recoveries was obtained between 90.1-109.5%. The developed D-μ-SPE method has proven to be a fast and simple approach which only requires low amount of extraction solvent for drug analysis.

 

Keywords: dispersive micro-solid phase extraction, high performance liquid chromatography, ofloxacin, sparfloxacin, human plasma 

 

Abstrak

Pengekstrakkan fasa pepejal mikro disesarkan (D-µ-SPE) menggunakan penjerap C18 yang digabungkan dengan HPLC-UV telah dibangunkan untuk penentuan oflosaksin dan sparflosaksin dalam plasma manusia. Beberapa parameter D‐μ‐SPE seperti jenis dan jumlah jisim penjerap, isipadu sampel, pH larutan sampel, masa pengekstrakan, pelarut penyahjerap dan masa penyahjerap telah dioptimumkan. Dalam keadaan yang optimum, lengkung penentu ukuran menunjukkan lineariti yang baik dalam julat 0.5-1000 μg L-1 dengan had pengesanan (LOD) 0.73 dan 1.81 μg L-1 dan had pengukuran (LOQ) 2.44 dan 6.03 μg L-1 yang memuaskan masing-masing bagi ofloksaksin dan sparflosaksin. Kaedah yang dicadangkan juga menunjukkan ketepatan pada kepekatan 500 dan 1000 μg L-1 yang baik bagi oflosaksin dan sparflosaksin dari plasma manusia dengan RSD ≤12.5% ​​dan pemulihan relatif yang baik dalam julat 90.1-109.5%. Kaedah D‐μ‐SPE terbukti sebagai kaedah yang cepat danmudah untuk analisis ubat-ubatan kerana ia hanya memerlukan pelarut organik dalam jumlah yang kecil sewaktu analisis dijalankan.

 

Kata kunci: pengekstrakkan fasa pepejal mikro disesarkan, kromatografi cecair berprestasi tinggi, oflosaksin, sparflosaksin, plasma manusia

 

References

1.      Minovski, N., Vračko, M., and Šolmajer, T. (2011). Quantitative structure-activity relationship study of antitubercular fluoroquinolones. Molecular Diversity, 15 (2): 417-426.

2.      He, K. and Blaney, L. (2015). Systematic Optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater. Journal of Hazardous Materials, 282:96-105.

3.      Shao, H., Zhou, H., Zhang, T., Zhao, X., Jiang, Z. and Wang, Q. (2019). Preparation of molecularly imprinted hybrid monoliths for the selective detection of fluoroquinolones in infant formula powders. Journal of Chromatography A, 1588: 33-40.

4.      Shipkova, M. and Svinarov, D. (2016). LC–MS/MS as a tool for TDM services: Where are we? Clinical Biochemistry, 49: 1009-1023.

5.      Zeng, H. J., Yang, R., Liu, B., Lei, L. F., Li, J. J. and Qu, L. B. (2012). Simple and sensitive determination of sparfloxacin in pharmaceuticals and biological samples by immunoassay. Journal of Pharmaceutical Analysis, 2(3): 214-219.

6.     Assadian, F. and Niazi, A. (2017). Application of response surface modeling and chemometrics methods for the determination of ofloxacin in human urine using dispersive liquid-liquid microextraction combined with spectrofluorimetry. Journal of the Brazilian Chemical Society, 28(12): 2291-2300.

7.      Khezeli, T. and Daneshfar, A. (2017). Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends in Analytical Chemistry, 89: 99-118.

8.      Wu, Q., Zhao, Y., Wang, C., Sun, M., Ma, X. and Wang, Z. (2015). Mesoporous carbon reinforced hollow fiber liquid-phase microextraction for the enrichment of phenylurea herbicides followed by their determination with high performance liquid chromatography. Analytical Methods, 7(3): 901–908.

9.    Khan, F. U., Nasir, F., Iqbal, Z., Khan, I., Shahbaz, N., Hassan, M. and Ullah, F. (2016). Simultaneous Determination of moxifloxacin and ofloxacin in physiological fluids using high performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1017–1018: 120-128.

10.   Attimarad, M. and Alnajjar, A. (2013). A conventional HPLC-MS method for the simultaneous determination of ofloxacin and cefixime in plasma: Development and validation. Journal of Basic and Clinical Pharmacy, 4(2): 36.

11.   Tang, Q., Yang, T., Tan, X. and Luo, J. (2009). Simultaneous determination of fluoroquinolone antibiotic residues in milk sample by solid-phase extraction - liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 57(11): 4535-4539.

12.   Tian, Z., Gao, J. J. and Qin, W. (2018). Determination of fluoroquinolones in milk by ionic liquid-mediated two-phase extraction followed by capillary electrophoresis analysis. Madridge Journal of Analytical Sciences and Instrumentation, 3(1): 62-67.

13.   Maia, A. S., Paíga, P., Delerue-Matos, C., Castro, P. M. L. and Tiritan, M. E. (2020). Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environment Pollution, 259: 113927.

14.   Rodrigues-Silva, C., Porto, R.S., dos Santos, S. G., Schneider, J. and Rath, S. (2019). Fluoroquinolones in hospital wastewater: Analytical method, occurrence, treatment with ozone and residual antimicrobial activity evaluation. Journal of the Brazilian Chemical Society, 30(7): 1447-1457.

15.   Zheng, J., Xi, C., Wang, G., Cao, S., Tang, B., and Mu, Z. (2018). Simultaneous determination of 20 antibiotics in bovine colostrum tablet using UHPLC–MS/MS and SPE. Chromatographia, 81(6): 947-957.

16.   Lee, H. B., Peart, E. T. and Svoboda, M. L. (2007). Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1139(1): 45-52.

17.   Ruiz, F. J., Ripoll, L., Hidalgo, M. and Canals, A. (2019). Dispersive micro solid-phase extraction (D-µ-SPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS). Talanta, 191: 162-170.

18.   Chung, W. H., Tzing, S. H. and Ding, W. H. (2013). Dispersive micro solid-phase extraction for the rapid analysis of synthetic polycyclic musks using thermal desorption gas chromatography-mass spectrometry. Journal of Chromatography A, 1307: 34-40.

19.   Ghorbani, M., Aghamohammadhassan, M., Ghorbani, H. and Zabihi, A. (2020). Trends in sorbent development for dispersive micro-solid phase extraction. Microchemical Journal, 158: 105250.

20.   Jamali M. R., Firouzjah, A. and Rahnama R. (2013). Solvent-assisted dispersive solid phase extraction. Talanta, 116: 454-459.

21.   Anastassiades, M., Lehotay, S. J., Stajnbaher, D. and Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2): 412-431.

22.   Amoli-diva, M. and Pourghazi, K. (2018). CoFe2O4 nanoparticles grafted multi-walled carbon nanotubes coupled with surfactant-enhanced spectrofluorimetry for determination of ofloxacin in human plasma. Nanochemistry Research, 3(1): 17-23.

23.   Vakh C., Alaboud, M., Lebedinets, S., Korolev, D., Postnov, V., Moskvin, L., Osmolovskaya, O. and Bulatov, A. (2018). An automated magnetic dispersive micro-solid phase extraction in a fluidized reactor for the determination of fluoroquinolones in baby food samples. Analytica Chimica Acta, 1001: 59-69.

24.   Chisvert, A., Cardenas, S. and Lucena, R. (2019). Dispersive micro-solid phase extraction. Trends in Analytical Chemistry, 112: 226-233.

25.   Mohd Hassan, F, W., Muggundha, R., Kamaruzaman, S., Sanagi, M, M., Yoshida, N., Hirota, Y. and Nishiyama, N. (2018). Dispersive liquid–liquid microextraction combined with dispersive solid-phase extraction for gas chromatography with mass spectrometry determination of polycyclic aromatic hydrocarbons in aqueous matrices. Journal of Separation Science, 41(19): 3751-3763.

26.   Basheer, C., Han, G. C., Toh, M. H. and Hian, K. L. (2007). Application of porous membrane-protected micro-solid-phase extraction combined with HPLC for the analysis of acidic drugs in wastewater. Analytical Chemistry, 79(17): 6845-6850.

27.   Roberts, J. A. (2009). Pharmacokinetic issues for antibiotics in the critically Ill patient. Critical Care Medicine, 37(3): 840-851.

28.   Borner, K., Borner, E. and Lode, H. (1992). Determination of sparfloxacin in serum and urine by high-performance liquid chromato-graphy.  Journal of Chromatography B: Biomedical Sciences and Applications, 579(2): 285-289.

29.   Srinivas, N., Narasu, L., Shankar, B. P. and Mullangi, R. (2008). Development and validation of a HPLC method for simultaneous quantitation of gatifloxacin, sparfloxacin and moxifloxacin using levofloxacin as internal standard in human plasma: Application to a clinical pharmacokinetic study. Biomedical Chromatography, 22(11): 1288-1295.

30.   Samanidou, V. F., Christodoulou, E. A. and Papadoyannis, I. N. (2005), Determination of fluoroquinolones in edible animal tissue samples by high performance liquid chromatography after solid phase extraction. Journal of Separation Science, 28(6): 555-565.

31.   Garcia, M. A., Solans, C., Calvo, A., Royo, M., Hernandez, E.,  Rey, R. and Bregante, M. A. (2002). Analysis of ofloxacin in plasma samples by high-performance  liquid chromatography.   Chromatographia, 55(7-8): 431-434.